
Using Co-Change Histories to Improve
Bug Localization Performance

Chakkrit Tantithamthavorn, Akinori Ihara, Ken-ichi Matsumoto
Software Engineering Laboratory

Graduate School of Information Science,

Nara Institute of Science and Technology, Japan.

E-mail: {chakkrit-t,akinori-i,matumoto}@is.naist.jp

Abstract—A large open source software (OSS) project receives
many bug reports on a daily basis. Bug localization techniques
automatically pinpoint source code fragments that are relevant
to a bug report, thus enabling faster correction. Even though
many bug localization methods have been introduced, their
performance is still not efficient. In this research, we improved
on existing bug localization methods by taking into account co-
change histories. We conducted experiments on two OSS datasets,
the Eclipse SWT 3.1 project and the Android ZXing project. We
validated our approach by evaluating effectiveness compared to
the state-of-the-art approach BugLocator. In the Eclipse SWT 3.1
project, our approach reliably identified source code that should
be fixed for a bug in 72.46% of the total bugs, while BugLocator
identified only 51.02%. In the Android ZXing project, our
approach identified 85.71%, while BugLocator identified 60%.

Index Terms—Software Maintenance; Co-Change Histories;
Bug Localization; Information Retrieval;

I. INTRODUCTION

In a large software project, software maintenance is a key

activity focusing on the modification of the software product

after release to correct bugs and to improve performance.

On a daily basis, software projects receive many bug reports.

Due to the increasing size and complexity of current software

applications, finding a buggy file is a painstaking and time-

consuming activity for developers. To address this problem,

many automated software debugging systems based on static

and dynamic program analyses have been developed to reduce

human effort and software maintenance cost.

Bug localization is one of the popular automated software

debugging approaches. It aims to automatically pinpoint which

code fragments are relevant to a bug report allowing faster

correction. Recently, Information Retrieval (IR) based tech-

niques have been widely used to localize a bug, such as

Latent Dirichlet Allocation (LDA) [1][2], Latent Semantic

Indexing (LSI) [1]-[3], Vector Space Model (VSM) [2],[4]-[5],

Cluster Based Document Model (CBDM) [2], and the Unigram

Model (UM) [2]. Among these, Rao and Kak [2] reported that

VSM is the most effective method. Currently, Zhou et al. [5]

proposed BugLocator which improved on traditional VSM.

Not only can this method effectively retrieve relevant buggy

files given a bug report query, but it also utilizes information

about similar bugs that have been fixed before to improve the

ranking performance. Therefore, BugLocator is currently the

best available bug localization method. However, the authors

reported that the accuracy of BugLocator relies on the quality

of the bug report. If a bug report does not provide enough

information, or misleading information, the performance of

BugLocator is adversely affected.

To improve on the performance of the existing bug localiza-

tion techniques, we leveraged the following assumption: if a
buggy file was fixed, then the files that were changed together
should be fixed together. In this research, we introduce a novel

bug localization method which not only considers the textual

features in the same way as existing methods do, but also

relies on the co-change histories that identify files which have

been changed together before.

Our method consists of three steps. First, we calculate the

co-change score by constructing a co-change matrix. Second,

we create a list of all possible co-change files using the co-

change score. Third, as a target method, we augment the results

obtained from BugLocator as proposed by Zhou et al. [5].

These two techniques are complementary because BugLocator

identifies buggy files based on textual features while co-change

identifies buggy files based on what set of files are commonly

changed together. We evaluate our approach on two OSS

datasets, the Eclipse SWT 3.1 project and the Android ZXing

project. In comparison with previous research, our work is

different and contributes in these two ways:

• We introduce a novel bug localization method that takes

advantage of the co-change assumption by introducing

a co-change score, which is used to adjust the results

obtained from BugLocator to increase performance.

• We introduce an in-depth evaluation approach to mea-

sure the effectiveness of our approach in comparison to

previous research.

The organization of the paper is as follows. In Section II, we

describe the background of this work, in terms of co-change

histories, bug localization and the architecture of BugLocator.

