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ABSTRACT
Analogy-based estimation (ABE) is one of the most time
consuming and compute intensive method in software de-
velopment effort estimation. Optimizing ABE has been a
dilemma because simplifying the procedure can reduce the
estimation performance, while increasing the procedure com-
plexity with more sophisticated theory may sacrifice an ad-
vantage of the unlimited scalability for a large data input.
Motivated by an emergence of cloud computing technology
in software applications, in this study we present 3 differ-
ent implementation schemes based on Hadoop MapReduce
to optimize the ABE process across multiple computing in-
stances in the cloud-computing environment. We experimen-
tally compared the 3 MapReduce implementation schemes
in contrast with our previously proposed GPGPU approach
(named ABE-CUDA) over 8 high-performance Amazon EC2
instances. Results present that the Hadoop solution can pro-
vide more computational resources that can extend the scal-
ability of the ABE process. We recommend adoption of 2
different Hadoop implementations (Hadoop streaming and
RHadoop) for accelerating the computation specifically for
compute-intensive software engineering related tasks.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Management—Cost esti-
mation; D.1.3 [Programming Techniques]: Concurrent
Programming

General Terms
Management, Measurement, Performance, Experimentation

Keywords
Software effort estimation, Analogy-based estimation, Cloud
computing, MapReduce, CUDA
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1. INTRODUCTION
Scaling up an effort estimation process is vital for software

development, given an increasing amount of information be-
ing processed and a need of larger computing resources to
facilitate the use of more sophisticated estimation technique.
In the past, many important estimation parameters were
usually simplified to complete the estimation process, be-
cause a sufficiently powerful computing architecture was not
available [11, 20]. However, this simplification can produce
different solutions and result in inaccurate estimation.

To avoid unforeseeable consequences led by the simplifica-
tion, a sufficiently powerful computing architecture is clearly
an interesting alternative approach. We have started dis-
cussing this approach and explored a possibility of utilizing
general proposed graphic processing unit (GPGPU) tech-
nology over one of the most compute intensive methods in
software development effort estimation called analogy-based
estimation (ABE) [20]. In that work, we proposed ABE-
CUDA algorithm. A use of CUDA technology enable us
to successfully provide sufficiently computational resources
that can fully optimize of the ABE process. Among many
interesting features, CUDA appears to lack the ability to
simply integrate more computing unit, when a problem re-
quires more resources. Thus, scalability problem could be
an inherent CUDA disadvantages. Moreover, programming
in CUDA is entirely executed in a GPU device with a lim-
ited amount of internal memory. We also aware that CUDA
may discourage the practitioners to extensively explore its
potential use, as a development based on CUDA demands
high programming expertise extending from the C language,
which is usually costly to maintain, and often require lengthy
development time. Thus, a software development based on
CUDA seems not to be suitable for rapid development. In
this work, we explore a different HPC technology that has a
potential to provide unlimited scalability, at the same time
with high development agility.

We explore cloud computing approach over HADOOP
Map Reduce in this study. The cloud computing solution
has a potential to fulfill the scalability requirement as a
process can be computed in parallel across multiple com-
puting units, where the number of machine can be simply
adjusted [21]. Furthermore, a variety of interfaces to the
Hadoop MapReduce programming scheme, which is flexible
for different programming expertises, has a potential to ful-
fill a development agility requirement [22]. Different from



numerous literatures based on cloud computing, this study
focuses on two main aims: (1) We propose an ABE frame-
work based on Hadoop MapReduce as an alternative HPC
solution, and (2) we examine 3 different MapReduce im-
plementation schemes following Java native Hadoop library,
Hadoop streaming, RHadoop library, and we compare with
our previously proposed ABE-CUDA.
One of the highlight results was achieved by the Maxwell62

data set (i.e. the largest data set in the PROMISE repository
[19]) on an experiment that uses only one master and one
computing Amazon EC2 instances. Both Hadoop stream-
ing and Java native Hadoop implementations have reduced
the computing time from ABE-CUDA for 90% (i.e. from
10 hours to 40 minutes), even though; we have reported
in [20] that the ABE-CUDA had already shorten the exe-
cution time from the other sequential algorithm up to 80%
using commodity PC [20].
In Section 2, we outline the backgrounds and related works.

