
Industry Questions About Open Source Software in
Business: Research Directions and Potential Answers

Akinori Ihara∗, Akito Monden∗, Ken-ichi Matsumoto∗
∗Graduate School of Information Science, Nara Institute of Science and Technology, JAPAN

Email: (akinori-i, akito-m, matumoto)@is.naist.jp

Abstract—As open source software (OSS) has become an
integral part of today’s software businesses, many software
companies rely on OSS to develop their customer solutions and
products. On the other hand, they face various concerns in using
OSS, such as technical support, quality, security and licensing
issues. This paper focuses on OSS-related FAQ in industry, and
tries to answer them or to provide research directions based on
lessons learned from recent mining OSS repository researches.

I. INTRODUCTION

Today’s many software businesses rely on open source
software (OSS) as it has now become an essential infrastruc-
ture in various computer environments. Typically, recent mo-
bile phone companies are tackling Android operating system,
which is now the most widely used smartphone platform in
the world. Software/game companies and enthusiasts are also
developing various applications for Android. As of July 2013,
the Google play repository reached 1 million applications and
50 billion downloads [32].

While OSS enables companies to develop software systems
at low cost, numbers of concerns are annoying the compa-
nies because using OSS is quite different from conventional
software development. An industry survey of 916 Japanese
software companies in 2009, conducted by the Information-
technology Promotion Agency, Japan, has revealed numbers
of questions (Table I) in using OSS [12], such as technical
support, quality, security and licensing issues. These questions
come from the nature of OSS — there are various major/minor
versions and branches, with a huge number of security/bug
patches available, while there is neither a person who is
responsible of the quality of OSS, nor a customer service
desk to get a technical support. This paper tries to answer
industry questions based on lessons learned from mining
software repositories (MSR) researches. Many OSS projects
provide public software repositories — typically, source code
repository, bug tracking repository and mailing list repository;
and, this enables MSR researches to get useful information
from the repositories for OSS developers and users.

II. OSS USER COMPANY SURVEY

This section introduces OSS user company survey con-
ducted by Information-technology Promotion Agency, Japan
[12]. Participants for the survey are 916 Japanese IT companies
including software companies (556), IT service companies
(121), Internet-related service companies (62) and unknown
(177). 536 of them locate at metropolitan area, and 306 are at
provincial area.

We have enough OSS experience for our customer systems.
We have a little OSS experience for our customer systems.
We use OSS for in-house systems.
We plan to use OSS but not yet.
We are interested in using OSS, but no action yet.
We are not interested in using OSS.

Fig. 1: Experience in using OSS [12]

Figure 1 shows experience in using OSS. Notably, 51.6%
of the surveyed companies have experience in using OSS for
their customer systems, and 66.8% including in-house systems.
This indicates that many software companies rely on OSS to
develop their customer solutions, and OSS are now an integral
part of today’s software businesses.

Table I shows major questions or concerns when using
OSS in industry. The column “% Companies” indicates the
percentage of companies who have posed each question. From
next Section, we will seek for potential solutions for these
questions from past MSR studies.

III. POTENTIAL SOLUTIONS FOR INDUSTRY QUESTIONS

A. Question 1: How can we get rapid technical help from an
OSS community?

This question was posed by 67.3% of the surveyed compa-
nies [12]. Industry developers often face issues to be solved
when they use OSS in their businesses. As there is no help desk
for OSS in general, developers need to somehow get solutions
from an OSS community.

In order to bridge the gap between developers and users,
mailing lists have been used [10][25][23]. With growth of
social Q&A sites such as the StackExchange network (e.g.,
StackOverflow), many people turn their interests to such sites.
These sites are rapidly changing the way of collaborating
between developers and users [30][2][4][22].

As a suggested answer or a research direction, recent MSR
researches have focused on online software forums to get
relevant solutions for a particular issue [9]. It is often the
case that an issue faced by one developer or user has been
faced by many others before. Therefore, one may find solutions
from thread discussions in an online forum. To find a relevant
solution quickly, Gottipati et. al. proposed a semantic search
engine framework to process software threads and recover
relevant answers according to user queries [9].