In Section III, we describe our proposed approach, augmenting

the results of BugLocator with information from co-change

histories. Section IV describes our experimental design, and

Section V shows and discusses the experimental results and

contributions. Section VI gives the threats to validity. We

conclude the paper and underline future works in Section VII.

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.92

551978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.92

543

2013 14th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed

Computing

978-0-7695-5005-3/13 $26.00 © 2013 IEEE

DOI 10.1109/SNPD.2013.92

543



II. BACKGROUND

A. Co-Change Histories

A co-change event or change propagation consists of all

classes whose changes have been committed at exactly the

same time by exactly the same author. This concept was first

introduced by Ball et al [6]. They used co-change information

to visualize a graph of co-changed classes. Then they found

clusters of classes that often changed together during the

evolution of the system. This co-change information either

can be present in the versioning system, or must be inferred

by analysis. For example, Subversion marks co-changing files

at commit time as belonging to the same change set, while

in CVS, the logically coupled files must be inferred from

the modification time of each file. Gal et al. [7] showed that

the concept helps to derive useful insights about the system

architecture. Other work has investigated the causes of change

propagation [8]-[9], co-change prediction [10]-[11] and co-

change visualization [12]-[13].

In terms of these different studies, this paper is positioned

as follows: We propose a novel approach using co-change

histories to improve existing bug localization techniques. We

use the same co-change definition from previous studies as the

event of all classes or files being changed at the same time by

the same author [10][14]. We introduce a method to calculate

a co-change score to construct a co-change matrix, then we

adjust the results obtained from BugLocator by combining the

results from our method.

B. Bug Localization based on Information Retrieval

Software bug localization is one of the most painstaking and

time-consuming activities in program debugging. To overcome

this problem, there is a high demand for automatic bug local-

ization techniques that can guide programmers to the locations

of bugs based on an initial bug report. Recently, Information

Retrieval (IR) based techniques have been widely used to

localize a bug, such as Latent Dirichlet Allocation (LDA)

[1][2], Latent Semantic Indexing (LSI) [1]-[3], Vector Space

Model (VSM) [2],[4]-[5], Cluster Based Document Model

(CBDM) [2], and the Unigram Model (UM) [2]. Among these,

Rao and Kak [2] reported that VSM was the most effective

method. A common bug localization process which consists

of the following three steps:

[Step 1: Corpus creation] This step extracts semantic words

from source code and bug reports. Multiple-word identifiers

are separated into single words. For example, GetInitialValue()
will be split into three words: Get, Initial, and Value. Each

remaining word will be normalized to lower case and be

stemmed by the Porter Stemmer algorithm1 to determine

the root meaning. After that, some programming language

keywords (e.g., int, double, char, etc), separators, operators,

and common English words (e.g., a, an, the, etc) will be

removed to reduce noise and retain the original meaning.

[Step 2: Indexing] The forward index stores a list of words

for each document. Building an inverted index can quickly

1http://tartarus.org/martin/PorterStemmer/

locate documents containing the words in a query and then

rank these documents by relevance. Therefore, bug localization

can directly access the index to find the documents associated

with each word in the query and quickly retrieve the matching

documents.

[Step 3: Retrieval & ranking] Bug localization treats the

source code files as a document corpus and let the bug report

as a query. Then, it calculates the relevant score between

a document vector and a query vector by using various

approaches such as the Vector Space Model.

C. The Architecture of BugLocator

In this research, as a target system, we extend BugLoca-

tor [5] to evaluate how using information about co-change

histories improves existing bug localization methods. Figure

1 shows the architecture of BugLocator. It was introduced as

an approach to ranking buggy files based on the similarity of

source code files and the similarity of past bug reports.