Section 3 explain the 3 Hadoop MapReduce implementation
schemes including a brief detail of our previously proposed
ABE-CUDA. Section 4 provides detailed experimental setup
and methodology, and the results are presented in Section
5. Section 6 discusses the findings, and lists some sugges-
tion to the software engineering practitioners about Hadoop
MapReduce. Finally, Section 7 concludes the paper.

2. RELATED WORKS

2.1 Cloud computing and MapReduce program-
ming interface

US National Institute of Standards and Technology (NIST)
defines cloud computing as a model for enable ubiquitous,
convenience, and on-demand virtualized resources and ser-
vices [18]. After the cloud-computing emergence, it has
quickly gotten popular for business and IT solutions. Nowa-
days, well-known cloud vendors such as Amazon Web Ser-
vice [2], Google Cloud Platform [8], and Cloudera [6] offer a
wide range of services for business enterprises, reliable stor-
ages for big data [10], and software infrastructures including
business intelligence.
MapReduce [9] is a distributed computing programming

interface proposed by Google for executing their applications
on a massive number of computers in their data centers. In
present days, MapReduce has been well-utilized for process-
ing and analyzing big data [10]. Its simple interfaces has at-
tracted developer to parallelize their computational problem
with ubiquitous computing environment. The main bene-
fits of MapReduce mostly discuss simplicity and robustness.
Many of well-known MapReduce implementations provide
useful features for data processing such as data partition-
ing, data distributing, and data replication [7]. Further-
more, conventional MapReduce frameworks also integrate
additional functionality to the general use of parallel com-
puting such as. Therefore, these interesting and convenient
features can make MapReduce suitable for distributed com-
puting in the cloud [7].
In an abstract view of the programming model, MapReduce

has two main functions; Map and Reduce. The master node
begins an execution in MapReduce by scattering the pro-
gram instruction to the compute node using the Map func-
tion, where the input data are already located. When pro-
cessing with MapReduce, a task communicates each other
with Key-Value pair (<K,V>) protocol. Program instruc-

tion inside the Map function has to transform the input
data into <K,V>, process them, and emit the computing
outcome as an intermediate <K,V>. The reduce function
will receive the intermediate <K,V> from the Map func-
tion, group chunks of <K,V> into <K,[V]> by keys, and
processes the <K,[V]> to produce the final output <K,V>,
which will be the output of the MapReduce program.

2.2 Analogy-based estimation
Analogy-based Estimation (ABE) has been successfully

become a well-known software effort estimation procedure.
Its essential hypothesis mimics the basic reasoning process of
human being, such that “software projects with similar char-
acteristics should require similar efforts to produce”. While
the key hypothesis of ABE may sound straightforward, the
estimation performance based on it can challenge many other
sophisticate model-based estimation approaches [16].

Estimating a development effort using ABE heavily re-
lies on parameter optimization during the process. As the
method is to find the most similar software project case and
adapt it to the query, examples of the important parame-
ters are: (1) a appropriate method to discuss the similarity
between project pairs, (2) exact number of similar software
project given by a query, and (3) important software project
features to discuss similarity. To reliably determine these
important parameters, the ABE process requires an exhaus-
tive search for not only a long list of possible parameters and
instances under each dimension, but also the combinations
across them. Therefore, ABE is an interesting problem to
explore a possibility to facilitate high-performance comput-
ing (HPC) technology for software engineering process.

3. ABE ALGORITHM AND MULTIPLE HPC
IMPLEMENTATIONS FOR ABE

Algorithm 1 presents a pseudocode of the simplified se-
quential version of the ABE optimization process scoping
from reading a software project input, until achieving the op-
timized parameter set containing the best software project
features and best number of analogies (k) that provide the
minimum error.