TABLE I: Six questions or concerns when using OSS in industry.

Questions % Companies
Question 1: How can we get rapid technical help from an OSS community? 67.3%
Question 2: How much longer does an OSS project sustain? 58.8%
Question 3: How can we fix bugs and/or add new functions to OSS? 43.4%
Question 4: How can we understand and identify OSS licenses? 34.8%
Question 5: Which product and which version should we use? 32.8%
Question 6: How can we assess the quality of OSS products and the maturity of OSS projects? 29.5%

B. Question 2: How much longer does an OSS project sustain?

This question was posed by 58.8% of the companies [12].
It is often the case that an OSS project suddenly disappears or
no longer continues updating products. For example, a famous
web browser Netscape was discontinued and all support was
terminated on March 2008 due to losing market share. As
another example, the GIMP project, which started as an
academic project, has stopped, because the creators left the
university for work, and mostly ended their relationship with
the GIMP. After all, the project was almost stopped for more
than a year until someone else took over its control. This
indicates that the coordination activity by core-developers is
important to keep attracting people [21][35].

As a suggested research direction, activity metrics of
developer/user communities [33] could be used to assess
the project sustainability. If activity became low, it can be a
symptom of project decay. In addition, some MSR researches
focus on communication healthiness in the developer and user
communication network [15][24]. It turned out that commu-
nication between user and developer was not active enough
in the end of Netscape project. On the other hand, successful
community (such as Apache) had many coordinators, who act
as a bridge between user and developer communities [15].
These results suggest that activities and communications in
OSS user/developer communities should be measured to assess
the project healthiness.

Another direction is to analyze OSS projects from two
point of views “stickiness” and “magnetism.” Yamashita et
al. [34] found that some projects attract new developers
(magnet), and some retain existing contributors (sticky). For
example, the Homebrew is one of the successful projects
having high stickiness and magnetism.

C. Question 3: How can we fix bugs and/or add new functions
to OSS?

This question was posed by 43.4% of the companies. In
case an industry developer finds a bug (failure) or wants to
add a new functionality to an OSS product, debugging and
adding functionality in source code is usually very difficult
because the code has been developed by someone else in the
OSS community. Therefore, a technique to assist enhancing
OSS code is greatly demanded.

To answer this question, several techniques from MSR
researches can be used. One technique is called bug local-
ization, which identifies a particular location in source code
where a fault is likely to be existing, using as input detailed
description of failure occurrence (such as actions to reproduce

the failure, the name of a function where the failure has
occurred, and so on). To this end, several studies propose the
use of Information Retrieval (IR) based classifiers to locate
bugs [36][14][29][18]. For example, text mining techniques are
used to manage keywords in the failure description and source
code to identify fault location. Recently, various improvements
to bug localization have been proposed, and now it has become
a hot topic in MSR [19][31].

Another technique is called a co-change analysis or a
logical coupling analysis, which identifies a set of source files
that needs to be changed together using as input past source
code commit logs [1]. This technique helps developers to fix
a bug and/or adding functionality to source code. Co-change
histories are also used in recent bug localization studies [28].

Feature location is also a useful technique for OSS users
when they want to identify an initial location in the source
code that corresponds to a specific functionality (feature) to
be enhanced or fixed [7]. A user can input a natural language
query, execution trace or source code artifact, to obtain a
ranked or visualized output of source code fragments such as
files, classes, methods, functions or statements.

D. Question 4: How can we understand and identify OSS
licenses?

This question was posed by 34.8% of the companies. There
is a wide range of variations in Open Source licenses; and,
many users do not understand them correctly. As a reference
model of OSS licenses, the Open Source Initiative (OSI)1

provides the Open Source Definition (OSD) as follows. The
OSI accepts about 70 OSS licenses and provides a categorized
list of licenses. This list may help OSS users to understand the
variety of licenses.

Another industry concern with OSS license is that a single
OSS product often contains multiple licenses; and thus, iden-
tifying all licenses in the product is often very difficult. One
solution to this concern is use of an OSS license matching
system. German et al. [8] proposed a text mining approach
to automatically identify all licenses in a given set of source
files.