�������	�
�
��
��

��
����� ��
��

���������������
��������
���

�����������������

 ���!���
��"���

#���$
	�����������

#���$

�����
���
��
%���������&

����
������
�
��
��%����
����&

'�������
$�!��
��"���

(��
$)���
'��������
��

!���

�����
���
��
%��������&

�������	�


Fig. 1. The architecture of BugLocator [5]

1) Ranking Based on Source Code Files: BugLocator treat

source code files as a document corpus, and a bug report as a

query. Then, it calculates the relevancy score between a docu-

ment vector and a query vector by using cosine similarity. To

improve the performance of the classic VSM, they determine

the term-frequency (tf ) and inverse document frequency (idf )

Equation as shown in Equation (1).

tf(t, d) = log(ftd) + 1, idf(t) = log
#docs

nt
(1)

The larger the source code files, the higher the probability of

containing a bug. They also use a logistic regression function

in Equation (2) to give a higher score to larger documents

during ranking where N(x) is a normalization of the document

length.

g(#term) =
1

1 + e−N(x)
, N(x) =

x− xmin

xmax − xmin
(2)

In Equation (3), they introduced the rV SMScore which is

weighted by the document length score and optimized by the

logarithm variant of the tf from Equation (1).

552544544



rV SMScore(q, d) = g(#term)×
�Vq • �Vd

|�Vq||�Vd|
(3)

2) Ranking Based on Similar Bugs: Past similar bug reports

are analyzed under the hypothesis that similar bugs tend to

require fixes to similar files. This similarity is computed by

Equation (4).

SimiScore =
∑

∀Siconnect toFj

(Similarity(B,Si)/ni) (4)

3) Combining Score: The final score is calculated as a

relevance score between a bug report to a relevant source code

by combining the score between rVSMRank and SimiRank

together as shown in Equation (5).

FinalScore = (1−α)×rV SMScore+α×SimiScore (5)

, where α is a weighting factor between 0 ≤ α ≤ 1. We use

α = 0.2 for all experiments in this research. However, one of

the limitations of BugLocator is that the accuracy relies on

the quality of the bug report. If a bug report does not provide

enough information, or provides misleading information, the

performance of BugLocator is adversely affected.

III. THE PROPOSED APPROACH

���������
�	
����
�
��	��

������������	�
�	
����
�������

�������������
��	����
�	���	�

����������	�

�����	�����
�����������

Fig. 2. The overall architecture of the proposed approach

Figure 2 shows the overall architecture of the proposed ap-

proach. First, we calculate the co-change score by constructing

a co-change matrix. Then, we create a list of all possible

co-change files using the co-change score. Finally, we adjust

the results from BugLocator. The details of our approach are

described below.

A. Analysis of Co-Change Histories

We construct a co-change matrix to calculate the co-change

score. When N denotes the total number of classes, we define

a diagonal co-change matrix C which has dimension N ×N
where Ci,j is the number of times that each element has been

modified concurrently with other elements [14]. We do not

consider the Ci,j value where i = j. To illustrate this, an

entry Ci,j = 5 tells us that classes i and j have been modified

5 times together.

We define the CoChangeScore by performing a normal-

ization technique to scale the attribute data to fall within an

appropriate range of 0 to 1 as shown in Equation (6) where

Cmax and Cmin are the maximum and minimum value of

vector �Ci respectively. The higher the CoChangeScore value,

the stronger the relationship becomes.

CoChangeScore(Ci,j) =
Ci,j − Cmin

Cmax − Cmin
(6)

Then, we create a list of all possible co-change files related

to the relevant result from BugLocator using the co-change

score. We define CoChangeSets(Bugn) as a set of all

possible co-change files related to the relevant result from

BugLocator where Bugn is a set of Top-N relevant source

code files for each bug report given from the BugLocator

result. We define F as the set of all source codes in a

repository.

CoChangeSets(Bugn) (7)

=
⋃

∀b∈Bn,∀f∈F

{f |CoChangeScore(Cb,f ) > δ}

, where; b �= f

The intuitive meaning behind Equation (7) is that

CoChangeSets(Bugn) provides a union set of all source

code files f that are a member of F such that

CoChangeScore between file b and file f has a score higher

than a threshold where b is a member of the set of Top-N

relevant source code files obtained from the BugLocator result

and δ is a threshold of CoChangeScore. In this research, we

use δ = 0.85 for all experiments.