Algorithm 1 reads and assigns variables between Line 1
and 5. Table D holds the input data set, where column
vectors indicate feature variables, and row vectors indicate
project cases. Vector f represent feature sets, vector t holds
the actual effort of all the project case, vector R initializes a
container for the result, and MinimumError is initialized
as 0 in the preprocess. The outer for-loop between line 6 and
21 iterates all feature subset combinations to searching for
the most influential one. Dissimilarity between each pair of
project case is constructed in Line 7, and store in Distance
matrix. The matrix will then reordered in Line 8 to represent
look up table. A for-loop between Line 9 and 20 looks up for
the best number of analogies (k), and its inner loop between
line 11 and 15 examines error between the actual effort and
the estimated effort. Once an error for particular feature
set and k is produce, the algorithm will check if it is the
global optimum in a if-condition between line 16 and 19.
The output of Algorithm 1 will present minimum error, the
most influential software project feature set and the best
number of analogies.



Algorithm 1 ABE optimization process

1: D ← read the input data set into table format
2: f ← define the feature sets
3: t← read the actual effort from input data set
4: R← (∞, nil, nil)
5: MinimumError ← 0
6: for all fi in combination(f) do
7: construct DistanceMatrix from D and f
8: SortedMatrix← sort DistanceMatrix by case
9: for k = 1→ #case(D) do
10: error ← 0
11: for i = 0→ #f do
12: Actuali ← ti
13: Predicti ← Average(tRank(SortedMatrix0..k

)

14: error ← error + 1
#case(D)

× |Actuali−Predictedi|
Actuali

15: end for
16: if error < MinimumError then
17: MinimumError ← error
18: R← (MinimumError, fi, k)
19: end if
20: end for
21: end for

3.1 ABE-CUDA
We proposed ABE-CUDA in [20] to enable the ABE frame-

work to estimate large data set. ABE-CUDA tailors ABE
to a HPC framework called CUDA compute architecture to
accelerate massive amount of computation using the power
of graphic processing unit (GPU). CUDA was chosen over
other HPC solution in that work, because it was proved as
an efficient computing paradigm that can allocate massive
amount of computing power even a developed task is de-
ployed on a single machine [5].
ABE-CUDA implements 4 GPUs kernel functions from

the two main components of ABE (i.e. Distance matrix
construction and Parameter optimization). Distance ma-
trix construction computes distance (similarity) between all
pairs of project cases for each particular feature subset and a
number of analogues (k), and Parameter optimization mod-
ule searches for the parameter set that produces the mini-
mum estimation error from the input data set.

3.2 ABE-Hadoop
To explore more spectrum of the HPC solutions over the

ABE, we present and compare 3 more HPC solutions base
on Hadoop MapReduce with ABE-CUDA in this study. As
all the 3 HPC solutions tailor the Hadoop MapReduce, let
we call them ABE-Hadoop in short. ABE-Hadoop modifies
Algorithm 1 from the loop at Line 6 as follows:

Algorithm 2 computes the error for a given feature subset
and an observing k value following the original Algorithm
1. The outputs of the Map function are a collection of inter-
mediate ⟨keys, values⟩ pairs, which are consisted of k pairs
of ⟨error, (k, f)⟩. The Reduce function takes the intermedi-
ate ⟨keys, values⟩ form the Map function and search for the
pairs that contains the minimum error. The output of Algo-
rithm 2 is the feature subset in corresponding to the number
of analogies, and the error value the produce them minimum
error. Figure 1 summarizes the ABE-Hadoop process flow.

Algorithm 2 ABE-Hadoop optimization process

1: function Map(⟨key, value⟩)
2: f ← key
3: construct DistanceMatrix from D and f
4: SortedMatrix← sort DistanceMatrix by case
5: for k = 1→ #case(D) do
6: error ← 0
7: for i = 0→ #f do
8: Actuali ← ti
9: Predicti ← Average(tRank(SortedMatrix0..k

)

10: error ← error + 1
#case(D)

× |Actuali−Predictedi|
Actuali

11: end for
12: Emit ⟨error, (k, f)⟩
13: end for
14: end function

1: function Reduce(⟨keys, values⟩)
2: ⟨MinError, (Bestk, Set)⟩ ← ⟨∞, (∞, nil)⟩
3: for all ⟨key ∈ keys⟩ do
4: if key < minError then
5: ⟨MinError, (Bestk, Set)⟩ ← ⟨key, values⟩
6: end if
7: end for
8: Emit ⟨MinError, (Bestk, Set)⟩
9: end function

