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Abstract—In this study, we proposed an approach to mine a
change history to improve the bug localization performance. The
key idea is that a recently fixed file may be fixed in the near
future. We used a combination of textual feature and mining the
change history to recommend source code files that are likely
to be fixed for a given bug report. First, we adopted the Vector
Space Model (VSM) to find relevant source code files that are
textually similar to the bug report. Second, we analyzed the
change history to identify previously fixed files. We then estimated
the fault proneness of these files. Finally, we combined the two
scores, from textual similarity and fault proneness, for every
source code file. We then recommend developers examine source
code files with higher scores. We evaluated our approach based
on 1,212 bug reports from the Eclipse Platform and Eclipse JDT.
The experimental results show that our proposed approach can
improve the bug localization performance and effectively identify
buggy files.

Index Terms—Software Debugging, Bug Localization, Mining
Change History, Information Retrieval

I. INTRODUCTION

In the software debugging process, finding a bug in a
large and complex software project is time-consuming and
painstaking. A developer requires a deep understanding of the
software structure to manually locate suspicious entities based
on a bug report in an issue tracking system such as BugZilla.
To help developers find those entities quickly, automated bug
localization techniques have been proposed and received much
attention in the last few years.

Automated bug localization refers to a process of finding
suspicious entities based on a bug report. Several approaches
[1]-[4] have been built around modern information retrieval
(IR) to identify source code files that are textually similar to
a given bug report. However, the accuracy of these IR-based
technique is far from perfect.

Recently, much research has shown promise that using
additional sources of information can significantly improve the
performance of IR-based techniques. Several studies [2]-[4]
have exploited past bug report information. Intuitively, similar
bugs tend to need fixes in similar files. While these studies do
an adequate job on the bug report history, they do not make
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use of another wealth of stored information in the form of the
Change History [5].

In this paper, we present an approach to using the change
history of a software project to improve the improve IR-based
bug localization. As a baseline IR model for our study, we
use the Vector Space Model (VSM) because VSM is the most
effective IR model [6]. In our approach, we also analyze the
change history to identify previously fixed files. The key idea
is that a recently fixed file may also need to be fixed in
the near future. Inspired by a previous study [7], we use the
notion of a “Cache” to hold the list of previously fixed files
in chronological order. We then estimated the fault proneness
of these files. Finally, for every source code file, we combine
the similarity scores and the fault proneness scores. We then
recommend the source code files with the higher scores to
developers as likely places to correct the bugs.

In our evaluation of our approach, we used 1,212 bug reports
from two open source software projects, the Eclipse Platform
and the Eclipse JDT. To validate our approach, we investigated
these three research questions: RQ1: What is the performance
of our approach? RQ2: Does our approach improve the bug
localization performance? RQ3: Does our approach effectively
identify buggy files?

The main contributions of this paper are:

o We propose an approach to mine a change history to

improve the bug localization performance.

o The experimental results show that our approach can

improve the bug localization performance and more ef-
fectively identify buggy files.

II. BACKGROUND

In this section, we describe the background behind our ap-
proach. First, we introduce the background of mining change
histories. Second, we introduce the workflow of IR-based bug
localization using the Vector Space Model (VSM).

A. Mining Change History

The change history of a software system refers to the history
of all changes that have been made to the software [5]. The
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change history can be acquired from version control tools.
Previous studies [7]-[9] have demonstrated that the change
history stores a wealth of information that could potentially
be used to predict the future fault proneness of software
entities such as classes, files, methods, and so on. For example,
Sliwerski et al. [8] showed that fixed entities are likely to
induce a later change. Hassan and Holt [7] used the number
of recently modified and fixed files to predict subsystems
susceptible to faults. Kim et al. [9] also pointed out that
previously fixed entities are a good indicator to predict near
future faults.

These findings inspired us to mine the change history
incorporating previously fixed files to improve the accuracy
of existing IR-based bug localization approach. Intuitively,
previously fixed files are likely to need to be fixed again soon.