To illustrate, given a list of all source code files F =
{1, 2, 3, 4, 5} where the list of buggy files in Top-1 obtained

from BugLocator is B = {1}.

Cm,n =

⎛
⎜⎜⎜⎜⎝

1 2 3 4 5

1 0 0.89 0.95 0.01 0.33
2 0.89 0 0.84 0.93 0.91
3 0.95 0.84 0 0.82 0.51
4 0.01 0.93 0.82 0 0.29
5 0.33 0.91 0.51 0.29 0

⎞
⎟⎟⎟⎟⎠

(8)

We show an example of the co-change matrix after performing

the normalization technique in Equation (8). Therefore, the

final co-change files CoChangeSets(B) is {2, 3}.

B. Augmented result

We adjust the result obtained from BugLocator by combin-

ing the results between the set CoChangeSets(Bugn) and

the set Bn together as shown in the following Equation (9)

because we did not consider the CoChangeScore(i, j) where

i = j as mentioned above.

PredictedBuggyF ile = CoChangeSets(Bn) ∪Bn (9)

Finally, we have a new relevant source code files which

is related to a bug report. In this example, we now consider

PredictedBuggyF ile = {1, 2, 3}

553545545



IV. EXPERIMENTAL SETUP

To evaluate the effectiveness of our approach, we conducted

a series of experiments with two OSS projects. First, we used

the Eclipse SWT 3.1 project (an open source widget toolkit

for Java) which contained 98 bug reports. Second, we used the

Android ZXing project (a barcode image processing library

for Android application) which contained 20 bug reports.

These two datasets were obtained from BugLocator’s dataset2

provided by Zhou et al. and are not the complete sets of bug

reports from these projects. We performed experiments on the

following research questions to validate our approach.

RQ1: Does our model improve the existing bug localization
performance?

We performed experiments on these two datasets. We sep-

arated the bug reports into two chunks ordered by time. The

first chunk is 30% of the bug reports used for a training set,

while the other 70% is used to evaluate the system. We used

the first chunk to build co-change histories. We measured

the effectiveness of our approach by using the performance

metrics shown in Equation (10). This metric measures the

percentage of the number of successfully localized bug reports.

To measure this metric, we checked the ranks of predicted

buggy files by our approach in testing set. If the files are

ranked in the Top-1, Top-5 or Top-10 of actual buggy files, we

considered that the report was effectively localized. To answer

this question, we compared our results with traditional VSM

and BugLocator to measure the effectiveness of our approach.

Performance(%) =
#SuccessfullyLocalizedBugs

#TotalBugs
(10)

Furthermore, we also studied the impact of co-change

histories on bug localization with various sizes of dataset. We

measured the performance with the Eclipse SWT 3.1 data set

using various sizes of training and testing data sets to validate

the impact of co-change histories. We examined the ratio of

training data sets from 0.1 to 0.9. For example, ratio 0.3 is the

combination with the first 30% of the bug reports for training

and the remaining 70% of the bug reports for testing.

RQ2: How many buggy files does this model cover?

There is much research measuring the performance of bug

localization method using Equation (10). In this research, if

at least one actual buggy file was correctly predicted, the bug

is considered successfully localized. In our empirical analysis,

we found that there are often many buggy files that were fixed

based on one bug report. In this research, we performed an in-

depth analysis to validate the ability to predict buggy files by

using the coverage ratio. We calculated the CoverageRatio
in each bug report using Equation (11). This metric measures

the percentage of the number of buggy files that this model

covers.