ProcessProcessDistance matrix 

construction

<K=1,(MMRE,SET)>
<K=1,(MMRE,SET)>

<Error,(k=1,set)>
<K=1,(MMRE,SET)>
<K=1,(MMRE,SET)>

<Error,(k=2,set)>

Finding the parameter set that 

provides the minimum error

<K=1,(MMRE,SET)>
<K=1,(MMRE,SET)>

<Error,(k=3,set)>

< MinError, (Bestk, Set) >

ProcessProcessDistance sorting

ProcessProcessEstimation performance 
calculation

Map

Reduce

Preprocess

ABE optimization process

Input

data set

HDFS
Replicate to all compute nodes

Output

Figure 1: A graphical overview of ABE-Hadoop



3.2.1 ABE-JavaNativeHadoop
ABE-JavaNativeHadoop is an implementation of ABE frame-

work we have reimplemented all the ABE-CUDA kernels into
Java language following MapReduce Java library provided
by Hadoop. The Map function computes both Distance and
Optimization functions over all the combinations of ABE pa-
rameters. The Reduce function collects the estimation per-
formance given by particular ABE parameter, and reduces
all the possible combination into the best one that produces
the minimum error.
To the best of our knowledge, the Hadoop platform and

framework have been developed only in Java programming
language by the time of this writing. Therefore, if a pro-
gram is reimplemented following the Hadoop-provided Java
MapReduce library, minimum additional cost to execute the
problem will allow the program to be inherently and fully op-
timized. However, the additional cost would be more spent
on the process to reimplement a problem into Java that will
require an extensive effort with Java programming expertise
as some parallel programming skills.

3.2.2 ABE-HadoopStreaming
In the ABE-HadoopStreaming implementation scheme, we

deployed the sequential version of ABE-CUDA which en-
tirely processes all the functions using CPU into Hadoop.
We firstly divided a the data to examine into smaller chunk
(e.g. there are 2f feature combinations divided by number of
computing cores in each chunk). Then, we used a Hadoop
streaming command (i.e. $HADOOP HOME/bin/hadoop
jar $HADOOP HOME/hadoop-streaming.jar) to tell all the
computing instances to distributed execute the sequential
ABE program in parallel. The outputs from all the Map
function instances are an estimation error for a given fea-
ture subset. To find the minimum error and the best fea-
ture subset, we implemented a Reduce function using simple
BASH script language, which does the same task as that of
ABE-JavaNativeHadoop. The Reduce function collects the
estimation performance given by particular ABE parameters
from multiple machines, and reduces the intermediate result
into one that produces the minimum error.
Hadoop streaming is an interface that fully enhances pro-

gramming adaptability and extensibility to Hadoop. The
interface allows any executable, script, or even a single com-
mand to be executed across multiple machines. Hadoop
streaming is flexible and programming language indepen-
dent, so that it allows a developer who has a limited exper-
tise of Java programming language or parallel programming
skill to acquire the power of HPC for their application. How-
ever, computing adaptability is inevitably sacrifice the per-
formance. Comparing to the JavaNnativeHadoop, Hadoop
streaming appears to lack the accelerated performance.

3.2.3 ABE-RHadoop
In ABE-RHadoop, we reimplemented all the 4 CUDA ker-

nels using R script language. This is the simplest version we
have implemented among the 3 Hadoop and 1 CUDA imple-
mentations. It requires minimum expertise in both program-
ming and parallel programming skills. For the process flow,
we entirely setup all the ABE parameters to be examines as
well as the data dividing process in the R framework. Thus,
the entire source codes for this version were implemented in
the R language.

RHadoop is a collection of R statistical computing and
data mining library provided by RevolutionAnalytics [1].
RHadoop allows users to manage and analyze big data using
a wide range of R packages in parallel with Hadoop. A paral-
lel program can be implemented in a R, which is a high-level
script language. With an ability to facilitate higher compu-
tational power while the development overhead is remaining
low, the RHadoop is an interesting solution that eases the
development agility.