Inspection of industry software products for possible
OSS license violations is also becoming increasingly impor-
tant as more reusable OSS code becomes available online
[17][11]. Currently, several services are available for OSS
code detection and management such as Black Duck Soft-
ware’s Protex (www.blackducksoftware.com) and Palamida

1The Open Source Initiative, http://opensoource.org



TABLE II: Open Source Definition (OSD)

No. Difinition
1. Free Redistribution
2. Source code
3. Derived Works
4. Integrity of the Author’s Source Code
5. No Discrimination against Persons or Groups
6. No Discrimination against Fields of Endeavor
7. Distribution of License
8. License Must Not Be Specific to a Product
9. License Must Not Restrict Other Software

10. License Must Be Technology-Neutral

(www.palamida.com). Futhermore, the “provenance” of source
code [6] is also an important issue to understand where each
program fragment come from and where it goes.

E. Question 5: Which product and which version should we
use?

This question was posed by 32.8% of the companies. There
are a huge number of OSS products in the world, and there
may be too many similar OSS products in each application
domain. Therefore, it is not easy to find the most relevant
OSS product for a particular business objective. In addition,
many OSS products have multiple versions where reliability,
functionality and compatibility are different. The latest version
is often not a good choice since it may be not stable enough.
Finding appropriate version is also a difficult problem for
industry developers.

One answer to find a relevant product is to use soft-
ware search engines, such as SPARS 2, Koders 3, Jarhoo 4.
These search engines are especially useful for searching for
a particular software component. Another answer is to use an
automatic software categorization system, which helps users
to find similar OSS products [13].

Regarding finding appropriate version, we could learn from
“the wisdom of the crowd.” Mileva et al. [16] analyzed the fre-
quency of use of 450 different library versions and developed
a library recommender system called AKTARI 5. They found
that developers often downgrade to previous library because
of bugs found in new version. Generally, if a specific version
is used by many developers, we could consider it is of high
quality.

Similarly, Sunada also followed the idea of “the wisdom
of crowds,” to clarify frequently-used libraries in Java open
source software development [27]. He analized frequently-
used libraries in many domains, and clarified domain-specific
libraries, as well as domain-independent libraries such as
basic function libraries (e.g. commons-collections, commons-
lang) and logging libraries (e.g. commons-logging and log4j).
Figure 2 shows the result for Enterprize applications in Busi-
ness/Office domain.

2SPARS Project, http://sel.ist.osaka-u.ac.jp/SPARS/
3Koders.com, http://www.koders.com/
4Jarhoo, http://www.jarhoo.com/
5AKTARI, http://www.st.cs.uni-saarland.de/softevo/aktari.php

��� ��� ����� 	�


�

�	�������	

Fig. 2: Commonly used OSS libraries in Business/Office
domain [27]

F. Question 6: How can we assess the quality of OSS products
and the maturity of OSS projects?

This question was posed by 29.5% of the companies. When
a company considers using an OSS product for their business,
the company needs to assess the quality of the product as well
as the maturity of the project. Also, the company often needs
to explain the quality of the OSS product to their customers.
To answer this question, we introduce QualiPSo (Quality
Platform for OSS) project. In 2006, QualiPSo was launched to
establish the reputation of reliability and quality for OSS by
EC (European Communities). 21 organizations in 11 countries
collaborated to investigate 7 fields (Quality/ Interoperability/
Factory/ Organization/ Life Cycle Matunity/ Business/ Legal)
of OSS. MOSST (Model for OSS trust worthiness) and OMM
(Open Source Maturity Model) were developed based on the
result of MSR techniques and interview to industry developers
who use OSS.

The MOSST is a customizable model for estimating the
trust that OSS developers and end-users can have in the
qualities of OSS products. One of the functions is to visualize
the reliability of OSS. They assessed the reliability of the
OSS based on over 90 metrics measured from source codes
and binary code of OSS. Then it shows it in 3 levels (good,
acceptable, poor). The MOSST provides advices to improve
the reliability of OSS for OSS developers. Also, it helps the
reputation of reliability and quality for OSS users. They have
already applied in over 100 OSS projects to evaluate the
MOSST as 14 March, 2012.