B. Workflow of IR-based Bug Localization using The Vector
Space Model

In traditional information retrieval, the Vector Space Model
(VSM) is a widely used technique. Several approaches [1],
[3] have adapt VSM to bug localization. In VSM, each source
code file or bug report is represented as an n-dimensional
vector, where n is the number of unique index terms appearing
in all the documents (d) and queries (q), and w; is the weight
of the ¢-th index term in the vector < wy, wa, ..., w, > defined
as follows:

Wieq =t fra X idf; (D

In Equation 1, ¢f refers to the frequency of index term
occurrences in a document and idf refers to the frequency
of index term occurrences over the entire collection of doc-
uments. Among many variations of weights, the logarithmic
variant was used because it can lead to better performance.

A typical formula for ¢f and idf are shown in Equation 2.

tf(t,d) = log(fia) +1
i7(0) = logl+—)

where ¢ represents an index term, d represents a particular
document, f;4 is the number of term ¢ occurs in document d,
N is the total number of documents, and n; is the number of
documents in which term ¢ occurs. After transforming source
code files and bug reports into vectors, we calculate the degree
of similarity between a given bug report and source code
corpus as shown in Equation 3.
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With this equation, source code files with the highest scores

are considered as the most textually similar to a given bug
report.
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Fig. 1. Overview of our proposed approach

III. OUR PROPOSED APPROACH

Figure 1 shows the overview of our proposed approach. For
a new bug report, we adopted the Vector Space Model (VSM)
to find source code files that are textually similar to the title
and description of the bug report. We analyzed the change
history to identify previously fixed files. We then estimated
the fault proneness of these files. Finally, we combined the
scores and recommended source code files with higher score
to developers as most likely to contain bugs. We describe the
details of this approach in the following subsections.

A. Finding Textual Similar Files

Our approach adopted VSM to find source code files that
are textually similar to the bug report. First, we extracted
semantic words from bug reports and source code files. We
removed all punctuations and digits. We then split all words
into tokens and normalized them by transforming to lower
case. For multiple-word identifiers e.g. GetlnitialValue(), we
did not separate them into single words to retain the original
meaning. We also removed common English words (e.g. a,
an, the) and general programming language words (e.g. int,
double, char). Second, we obtained one vector for every bug
reports and source code files by applying Equation 1 and 2.
Third, we used Equation 3 to calculate V.SM Score(q,d) for
every bug report and source code file. Finally, we returned the
ranked source code files for every bug report.

B. Mining Change History

1) Analyzing Change History to Identify Previously Fixed
Files: Generally, developers commonly include a bug report
number in the comment of commit logs whenever they fix a
bug associated with it [8]. To identify previously fixed files,
we used logical mappings between the commit logs of the
software version archives and the fixed bug reports (see Figure
2). This allowed us to obtain a list of previously fixed files in
chronological order.

Inspired by a previous study [7], we used the notion of
a “Cache” to hold the potential files for these faults. The
cache is dynamically updated as the software system evolves.
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Fig. 2. An illustration of change history analysis to identify previously fixed
files

A hit occurs when a file in the cache undergoes a bug fix;
a miss occurs when a file outside the cache receives a bug
fix. Intuitively, when a file hits in the cache, the file will be
automatically moved to the top of the cache. We used the
cache size to determine the upper bounds on how many files
were loaded in the cache. When the cache is full, the least
recently used file is removed from the cache. In this research,
we called this the cache-based approach.

2) Estimating Fault Proneness: Previous studies have
shown promise that previously fixed files are more likely
to need to be fixed in the near future [7]-[9]. From our
observation, we found that recently fixed files are likely to
need to be fixed again. Therefore, we should rank recently
fixed files higher in the case of bug localization. We used
the logistic function for estimating the fault proneness for
every file (f) corresponding to the rank in the cache (C). This
allowed us to ensure that higher ranks are given higher scores
during ranking. The function is defined as follows:

1
1+ eNorm(ranky)

FaultProneness(f) = Vel @)
We computed the Fault Proneness value for each file accord-
ing to the rank number. In Equation 4, we use the normalized
value of ranky as the input to the exponential function €.
The normalization function is defined as follows:

ranks —

Norm(ranky) = &)

g

where p is the average rank of buggy files that hit in the cache,
and o is the standard deviation of the rank of buggy files that
hit in the cache.

C. Combining Ranks

After calculated the scores obtained from querying similar
source code files (V.SM Score) and from the change history
analysis (FaultProneness), we combined these two scores
for each file as follows:

FinalScore(q,d) = VSMScore(q,d)+Fault Proneness(d)

(6)

Files that are ranked higher are the more relevant ones, i.e.,
more likely to contain bugs.