2http://code.google.com/p/bugcenter/wiki/BugLocator

TOP1 TOP5 TOP10

Eclipse SWT 3.1

P
e
rc

e
n
ta

g
e

0
2

0
4

0
6

0
8

0
1

0
0

TraditionalVSM

BugLocator

OurApproach

1
1

.2
2

%
3

2
.6

6
%

4
6

.3
8

%

4
0

.8
2

%
4

4
.9

0
%

6
3

.7
7

%

4
6

.3
8

%
5

1
.0

2
%

7
2

.4
6

%

TOP1 TOP5 TOP10

ZXing Project

0
2

0
4

0
6

0
8

0
1

0
0

TraditionalVSM

BugLocator

OurApproach

2
0

.0
%

1
0

.0
%

1
4

.2
8

%

4
0

.3
8

%
4

0
.0

%
5

7
.1

4
%

6
0

.0
0

%
6

0
.0

0
%

8
5

.7
1

%

Fig. 3. The performance of our approach comparing to traditional VSM and
BugLocator

CoverageRatio(%) =
#SuccessfullyPredictedBuggyF iles

#ActualBuggyF iles
(11)

To answer this question, we measured the effectiveness of

our approach using the AverageCoverageRatio calculated

by Equation (12). It is the average of the CoverageRatio of

all bug reports.

AverageCoverageRatio =
1

M
×

M∑
i=1

CoverageRatioi

(12)

V. RESULTS AND CONTRIBUTIONS

RQ1: Does our model improve existing bug localization per-
formance?

Figure 3 shows the performance of our approach on the

two projects. In the Eclipse SWT 3.1 project, our approach

successfully identified 46.38%, 63.77%, 72.46% of the bug

reports in Top-1, Top-5, and Top-10 respectively. For the

Android ZXing project, our approach successfully identified

14.28%, 57.14%, 85.71% of bug reports in Top-1, Top-5, and

Top-10 respectively. For comparison, we used the same testing

data set for all subject systems. We also compared our results

to traditional VSM and BugLocator. The results show that our

approach outperforms traditional VSM and BugLocator. We

can conclude that our approach using co-change histories can

localize a large percentage of bugs.

To measure the impact of co-change histories in bug local-

ization, we also calculated the performance of our method

554546546



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

10

20

30

40

50

60

70

80

90

100

Ratio of training data set

P
e
rf

o
rm

a
n
c
e
 i
n
 p

e
rc

e
n
ta

g
e

TOP1

TOP5

TOP10

Fig. 4. The performance of Eclipse SWT 3.1 in different size of training
data set

with the Eclipse SWT 3.1 project data set using different

sizes of training data, as shown in Figure 4. The x axis

is the ratio of training data set size and the y axis is the

percentage of performance calculated by Equation (10). The

result shows that the larger the training data set, the higher the

accuracy of our approach is. However, because of the results

of our approach are mainly based on the results obtained from

BugLocator, the performance at the ratio 0.7 in Top-1 and Top-

5 decreased slightly. If the result obtained from BugLocator

is not a buggy file, the performance of our approach may

decrease slightly.

RQ2: How many buggy files does this model cover?

We conducted an experiment to measure the effectiveness

of our approach using the AverageCoverageRatio described

in the previous section. Table I shows the effectiveness on the

two projects. The results show that our model can predict up

to 58.33% of the actual buggy files in the Eclipse SWT 3.1

and 70.71% of the actual buggy files in the Android ZXing

project. As a result, we can conclude that our approach using

co-change histories is completely effective to localize a bug

based on the initial bug report.

Dataset TOP1 TOP5 TOP10
Eclipse SWT 3.1 34.07 % 48.65 % 58.33 %
Zxing 10.71 % 44.28 % 70.71 %

TABLE I
THE EFFECTIVENESS OF OUR APPROACH

VI. THREATS TO VALIDITY

This section discusses potential threats to the validity of our

experiments as following:

• The first threat to validity in this experiment is related to

the data collection which was based on the BugLocator

datasets. Even though BugLocator is the state-of-the-art

algorithm, they did not use the completed set of bug

reports in the Bug Tracking System.

• Second, we only analyzed two Java programs, so our

results may not be generalizable to projects with other

programs written in different languages. Also, the results

of our approach may be different from results with other

projects because our experiments were based on open

source software projects.

