
Characteristics of Sustainable OSS Projects:
A Theoretical and Empirical Study

Hideaki Hata∗, Taiki Todo†, Saya Onoue∗, Kenichi Matsumoto∗
∗Graduate School of Information Science

Nara Institute of Science and Technology, Japan
Email: {hata, onoue.saya.og0, matumoto}@is.naist.jp

†Graduate School and Faculty of Information Science and Electrical Engineering
Kyushu University, Japan

Email: todo@agent.inf.kyushu-u.ac.jp

Abstract—How can we attract developers? What can we do
to incentivize developers to write code? We started the study
by introducing the population pyramid visualization to software
development communities, called software population pyramids,
and found a typical pattern in shapes. This pattern comes from
the differences in attracting coding contributors and discussion
contributors. To understand the causes of the differences, we then
build game-theoretical models of the contribution situation. Based
on these results, we again analyzed the projects empirically to
support the outcome of the models, and found empirical evidence.
The answers to the initial questions are clear. To incentivize
developers to code, the projects should prepare documents, or
the projects or third parties should hire developers, and these are
what sustainable projects in GitHub did in reality. In addition,
making innovations to reduce the writing costs can also have an
impact in attracting coding contributors.

I. INTRODUCTION

Maintaining and increasing the populations in software
development communities are challenges of OSS projects for
sustainability. Yamashita et al. proposed a pair of population
metrics, namely, magnetism and stickiness [1]. Based on their
measurements, they empirically studied OSS project histories,
and found at-risk projects in sustainability. To increase the
population, attracting newcomers is important. However, new-
comers tend to face difficulties when joining OSS projects
[2]–[4].

For understanding the characteristics of succeeded OSS
projects in human aspects, we need to analyze human re-
sources. To capture the distribution of developers’ variations in
experiences, we have proposed software population pyramid,
which consists of coding contributors and discussion (non-
coding) contributors [5]. Figure 1 shows an example of a
software population pyramid.

From the study with GitHub dataset, we found that there
is a typical pattern in shapes. This pattern comes from the
differences of attracting coding contributors and discussion
contributors. To understand the causes of the differences, we
then built game-theoretical models of the contribution situation
based on leader-follower games. The project is the leader and a
developer is the follower, and the developer can choose coding
or discussion after the project select keep the environment or
setup or prepare something that can reduce the cost of writing

1 year
2 years
3 years
4 years
5 years
6 years
7 years
8 years

700 350 0 350 700

Fig. 1. An example of a software population pyramid. Coding contributors
(green represents contributors moved from discussion contributions) on right
and discussion (non-coding) contributors on left

code. Based on the models, we obtained the possible options
to incentivizing developers to write code, that is, setup the
development environment (for example, preparing documents)
to decrease the cost of writing code, hire developers, and
make innovations. From the empirical study, we found that
more projects with a higher amount of code contributors
prepared more documents and/or hired developers. In addition,
the impact of GitHub can be regarded as the innovation to
incentivize developers to code.

II. TYPES OF SOFTWARE POPULATION PYRAMIDS

In this paper we targeted the GitHub data to analyze the
OSS populations. We obtained the dataset provided by Gousios
[6]. This dataset includes developers’ activity history of 90
OSS projects. The projects were selected from the top-10
starred software projects for the top programming languages
on GitHub1.

Now we can create all the 90 software population pyramids
from the dataset. In the entire projects, we remove projects that
have short histories in GitHub because they are not mature to
be analyzed nor have enough data compared with the rest.
Newly started projects or projects moved to GitHub recently
were ignored. We used 22 projects, which have more than 3-
year activities in GitHub on December, 2012, to create those
software population pyramids.