IV. EXPERIMENTAL DESIGN

In our evaluation, we addressed the following research
questions:

RQ1: What is the performance of our approach?

RQ2: Does our approach improve the bug localization
performance?

RQ3: Does our approach effectively identify buggy files?

We used two open source software projects, from the
Eclipse Platform and the Eclipse JDT, as shown in Table I.

TABLE I
STATISTICS SUMMARY OF STUDIED PROJECT

Project Study Period # Bugs # Files
Eclipse Platform  Apr 2002 - Jan 2013 744 1,758
Eclipse JDT Jun 2002 - Mar 2013 468 4,222

A. Dataset Collection and Ground-Truth Data Preparation

We obtain bug report information from the Eclipse bug
tracking system. We selected only bug reports which labeled
as “FIXED”. We excluded all false-positive bug numbers. We
obtained source code information from the Git version control
system. We took snapshots of each system’s source code at
six month intervals over the duration of the system. During
evaluation, given a bug report, we determine the previous
nearest snapshot and perform our approach to obtain a ranked
list of source code files.

To prepare ground-truth data, we identified changes from
the commit logs using the SZZ algorithm [8]. The algorithm
parses the commit log messages from the Git source code
repository, looking for messages such as “Fixed Bug #137088”
or similar variations. If found, the algorithm establishes a link
between all the source code files in the commit transaction
with the identified bug ID. The result is a set of links between
bug reports and source code entities, which we use to evaluate
our approach.

B. Evaluation Metrics

To evaluate the performance of our approach compared to
traditional bug localization methods, we use the following
metric:

1) Top-N Rank Accuracy: This metric measure the accu-
racy by calculating the percentage of bug reports that have at
least one buggy files that was returned from the top N rank
result (V) = 1, 5, 10, 20, and 30). This accuracy is calculated
by Equation 7.
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TABLE 1T
SUMMARY OF THE PERFORMANCE OF OUR APPROACH COMPARED TO VSM APPROACH AND CACHE-BASED APPROACH ALONE

Project Approach Top 1 Top 5 Top 10 Top20 Top 30 MRR MAP
Our Approach 14.25% 40.46% 53.36% 64.92% 71.77% 0.2692 0.2394
Eclipse Platform =g Space Model Approach  12.10%  32.39%  43.15%  5538%  63.58% 02247 0.1890
Cache-based Approach 11.56%  23.66% 31.18%  44.62%  53.36% 0.1810 0.1762
Our Approach 11.97% 3291% 44.66% 53.42% 58.76% 0.2208 0.1611
Eclipse IDT - 5 or Space Model Approach  6.17%  19.23%  2670%  3590% 41.45% 0.1327 0.0940
Cache-based Approach 9.19% 25.00%  35.04% 45.73% 5449% 0.1680 0.1573

4) Average Coverage Ratio: This metric measure the per-

<] centage number of relevant documents that a bug localization

Accuracy(Cj) |Q\ Z F(qi) (7)) method can returns from the result. Because of one query may

where || is the total number of queries (Bug reports) and g;
represents for each query. F'(¢;) is a function for each query,
such that if at least one buggy files was appeared in the top
N rank this function will return 1 and otherwise will return
0.

2) MRR (Mean Reciprocal Rank): is a statistical measure
for evaluating any process that produces a list of possible
responses to a query. The reciprocal rank of a query response is
the multiplicative inverse of the rank of the first correct answer.
The mean reciprocal rank is the average of the reciprocal ranks
of results of a set of queries Q:

1Q

1 1
MRR= — S —
RER Q| ; rank; ®

3) MAP (Mean Average Precision): is a measure to eval-
uate performance of bug localization that is most commonly
used in research papers. M AP calculates the mean of the
average precision scores for each query (Bug report), when
one query may have more than one relevant document (Buggy
file). The Average Precision for one query (AvgP) can be
computed using Equation 9.