• Third, the results of our approach are mainly based on

the results obtained from BugLocator. When the result

obtained from BugLocator is not a buggy file, the perfor-

mance of our approach may decrease slightly.

VII. CONCLUSIONS AND FUTURE WORK

In this research, we introduced a novel bug localization

method which not only considered the textual features as

existing approaches do, but also utilzed on the co-change

histories, identifying class files that have been changed at the

same time. Our approach consisted of three steps. First, we

calculated the co-change score by constructing a co-change

matrix. Second, using the co-change score, we created a list

of all possible co-change files using the co-change score.

Third, as a target method, we augmented the results obtained

from BugLocator as proposed by Zhou et al. [5]. These two

techniques are complementary because BugLocator identifies

potential buggy files based on textual features while co-change

identifies them in terms of sets of files are commonly changed

together at the same time.

We based our experimental evaluation of our approach on

two OSS datasets from the Eclipse SWT 3.1 project and

the Android ZXing project. As described in Section V, in

comparison to the state-of-the-art BugLocator approach, on the

Eclipse SWT 3.1 project data, our approach reliably identified

72.46% of the total bugs, while BugLocator identified only

51.02%. Similarly, on the Android ZXing project data, our ap-

proach identified 85.71% of the buggy files, while BugLocator

identified 60.00%. From these results, we conclude that our

approach using co-change histories improves the performance

of existing bug localization approaches, localizing a larger

percentage of the reported bugs. It is our belief that research

in these directions can help significantly reduce the human

efforts and software maintenance cost.

The future research directions for our work can be summa-

rized as follows:

• We plan to extend our experiments to other projects,

including a large evolutionary software project.

• We plan to conduct experiments by using other bug

localization target systems.

555547547



ACKNOWLEDGEMENT

We would like to thank Prof. Mike Barker from Nara Insti-

tute of Science and Technology for valuable comments from

early versions of this paper. We also thank the anonymous

reviewers for their valuable comments. This research is being

conducted as a part of Grant-in-aid for Young Scientists (B),

25730045, 2013 of the Ministry of Education, Culture, Sports,

Science and Technology, Japan.

REFERENCES

[1] S. K. Lukins, N. a. Kraft, and L. H. Etzkorn, “Bug localization
using latent Dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, Sep. 2010.

[2] A. K. Shivani Rao, “Retrieval from Software Libraries for Bug Local-
ization : A Comparative Study of Generic and Composite Text Models,”
in Proceedings of the 8th IEEE Working Conference on Mining Software
Repositories (MSR’11), 2011, pp. 43–52.

[3] B. D. Nichols, “Augmented Bug Localization Using Past Bug Informa-
tion,” in Proceedings of the 48th Annual Southeast Regional Conference
(ACM SE’10), 2010, pp. 61:1–61:6.

[4] E. Hill, “On the Use of Stemming for Concern Location and Bug
Localization in Java,” in Proceedings of the 12th International Working
Conference on Source Code Analysis and Manipulation (SCAM’12),
2012, pp. 184–193.

[5] J. Zhou, H. Zhang, and D. Lo, “Where Should the Bugs Be Fixed
?” in Proceedings of the 34th International Conference on Software
Engineering (ICSE’12), 2012, pp. 14–24.

[6] T. Ball, J.-m. K. A. A. Porter, and H. P. Siy, “If Your Version Control
System Could Talk ...” in Proceedings of the ICSE Workshop on Process
Modelling and Empirical Studies of Software Engineering, 1997.

[7] H. Gall, “Change analysis with evolizer and changedistiller,” IEEE
Software, vol. 26, no. 1, pp. 26–33, 2009.

[8] G. Antoniol, V. F. Rollo, G. Venturi, and E. P. D. Montr, “Detecting
groups of co-changing files in CVS repositories,” in Proceedings of
the Eighth International Workshop on Principles of Software Evolution
(IWPSE’05), 2005, pp. 23–32.

[9] T. Zimmermann, P. Weiß gerber, S. Diehl, and A. Zeller, “Mining
Version Histories to Guide Software Changes,” in Proceedings of the
26th International Conference on Software Engineering (ICSE’04),
2004, pp. 563–572.