The OMM is a CMMI-like process model for OSS devel-
opment. This process model aims to help in building trust in
development processes of companies using or producing OSS.
The OMM comprises trustworthy elements required for OSS
development based on surveys and best practices from CMMI.
The trustworthy elements are grouped into 3 maturities levels
(basic, intermediate and advanced). Now, they are trying to
establish the standard reliability evaluation index for OSS.



IV. DISCUSSION

リポジトリマイニングの研究では，OSSのメカニズムに
関する分析やそのモデル化の研究が多く，ツール開発，及
び，そのサービス化まで進んだ研究が少ない．サービス化ま
で進んでいる研究の一つとして，XXらはXXのサービス化
を行っている．OSSを商用ソフトウェアに利活用する企業が
XXサービスを利用することで，従来困難であった OSSの
第三者評価が可能になる．このように，OSSが利活用され
る事例が増加していることから，MSR研究者は利用者が課
題を解決するためのユーザ指向研究に取り組む必要がある．

一方で，利用者も OSS開発者，及び，支援ツールに頼
るばかりではなく，OSSプロジェクトの生態を理解する努
力が必要である．いくつかの企業では OSSをより深く理解
するために，社員がプロジェクトに参加し，企業にフィー
ドバックしている．しかし，OSSプロジェクトヘの参加は
ハードルが高い．Steinmacherら [26]は OSSプロジェクト
への参加に対する障害として複雑なコードの理解，ドキュ
メントの情報欠落，メンターの不足などが挙げられている．
複雑なコード理解には XXや XXのサービスが提案されて
いる．また，ドキュメントの作成，保守には相当なコスト
が費やされており，Dagenaisらがドキュメント作成の作成
と保守に必要となるリソースを最適にするための技法に関
する知見を調査している．しかし，未だドキュメントの保
守に関する研究は不十分である．メンターの推薦に関する
研究も現在進められているが，実用化されているわけでは
ない [20][5]．今後，プロジェクトに容易に参加を促すアプ
ローチをマイニングから見出し，利用者が OSSプロジェク
トと密接に付き合っていく方法を確立していくことが必要
である．

V. CONCLUSION

This paper introduces commonly-asked industry questions
about OSS for a business use, and tries to answer them or
to provide research directions based on lessons learned from
recent MSR researches. We hope that industry developers find
their own answers in their context based on suggested answers
in the paper. We also hope, in future, more powerful solutions
will come up from further MSR researches to assist OSS users
in various application domains.

ACKNOWLEDGMENT

This work has been conducted as a part of ”Research Initia-
tive on Advanced Software Engineering in 2013” supported by
Software Reliability Enhancement Center (SEC), Information
Technology Promotion Agency Japan (IPA). Also, part of this
research was conducted under Japan Society for the Promotion
of Science, Grant-in-Aid for Young Scientists (B) (25730045),
and Scientific Research (C) (22500028).

REFERENCES

[1] Dirk Beyer, “Co-change visualization applied to PostgreSQL and Ar-
goUML,” Proceedings of the 3rd International Workshop on Mining
Software Repositories (MSR ’06), pp.165-166, 2006.

[2] Andrew Begel, Jan Bosch, and Margaret-Anne Storey, “Social Network-
ing Meets Software Development: Perspectives from GitHub, MSDN,
Stack Exchange, and TopCoder,” IEEE Software, Volume.30, Issue.1,
pp.52-66, 2013.

[3] Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto,
and Sebastiano Panichella, “Who is going to mentor
newcomers in open source projects?,” In Proceedings of the
International Symposium on the Foundations of Software
Engineering (FSE’12), 1-11 pages. DOI=10.1145/2393596.2393647
http://doi.acm.org/10.1145/2393596.2393647

[4] Andrea Capiluppi, Alexander Serebrenik, and Leif Singer, “Assessing
Technical Candidates on the Social Web,” IEEE Software, pp.45-51,
2012.