4. EXPERIMENTAL SETUP

4.1 Controlled Experiments
The conditions developed in our evaluations are listed as

follows:
1) The estimated performances were optimized over the

parameters that we had set in ABE-CUDA [20]. From the
influential parameters of ABE [3], we chose to optimize a
search for (1) the feature variable combination that produces
the minimum error, (2) the number of similar projects that
produces the minimum error. We (3) normalized the value
using max−min for all the continuous variable. We (4) se-
lected the Euclidean distance family as a similarity measure,
and (5) we chose unweight average as solution adaptation
method.

For training and testing, we chose leave-one-out validation
technique (a.k.a. Jack-knifing) as a sampling method. This
is another component that demands computational power.
Leave-one-out separates one software project case as a test
instance of the model that being built from all the remain
cases, and it repeats this process for all the cases [13]. It is
a technique that is commonly selected over the other proce-
dures in ABE literatures [12, 14], because of lower bias and
higher variance generated.

2) We controlled the experiments under condition (1) and
replicated the experiments over ABE-CUDA, ABE-JavaNative
Hadoop, ABE-HadoopStreaming, and ABE-RHadoop. We
recorded the total computing time for every single run across
different number of computing instances to present the ac-
celerated performance, and we further analyzed the results
to observe scalability.

4.2 Testbed environments
We deployed the experiments in two different Amazon

EC2 instances. We chose the GPU G2 instance for ABE-
CUDA, because the maximum throughput from from GPUs
can be expected with this instance type. However, we ware
aware that the result could not be optimum if we run the pro-
cess that utilized only CPU on the GPU-optimized instance.
Therefore, we chose another CPU-optimized instance for the
3 Hadoop implementations. Table 1 describes the hardware,
software, and configuration per one computing instance.

We deploy ABE-CUDA in a single G2 instance, and we set
up 2, 4, and 8 C3 instances for the rest 3 implementations
based on Hadoop to observe the computing efficiency and
scalability. In all the Hadoop setups, we assigned an instance
as a master node (i.e. Namenode and Jobtracker), and leave
the rest as compute node (i.e. Datanodes and TaskTrackers).
For example, a 4-instance setup has 1 master and 3 compute
instances. We were limited the access to 8 C3 computing
instances, because the 32-cores C3 instance is the recently
most powerful computing instance, and it require a special
approval to get an accessibility to more number of instances.



Table 1: The 2 testbed environments from Amazon
EC2

Compute-
optimized
c3.8xlarge

GPU
g2.2xlarge

Processor
Intel Xeon
E5-2680v2

Intel Xeon
E5-2670

#Cores 32 8

DRAM 60 GiB 15 GiB

#GPU cores N/A 1,536

VRAM N/A 4GB

Storage 30 GiB SSD 30 GiB SSD

Network 10 Gigabit N/A

OS 64-bit Linux 3.1 based Amazon AMI

Hadoop
Library

Apache Hadoop 1.2.1

Nonetheless, we will present in the next section that only 8
C3 computing instances are considerably powerful enough to
handle any ABE task over the recently available data sets.

4.3 Data sets used in the case study
We selected 2 large data sets from the PROMISE soft-

ware engineering repository [19] as our experimental data
sets. The PROMISE repository is where empirical software
engineering datasets were collected and made available for
software engineering researchers and practitioners to tackle
challenges in software engineering problems, such as bug pre-
diction and software development effort estimation. The two
data sets themselves seem not to be large in physical size (i.e.
can be seen as a table with a less than 100 rows and columns),
however; an intensive manipulation over their entries makes
them heavily compute intensive. Table 2 summarizes the
properties of the two data sets.

Table 2: The data sets

Data set Nasa93 Maxwell62

# Projects 93 62

# Features 23 26

Description
Nasa software
projects [4]

Projects from
commercial banks
in Finland [17]

As the ABE optimization process examines all the fea-
tures subset combinations, there will be at least 223 and 226

operations computed over the Nasa93 and Maxwell62 data
sets respectively. In the next section, we will present an em-
pirical benchmark comparing the performance based on the
4 different implementations on GPU and Hadoop using the
Amazon EC2 computing environment.