1MSR 2014 Mining Challenge Dataset: http://ghtorrent.org/msr14.html.

akka

beanstalkd

blueprint−css

compass

devise

django−cms

django−debug−toolbar

homebrew

http−parser

jekyll

jquery
kestrel

MaNGOS

mongo

node

openFrameworks

paperclip

rails

redis

scalatra

ThinkUP
tornado

5

10

15

20

5 10 15 20
of coding bars

of

 d
isc

us
sio

n
ba

rs

Fig. 2. Distribution of the software population pyramids. The size of the project name represents the number of coding contributors

The shapes of software population pyramids are different
from each other, depending on the number of bars, the number
of entire contributors, and so on. Since the studied 22 projects
have more than three year histories in GitHub, their software
population pyramids can have more than 10 bars for coding
and discussion (there can be four bars in a year). The size of
the project name represents the number of coding contributors.
As seen in the figure, rails and homebrew have many
coding contributors.

From Figure 2, we found that the projects have big vari-
ations, which means the shapes of the software population
pyramids varies largely. We roughly classified those software
population pyramids into four types with two lines shown in
the figure.

(a) The software population pyramids at the upper left area
have many discussion bars but not many coding bars.
Although the projects have attracted many discussion
contributors, they seem to fail to incentivize developers
to code.

(b) The software population pyramids at the upper right
area have both discussion and coding contributors. These
projects can be considered to successfully attract many
contributors including coding contributors. The rails
project is separated from the others because this project
has relatively long history in GitHub, and have many
bars in the pyramid.

(c) The software population pyramids at the lower left
area do not have many coding contributors nor many
discussion contributors. The projects had failed to retain
coding contributors in various generations.

(d) The software population pyramids at the lower right
area do not have many discussion contributors but many

coding contributors. Although the projects do not at-
tract many casual developers who only contribute to
discussion activities, they seem to have many coding
contributors.

Since we are interested in incentivizing developers to code,
the right part of the Figure 2, that is, (b) and (d), are considered
to be successful in attracting and retaining coding contributors.
From the following sections, we try to understand the key
to this success, and explain why the software population
pyramids form those.

III. GAME THEORETIC REPRESENTATION

We model a software development situation where there
are two stakeholders, namely a project (or its core member
community) and a software developer (or not core members),
as an extensive form game. We first calculate the subgame per-
fect Nash equilibrium of the game, for both binary/continuous
action spaces (in Sections III-B and III-C). We then introduce
a third party that has an ability to bring an innovation, e.g.,
the invention of GitHub, to the situation, and discuss how
such innovations could affect in the real software development
situation (in Section III-D).

A. Terms and Definitions
We begin with an (informal) introduction of several game-

theoretic terms and definitions used in this section. We basi-
cally follow the explanations in Chapter 5 of [7].

A (perfect information) extensive form game is represented
as a tree (in the sense of graph theory), which is also known
as a game tree. Each non-terminal node in a game tree
corresponds to the moment of the choice of one player, and
each edge from a node corresponds to an action possible
for the player at the moment. Each terminal (or leaf) node

represents a final outcome, under which each player receives
a utility. Finally we assume that every player knows all the
information, including how much utility an adversary receives
at a node. That is why we call this game perfect information.

In this section we focus on extensive form games in
which there are only two players, namely the project and the
developer, and whose game trees are of depth 2. Moreover,
the project takes an action at the root node, and then the
developer takes an action after seeing the project’s choice. This
class of games are known as leader-follower games, which
have been attracting much attention for real-world security
scheduling [8].

A strategy of a player is a complete specification of which
deterministic action to take at every node corresponding to the
player in the game tree. In our model, only the root node is
corresponding to the project, so a strategy of the project just
specifies which action it chooses at the root node. On the other
hand, the number of nodes corresponding to the developer is
the same as the number of actions possible by the project at
the root node. Therefore, a strategy of the developer specifies
which action it chooses after seeing each action by the project,
regardless of whether or not the project chooses the action by
a given strategy.

The concept of subgame perfect Nash equilibrium (SPNE)
can be formally described as follows: for a given extensive
form game, a profile of strategies is an SPNE if it induces a
Nash equilibrium in every subgame of the original extensive
form game. Intuitively, for our model, a pair of strategies
of the project and the developer is an SPNE if (i) the
developer chooses, at every corresponding node, the action
that maximizes its utility and (ii) the project chooses the action
that maximizes its utility at the root node under the choice of
the above strategy by the developer.