[5] Barthélémy Dagenais and Martin P. Robillard, “Creating and evolving
developer documentation: understanding the decisions of open source
contributors,” In Proceedings of the International Symposium on Foun-
dations of Software Engineering (FSE’10), 2010.

[6] Julius Davies, Daniel M. German, Michael W. Godfrey, and Abram
Hindle, “Software bertillonage: finding the provenance of an entity,”
Proceedings of the 8th Working Conference on Mining Software Repos-
itories (MSR2011), pp. 183-192, 2011.

[7] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk,
“Feature location in source code: a taxonomy and survey,” Journal of
Software: Evolution and Process, Vol. 25, No. 1, pp. 53-95, 2013.

[8] Daniel M. German, Yuki Manabe, and Katsuro Inoue, “A Sentence-
Matching Method for Automatic License Identification of Source Code
Files,” Proceedings of the 25th International Conference on Automated
Software Engineering (ASE ’10), pp. 437-446, 2010.

[9] Swapna Gottipati, David Lo, and Jing Jiang. “Finding relevant answers
in software forums,” Proceedings of the 26th International Conference
on Automated Software Engineering (ASE’11), pp. 323-332, 2011.

[10] Anja Guzzi, Alberto Bacchelli, Michele Lanza, Martin Pinzger, Arie van
Deursen, “Communication in open source software development mailing
lists,” Proceedings of the 10th Working Conference on Mining Software
Repositories (MSR’11), pp.277-286, 2011.

[11] Katsuro Inoue, Yusuke Sasaki, Pei Xia, and Yuki Manabe, “Where does
this code come from and where does it go? - integrated code history
tracker for open source systems -,” In Proceedings of the International
Conference on Software Engineering (ICSE’12), pp.331-341, 2012.

[12] Information-technology Promotion Agency, “A survey report on open
source software based businesses (year 2009 edition)”. 2010.

[13] Shinji Kawaguchi, Pankaj K. Garg, Makoto Matsushita, and Katsuro
Inoue, “MUDABlue: An automatic categorization system for open source
repositories,” Journal of Systems and Software, Vol.79, No.7, pp.939-953,
2006.

[14] Dongsun Kim, Yida Tao, Sunghun Kim, and Andreas Zeller, “Where
Should We Fix This Bug? A Two-Phase Recommendation Model,” IEEE
Transaction Software Engineering, Volume.39, Issue.11, pp.1597-1610,
2013.

[15] Shinsuke Matsumoto, Yasutaka Kamei, Masao Ohira, and Kenichi Mat-
sumoto, “A comparison study on the coordination between developers
and users in FOSS communities,” Proceedings of theSocio-Technical
Congruence (STC ’08), pp.1-9, 2008.

[16] Yana Momchilova Mielva, Valentin Dallmeier, Martin Burger, and
Andreas Zeller, “Mining trends of library usage,” Proceedings of the
International Workshop on Principles of Software Evolution (IWPSE ’
09), pp.57-62, 2009.

[17] Akito Monden, Satoshi Okahara, Yuki Manabe, and Kenichi Mat-
sumoto, “Guity or not guilty: Using clone metrics to determine open
source licensing violations,” IEEE Software, Vol. 28, No. 2, 2011.

[18] Anh T. Nguyen, Tung T. Nguyen, Jafar M. Al-Kofahi, Hung V. Nguyen,
and Tien N. Nguyen, “A topic-based approach for narrowing the search
space of buggy files from a bug report,” Proceedings of the International
Conference on Automated Software Engineering (ASE’11), pp.263-272,
2011.

[19] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, Dewayne E.
Perry, “Improving bug localization using structured information re-
trieval,”Proceedings of the 28th International Conference on Automated
Software Engineering (ASE2013), pp.345-355, 2013.

[20] Igor Steinmacher, Igor Scaliante Wiese, and Marco Aurélio Gerosa,
“Recommending mentors to software project newcomers,” In Proceed-
ings of the International Workshop on Recommendation Systems for
Software Engineering (RSSE’12), pp.63-67, 2012.