5. RESULTS
Figure 2 and Figure 3 present the total execution times

(i.e. wall-clock time), when repeating the ABE optimization
process over the Nasa93 and Maxwell62 data sets.
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While our previous study has presented that the ABE-
CUDA could shorten the execution time from the other
sequential implementation that used only CPU up to 80%
in a commodity PC [20], all the alternative Hadoop imple-
mentations in this study have displayed further impressive
improvement over both Nasa93 and Maxwell62 data sets.
From the execution time over the Nasa93 data set as pre-
sented in Figure 2, ABE-JavaNativeHadoop was the fastest
following by ABE-HadoopStreaming, ABE-RHadoop, and
ABE-CUDA. The execution time in seconds showing on the
x-axis presents that even an execution using only one com-
pute node (2 instances), the slowest Hadoop implementa-
tion still notably faster than that of the ABE-CUDA. The
computing instance equipped with a 32-cores CPU made
the ABE-RHadoop spent less 50% the computing time than
the ABE-CUDA. Furthermore, the ABE-HadoopStreaming
and the ABE-Java NativeHadoop were outstandingly faster,
they had reduced the execution time from the ABE-CUDA
for over 90% using the same single compute node setup.

The Maxwell62 data set has presented similar result from
that of the Nasa93. Figure 3 presents a similar trend to Fig-
ure 2 but in a different scale. Maxwell62 has 3 more feature
variables than the Nasa93 that will have at least (226) −
(223) = 58, 720, 256 more operations to compute. From the



Table 3: Summary of fundatemttal source code metrics over 4 implementation schemes

ABE-CUDA
ABE-

JavaNativeHadoop
ABE-

HadoopStreaming
ABE-RHadoop

Language C++, CUDA Java C++ R

LOC 2,095 1228 1,674 471

#Files 40 18 35 17

#Functions 119 82 90 21

result, executing the ABE process using RHadoop over 2
instances still requires lengthly time to complete (i.e. ap-
proximately 6 hours), whereas the ABE-HadoopStreaming
and the ABE-JavaNativeHadoop require less than an hour.
Thus, the Hadoop implementations over powerful cloud- com-
puting instances could shorten the computing time from the
hours timeframe into a few minutes.
The computing time has been commonly reduced by ap-

proximately 50% when increasing the number of computing
instances twice. In Nasa93, increasing from 2 to 4 instances,
ABE-Rhadoop reduced the execution time by 52%, ABE-
HadoopStreaming reduced the execution time by 63%, and
ABE-JavaNativeHadoop reduced the execution time by 69%.
Likewise, when increasing from 4 to 8 instance, the results
still retain to approximately the same ratios. When the
hardware resources were doubled, all the 3 Hadoop-based
implementations have reported more than 2 times speed-up.
The reason is we always assigned one computing instance as
the master node and let it take care only the operation and
communication tasks, thus; the computing instances that ac-
tually computed the task were not doubled as the number
in Figure 2 and Figure 3 had indicated. However, we also
investigated for other possibilities, and we believe that the
execution time spent on the Reduce function also have an
influence to the circumstance. Increasing number of com-
puting instances can reduce the total stall time that the
Reduce functions have to wait for the outputs from the Map
functions, because the data sets had been divided into more
number of smaller chunks, and each chunk will require less
computing time to complete.
When executing the ABE-HadoopStreaming and the ABE-

JavaNativeHadoop over 2 computing instances, the two im-
plementations have spent almost equal computing time. There-
fore, when the input data are not massively large or the
complexity of their application does not growth in exponen-
tial, we suggest Hadoop Streaming would be a better solu-
tion, This is because Hadoop streaming will require much
less effort to migrate the task. Also we recommend to allo-
cate more budget for more computing instances rather than
preparing to spend much over the migration process. Note
that the set up time for initiating a Hadoop MapReduce
framework in typical cloud is considerably low. In this study,
we spent less than 20 minutes to start 8 computing instances
in the Amazon EC2.