2 k=1 (P(K) x Rel(k))

AvgP(q;) =
vgP (i) number of relevant documents

€))

where k is the rank, n is the number of retrieved documents
(number of bugs from ranked result), Rel(k returns 1 if the
retrieved document is a relevant document, 0 otherwise. P (k)
is the precision at the given cut-off rank j. After that M AP
can be calculated as follows:

Q|
1
MAP = Ql ZAng(q,»)
i=1

A higher M AP means that for each query, the bug local-
ization technique can return relevant documents at a higher
rank.

(10)

have more than one relevant document, Coverage Ratio is the
percentage for one query as calculated by Equation 11.

#Success fullyLocalizedBugs
#Total Bugs

CoverageRatio(%) =
(11

Finally, we then calculated the average of C'overageRatio
for all queries Q:

lQl
Z CoverageRatio;

12)

AverageCoverageRatio(%) = oA

V. EXPERIMENTAL RESULTS

This section reports the experimental results. We report the
performance of our approach (RQ1) in the first section and
compare the results with the Vector Space Model approach
and the cache-based approach (RQ2) in the second section.
Finally, we show the effectiveness at identifying buggy files
of our approach (RQ3).

A. Performance

We first addressed RQ1: What is the performance of our
approach? Table II shows the Top-N Accuracy, M RR and
M AP values respectively. Since our approach recommends
the Top N files, the performance of our approach depends on
the value of N. Overall, the value of Top-N Accuracy grows
as N increases.

For the Eclipse Platform, there are total of 744 bug reports.
As Table II shows in bold, our approach successfully located
relevant files for 106 bug reports (14.25%) in the Top 1 and
534 bug reports (71.77%) in the Top 30 of the returned results.
Similarly, the Eclipse JDT had 468 bug reports total, and our
approach successfully located relevant files for 56 bug reports
(11.97%) in the Top 1 and 275 (58.76%) in the Top 30 of the
returned results.

These results indicate that for a large percentage of bugs,
our approach can identify a small number of source files that
need to be examined.
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Fig. 3. The effectiveness of identifying buggy files

B. Comparison

We compared the results of our approach with the VSM and
cache-based approaches to address RQ2: Does our approach
improve the bug localization performance? Table II shows
the summary results. For fair comparisons, we used the same
comparative size of Top N files. The experimental results show
that our approach outperformed the VSM approach and cache-
based approaches. For example, for the Eclipse Platform,
when considering at the Top 30 accuracy, of the total bug
reports, our approach can successfully localized 71.77%, the
VSM approach 63.58%, and the cache-based approach only
53.36%. Similarly, for the Eclipse JDT, when considered at the
Top 30 accuracy, of the total bug reports, our approach can
successfully localized 58.76%, the VSM approach 41.45%,
and the cache-based approach only 54.49%. In the same way,
the M RR and M AP values of our approach are also higher
than the other two approaches.

C. Effectiveness at identifying buggy files

We calculated AverageCoverageRatio to address RQ3:
Does our approach effectively identify buggy files? We com-
puted this for every subject system and for every approach
and plotted the comparative results as shown in Figure 3. The
x-axis indicates the AverageCoverageRatio values. For the
Eclipse Platform, our approach successfully identified 62.38%,
the VSM approach 55.05%, and the cache-based approach
44.17% of the relevant buggy files. Similarly, for the Eclipse
JDT, our approach successfully identified 42.33%, the VSM
approach 28.05%, and the cache-based approach 39.61% of
the relevant buggy files. Overall, the completeness from our
approach is better than the other two approaches.

VI. DISCUSSIONS

A. What are the variations in the returned results of the
various approaches?

In this section, we performed an analysis to address the
question: what are the variations in the returned results of

Eclipse JDT

Fig. 4. A comparison of variations in the returned results of the approaches (Top 30 accuracy)

the various approaches? As shown in Figure 4, we used a
Venn diagram to show the variations in the returned results

at Top 30 Accuracy. For the Eclipse Platform, our approach
localized 71.77%, VSM 63.58%, and cache-based 53.36% of
the total bug reports. As the figure shows, the VSM and cache-
based approaches shared 257 bug reports (34.54%), the over-
lapping region in the middle. While our approach localized a
larger percentage than either VSM or cache-based approaches,
there were small subsets that the other approaches localized
which were not localized by our approach. Specifically, 21
bug reports (2.82%) were identified by VSM but not by
our approach, and 57 (7.66%) were identified by the cache-
based approach but not by our approach. Similarly, for the
Eclipse JDT, our approach localized 58.76%, VSM 41.45%,
and cache-based 54.49% of the total bug reports. the VSM
and cache-based approaches shared 99 bug reports (21.15%).
The VSM approach identified 10 bug reports (2.14%) and the
cache-based approach identified 65 (13.89%) not identified by
our approach at the Top 30 Accuracy level.