[10] A. E. Hassan and R. C. Holt, “Predicting change propagation in
software systems,” in Proceedings of the 20th International Conference
on Software Maintenance (ICSM’04), 2004, pp. 284–293.

[11] N. Tsantalis, A. Chatzigeorgiou, and I. C. Society, “Predicting the
Probability of Change in Object-Oriented Systems,” IEEE Transactions
on Software Engineering, vol. 31, no. 7, pp. 601–614, 2005.

[12] M. D. Ambros, S. Member, M. Lanza, and I. C. Society, “Visualizing
Co-Change Information with the Evolution Radar,” IEEE Transactions
on Software Engineering, vol. 35, no. 5, pp. 720–735, 2009.

[13] a. Vanya, R. Premraj, and H. van Vliet, “Interactive Exploration of
Co-evolving Software Entities,” in Proceedings of the 14th European
Conference on Software Maintenance and Reengineering (CSMR’10),
Mar. 2010, pp. 260–263.

[14] M. M. G. Schweitzer and Frank, “The Link between Dependency
and Co-Change : Empirical Evidence,” IEEE Transactions on Software
Engineering, vol. 38, no. 0098-5598, pp. 1432–1444, 2011.

[15] S. Lal and A. Sureka, “A Static Technique for Fault Localization
Using Character N-Gram Based Information Retrieval Model Categories
and Subject Descriptors,” in Proceedings of the 5th India Software
Engineering Conference (ISEC’12), 2012, pp. 109–118.

[16] M. Revelle, M. Gethers, and D. Poshyvanyk, “Using structural and tex-
tual information to capture feature coupling in object-oriented software,”
Empirical Software Engineering, vol. 16, no. 6, pp. 773–811, Mar. 2011.

[17] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams, Y. Zou, and A. E.
Hassan, “An Empirical Study on Inconsistent Changes to Code Clones
at Release Level,” in Proceedings of the 16th Working Conference on
Reverse Engineering (WCRE’09), 2009, pp. 85–94.

[18] T. Gı̂rba, S. Ducasse, A. Kuhn, R. Marinescu, and R. Daniel, “Using
concept analysis to detect co-change patterns,” in Proceedings of the
9th international workshop on Principles of software evolution in
conjunction with the 6th ESEC/FSE joint meeting (IWPSE’07). ACM
Press, 2007, pp. 83–89.

[19] M. P. Robillard, “Recommending change clusters to support software
investigation : an empirical,” Journal of Software Maintenance and
Evolution, vol. 22, no. 3, pp. 143–164, 2010.

[20] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann, “What makes a good bug report?” in Proceedings of the
16th International Symposium on Foundations of Software Engineering
(FSE’08), 2008, p. 308.

[21] M. M. Geipel and F. Schweitzer, “Software Change Dynamics : Evi-
dence from 35 Java Projects,” in Proceedings of the 7th joint meeting of
the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (ESEC/FSE’09),
2009, pp. 269–272.

[22] M. D’Ambros, M. Lanza, and R. Robbes, “On the Relationship Between
Change Coupling and Software Defects,” in Proceedings of the 16th
Working Conference on Reverse Engineering (WCRE’09), 2009, pp.
135–144.

[23] T. Zimmermann, S. Kim, A. Zeller, and E. J. W. Jr, “Mining Version
Archives for Co-changed Lines,” in Proceedings of the 2006 interna-
tional workshop on Mining software repositories (MSR’06), 2006, pp.
72–75.

[24] D. Beyer, “Co-Change Visualization,” in Proceedings of the 21st IEEE
International Conference on Software Maintenance (ICSM’05), 2005,
pp. 89–92.

[25] C. C. Williams, J. K. Hollingsworth, and S. Member, “Automatic Mining
of Source Code Repositories to Improve Bug Finding Techniques,” IEEE
Transactions on Software Engineering, vol. 31, no. 6, pp. 466–480, 2005.

556548548