5.1 Development agility
To discuss the development agility, we computed several

fundamental software matrices over our implemented source
codes. We used a source-code analysis toolset named Under-
stand [15] for C++ and Java code, but we had to analyzed
the R source code manually, because; a tool set that can
analyze R source code is not existing. Table 3 presents the

source-code metrics computed over the 4 implementations
of ABE.

In a common real-world scenario, developers will initially
have an application implemented in sequential such as we
have 1,674 LOC sequential program (i.e. in Table 3-Hadoop
Streaming). To make it run in HPC, HadoopStreaming can
be the most attractive choice as long as we do not need
much more effort to migrate it. Next, CUDA is also a good
option as this program was written in C++. In such case,
we could reuse all the original source code such that in our
example we had to implement more 421 LOC (about 25%) to
enable the original source file executable in GPU. In contrast,
we had to reimplement the whole framework in Java or R
to migrate that application in either JavaNativeHidoop or
Rhadoop. From our examples, our reimplemented source
code in Java and R consume 1,228 LOC (about 70%) and
471 (28%) LOC respectively.

There are cases that Java and RHadoop seem to be the
better choices. JavaNativeHadoop will be a suitable choice
in case the source program was already well-written in Java
or the developers have expertise in Java programming lan-
guage as well as parallel programming skill. On the other
hand, we will choose the RHadoop in case we are going to
start developing a new software project from scratch. In
our R implementation, LOC, number of files, and number
of functions, are entirely less than the value recorded from
all the other implementations.

6. DISCUSSIONS

6.1 ABE over Hadoop MapReduce
This study has presented that a HPC solution over Hadoop

MapReduce is not only suitable for big data processing [10],
but it can also provide a massive amount of computation
power for compute intensive tasks. We have explored a
fully-utilized Hadoop MapReduce framework to transpar-
ently send the instruction set of the ABE process to multiple
32-cores CPU computing instances and let the process com-
puted concurrently. From the results, all the implementa-
tions based on Hadoop MapReduce have achieved impressive
accelerated performance. An implementation based on Java
library provided by Hadoop was the fastest execution. Be-
cause an implementation in Java is in the same programming
language as the native Hadoop platform, all the functions
require the least overhead. Interesting findings in which
different from our presumption is the execution time over
Hadoop streaming is not much slower than the Java Hadoop,
although; it supposes to include much more overhead in or-
der to allow any program executed in the Hadoop platform.
From this finding, we would encourage software engineering
practitioners in any domain to consider Hadoop for their
problem solving or applications. We suggest a combination



Table 4: Summary of and suggestion towards the findings in this study

ABE-CUDA
ABE-

JavaNativeHadoop
ABE-

HadoopStreaming
ABE-RHadoop

Effort required
for development

Very high Moderate
Depends on
programming

language
Very low

Effort required for
Moderate - source is in

C++
Low - source is in

Java
Low

Very low - source is in
R

migration
Very high - source is in

other language
High - source is in
other language

Low - source is in
other language

Require high
expertise on

C++, CUDA, HPC Java, HPC
Any programming

language
-

Require optional
expertise on

- - HPC
R programming
language, HPC

Scalability Low Very high Very high High

Suitable for
Executing a HPC task
in a local machine

Migrating a task
that is well-written
in Java to the Cloud

Migrating any task
to the Cloud

Start developing a
HPC task from scratch
and plan to deploy it

in the cloud

between Hadoop streaming and high performance Amazon
EC2 as an interesting solution to any software engineering
problem that requires a massive amount of computational
power. Migrating a program into Hadoop using Hadoop
streaming is almost effort-less, as the Hadoop streaming
allows any executable file to be the Map function of the
MadReduce. Thus, neither additional expertise in parallel
programming nor advance Java programming is required.
The RHadoop is different from the two other ABE-Hadoops.