Based on the results, we concluded that our method of
combining the scores of the VSM and cache-based approaches
has some negative effects because our approach does not com-
pletely cover all bugs localized by the VSM and cache-based
approaches. Therefore, the change history mining technique
can be further improved.

B. Why can our approach improve the performance of IR-
based bug localization?

As shown in Figure 4, there were a large number of bug
reports that are not shared between the VSM and cache-based
approaches. Our approach takes advantage of this finding. In
the proposed approach, Equation 6 combines rankings from the
two models. With this combination, our approach can localize
bugs more accurate and more effective than the VSM approach
and cache-based approach alone. The experimental results also
help us confirm that by incorporating textual features and
the change history of previously fixed files can significantly
improve the performance of IR-based bug localization.
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C. Threats to Validity

There are several potential threats to the validity of our

work, including:

e Our ground-truth data relies on the SZZ technique [8]
that can bias the results of our approach. This is because
there is a linking bias in identifying bugs with revision
logs and bug reports [10].

o In this experiment, we used only two systems from the
Eclipse Project, so our results may not be generalized to
other software projects. More experiments are required to
obtain more reliable results.

VII. RELATED WORKS

Debugging a failure in a large and complex program in
current software projects is cost intensive. There is much
research on proposed automated bug localization approaches
to help developers quickly locate the bug locations based on
a given bug report [1]-[4]. These approaches have been built
on modern information retrieval (IR) to identify source code
files that are textually similar to a given bug report. Rao et al.
[1] compared several generic and composite IR models. Their
results showed that VSM is the most effective model among
others. However, the accuracy of IR-based techniques is far
from perfect.

Several studies have shown promise that using additional
source of information can significantly improve the perfor-
mance of IR-based bug localization. Nichols et al. [2] used
information from past bug reports to improve the latent
semantic indexing (LSI) model. Zhou et al. [3] proposed an
approach to using past similar bug reports to improve bug
localization performance. The intuitive idea of their approach
is that similar bugs tend to be fixed in similar files. In the
same year, Davies et al. [4] also exploited similar bug reports
to identify buggy methods. In contrast, our approach mined
the change history to improve bug localization performance.

The mining of the change history has been widely used
in several aspects. Several related studies in the literature of
software defect prediction worked to predict fault incidence
[11], to detect logical couplings [12], and to predict change
entities in the future [13]. In contrast, our approach exploited
the change history as an aspect of bug localization research.

Buckley et al. [5] have extensively studied the taxonomy
of software change. Several dimensions of software changes
have been introduced, such as, temporal properties, object
of change, system properties, and change support. In this
research, we considered only the temporal properties of previ-
ously fixed files. Although the results of our approach achieved
an accuracy of up to 71.77% at the Top 30, in our future work,
we will include other aspects of change history.

VIII. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a way to use the change history
of a software project to improve the performance of IR-based
bug localization. We used the Vector Space Model (VSM) as
a baseline IR model of our study. We analyzed the change

history to identify previously fixed files. Intuitively, a recently
fixed file might need to be fixed in the near future. We then

estimated the fault proneness of these files. Finally, for every
source code file, we combined the similarity scores and the
fault proneness scores. We then recommended source code
files with higher scores to developers.

In our evaluation of this approach, we used a number
of traditional IR-based metrics such as Top-N Accuracy,
MRR, and M AP. Based on our datasets, the experimental
results showed that our approach performed better than the
VSM approach and cached-based approach alone. We also
studied the effectiveness of our approach to in identifying bug
locations. The results showed that our approach effectively
identified more bug locations than the compared approaches.
These results indicate that a system using our approach can
help developers quickly identify possible bug locations to
examine based on bug reports. Such a system would allow
developers to spend less time locating bugs and more time
fixing them. This means more bugs can be fixed at the same
amount of maintenance effort and cost.

Based on this study, future research will focus on validating
our approach by doing extensive experiments on other large
software projects.
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