[21] Bianca Shibuya and Tetsuo Tamai, “Understanding the process of par-
ticipating in open source communities,” In Proceedings of the Emerging
Trends in Free/Libre/Open Source Software Research and Development
(FLOSS’09), pp.1-6, 2009.

[22] Leif Singer, Fernando Figueira Filho, Brendan Cleary, Christoph
Treude, Margaret-Anne Storey, and Kurt Schneider, “Mutual assessment
in the social programmer ecosystem: an empirical investigation of devel-
oper profile aggregators,” Proceedings of the Conference on Computer
supported cooperative work (CSCW’13), pp.103-116, 2013.

[23] Vandana Singh, Michael B. Twidale, and David M. Nichols, “Users
of Open Source Software How do they get help?” Proceedings of the
Hawaii International Conference on System Sciences (HICSS’09), pp.1-
10, 2009.

[24] Param V. Singh, “The small-world effect: The influence of macro-level
properties of developer collaboration networks on open-source project
success,” ACM Transaction on Software Engineering Methodology, Vol-
ume.20, Issue.2, Article 6, 2010.

[25] Sulayman K. Sowe, Ioannis Stamelos, and Lefteris Angelis, “Un-
derstanding knowledge sharing activities in free/open source software
projects: An empirical study,” Journal of Systems and Software, Vol-
ume.81, Issue.3, pp.431-446, 2008.

[26] Igor Steinmacher, Igor Scaliante Wiese, Tayana Conte, Marco Aurélio
Gerosa, and David Redmiles, “The hard life of open source software
project newcomers,” In Proceedings of the International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE’14),
pp.72-78, 2014.

[27] Takahiro Sunada, “Trends of library usage in different domains of
Java software development,” Master’s Thesis, Graduate School of In-
formation Science, Nara Institute of Science and Technology, NAIST-
IS-MT1151059, 2013 (in Japanese).

[28] Chakkrit Tantithamthavorn, Akinori Ihara, and Kenichi Matsumoto,
“Using Co-change Histories to Improve Bug Localization Performance,”
Proceedings of 14th ACIS International Conference on Software En-
gineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD2013), pp. 543-548, 2013.

[29] Stephen W. Thomas, Meiyappan Nagappan, Dorothea Blostein, and
Ahmed E. Hassan, “The Impact of Classifier Configuration and Clas-
sifier Combination on Bug Localization,” IEEE Transaction Software
Engineering, Volume.39, Issue.10, pp.1427-1443, 2013.

[30] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir
Filkov, “How social Q&A sites are changing knowledge sharing in
open source software communities,” Proceedings of the 17th ACM
conference on Computer supported cooperative work & social computing
(CSCW’14), pp.342-354, 2014.

[31] Shaohua Wang, Foutse Khomh, and Ying Zou, “Improving bug lo-
calization using correlations in crash reports,” Proceedings of Working
Conference on Mining Software Repositories (MSR’13), pp. 247-256,
2013.

[32] Christina Warren, ”Google Play Hits 1 Million Apps,” Mashable.
Retrieved 4 June 2014.

[33] Hao Zhong, Ye Yang, and Jacky Keung, “Assessing the representative-
ness of open source projects in empirical software engineering studies,”
Proceedings of the 19th Asia-Pacific Software Engineering Conference
(APSEC ’12), pp. 808-817, 2012.

[34] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu
Ubayashi, “Magnet or sticky? an OSS project-by-project typology,” In
Proceedings of the Working Conference on Mining Software Repositories
(MSR’14). pp.344-347, 2014.

[35] Yunwen Ye, Kumiyo Nakakoji, Yasuhiro Yamamoto and Kouichi
Kishida, “The Co-Evolution of Systems and Communities in Free
and Open Source Software Development,” Free/Open Source Software
Development, IGI Publishing, Hershey,, pp.59-82. 2005.

[36] Jian Zhou, Hongyu Zhang, and David Lo, “Where should the bugs be
fixed?,” Proceedings of the 34th International Conference on Software
Engineering (ICSE’12), pp.14-24, 2012.