Although it is the slowest among the 3 Hadoop implemen-
tation schemes, we would still recommend it for any devel-
opment task that concerns development agility. To develop
a task from scratch or analyzing data with a wide-range
of complex mathematical functions, implementing with R
will be clearly more convenience than other solutions. In
the past, computing speed was one of the biggest challenge
of utilizing R for a real-world problem. From our results,
RHadoop can accelerate sufficient performance to make a
programming based on R no longer lack the accelerated
performance. Therefore, we recommend a combination of
RHadoop and high-performance Amazon EC2 instances for
to ease a challenge in compute-intensive problem.
Recently, a commodity PCs equipped with a 32-cores CPU

is not available in the consumer market, thus; the perfor-
mance presented from our results are only valid on the cloud.
Therefore, ABE-CUDA is remaining the best option for es-
timating the effort in a local machine, even through; ABE-
CUDA requires very high effort to develop. We discuss the
accelerated performance and present the scenario to access
the rank of HPC solution based on GPU and Hadoop Map-
Reduce, and Table 4 summarizes our findings and sugges-
tions from this study.

6.2 Threats to validity
Internal validity: We have implied the scalability from

our results that the implementation based on Hadoop Map-
Reduce can scale larger than the CUDA implantation. At
least we can present that computing the ABE process over
a large data set, which took longer than a day in the past,

could be finished on a virtual computing cluster consisting
of 8 computing instances in a few minutes. However; we
are unable to obviously conclude the scalability because a
sufficiently large and accessible software engineering data
set does not exists available data set. Possible future work
from this point is to undertake the experiments with large
artificial data sets.

External validity: The results on development agility may
not able to actually generalize the characteristic of all the
4 different implementations in a full spectrum, however; it
can guide some helpful insights for practitioners to roughly
decide their suitable HPC implementation procedure. To
fully access the rank among these procedures, future works
are required to repeat the experiments over many different
subject developers, and observe their experience.

7. CONCLUSION AND FUTURE WORK
The highlighted result from this study is that the cloud

computing solution is not just perfectly fit for handling big
data tasks [10], but it can also present an impressive outlook
for massively compute-intensive applications. In this study
we have put an emphasize to scale up an effort estimation
based on analogy (ABE) method using Hadoop MapReduce,
as an interface to the cloud computing environment. ABE
is an example of software engineering process in which the
input data is not to physically large, but massive manipu-
lation over the data has introduced an insufficient compu-
tational resource problem in the past. In this study, we
have presented 3 implementation schemes based on Hadoop
MapReduce for the ABE, and compared all of them in con-
tract with our previously proposed ABE-CUDA [20] frame-
work, on the Amazon EC2 cloud service platform. All the 3
ABE implementations over MapReduce have outperformed
ABE-CUDA on the high performance computing instances
equipped with 32-cores CPU. A Hadoop implementation fol-
lowing RHadoop library spent 50% less computing time than
the ABE-CUDA, because an exceptionally large amount of
computing cores supported by the EC2 were fully utilized.
Furthermore, the other two implementations following Java



native Hadoop library and another implementation that di-
rectly deploys an executable file through Hadoop by stream-
ing, could outstandingly reduce the execution time from the
ABE-CUDA for over 90%.

At higher number of computing instances, the difference
in computing performance becomes very small when compar-
ing between the Java native Hadoop and the Hadoop stream-
ing version, even though; developing a task using Hadoop
streaming is much more simple to undertake. We suggest
software engineering practitioners to reduce the migration
cost by selecting the Hadoop streaming whenever their orig-
inal program was not developed in Java language, and rather
spent the reduced cost to fund on more computing instances.
We have performed further experiments over 8 computing in-
stances to observe scalability. At this number of instances,
all the 3 implementation schemes have further reduced the
computing time. Over Nasa93, one of the largest available
effort estimation data set, the total execution time was de-
creased to approximately 1 minute, though; the same task
could take up to 20 hours in a sequential run using commod-
ity PC [20].
Compute-intensive software engineering experiments can

be implemented using readily available computing resources
from the public cloud, our example effort estimation task
illustrated in the study has provided an important insights
to utilize these resources to facilitate and accelerate the de-
velopment of empirical software engineering research.
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