From the intuition, now we can see that for a given extensive
form game, an SPNE is computed by backward induction,
that is, moving nodes from bottom to top with sequentially
choosing the best action for the corresponding player at the
current node. For a given SPNE, the equilibrium path is a
sequence of actions from the root node to one of the terminal
node specified by the SPNE. An equilibrium path is, in a sense,
an expected outcome in the game.

B. A Simple Case with Binary Actions
We first demonstrate how the software development situ-

ation could be analyzed based on the concept of SPNE. As
an illustrative example, here we consider an extensive form
game in which the project just chooses between making a
new setup or keeping its current features. After observing the
project’s action, the developer chooses between writing code
for the project and just making a discussion/comment on some
codes. The game tree is given in Figure 3.

1) Game Description: At the root node (displayed on the
top of the figure), the project chooses either Setup (S) or
Keep (K). Then, the developer chooses either Code (C) or
Discussion (D) at both of corresponding nodes (displayed on
the middle). Each player’s utility consists of a benefit (or

developer

project

Fig. 3. The extensive form game with binary actions and the players’ utilities

reward) and a price (or cost). For the project, its benefit only
depends on whether or not the developer chooses the action C.
Specifically, the project receives bC if the developer chooses
C and bD if the developer chooses D. On the other hand, the
project’s price only depends on its action. Choosing S and K
have costs pS and pK for the project, respectively. It seems
natural to assume that pS > pk.

In the real software development situation, the developer’s
benefit and price are a bit more intricately determined. So here
we assume they depend on actions of both of the players, by
introducing the following eight constants, βC,S , βD,S , βC,K ,
βD,K for its benefit, and πC,S , πD,S , πC,K , πD,K for its price.
We assume πC,S > πD,S and πC,K > πD,K , which reflects
the natural trend in software development that writing code is
more costly than just making a discussion for simplicity. Now
we do not have clear evidence to support this assumption.
All the utilities are summarized on the bottom of the figure.
Notice that due to our motivation, we assume βD,K−πD,K >
βC,K − πC,K , meaning that when there is no setup by the
project, the developer chooses not to write code (at the middle-
left node).

2) Equilibrium Analysis: We now calculate an SPNE of
the game via backward induction. As we already see, the
developer chooses D at the middle-left node. On the other
hand, at the middle-right node, the developer chooses C if E1
holds

βC,S − πC,S > βD,S − πD,S , (E1)

and D if E1 does not hold.
Assume E1 holds so that the developer chooses C at the

middle-right node. Then, the project would receive utility of
bD − pK when it chooses D, while it would receive utility of
bC − pS when it chooses S. So the project chooses S in an
SPNE if E2 holds

bD − pK < bC − pS , (E2)

and K in an SPNE if E2 does not hold.
On the other hand, if E1 does not hold and thus the devel-

oper chooses D at the middle-right node, the project would
choose K in an SPNE at the root node. This is because, now

that it knows that the developer always chooses D regardless
of its action, it compares bD − pK and bD − pS . Since we
already assumed pK > pS , the project prefers choosing K.

As a result, we can summarize the SPNEs by dividing them
into three independent cases.

• E1 and E2: (S, (D,C))
• E1 but not E2: (K, (D,C))
• not E1: (K, (D,D))

Note that the first component indicates the strategy of the
project, while the second component indicates the strategy of
the developer. Also, in the second component, the former and
the latter component corresponds to the action the developer
chooses at the middle-left node and the middle-right node,
respectively.

3) Discussion: Our main question is when the developer
chooses C (i.e., write code) in an equilibrium path. From the
equilibrium analysis presented in the previous subsection, the
first is the only case in which the developer chooses C on the
equilibrium path. On contrary, although the action C by the
developer is also included in an SPNE for the second case, it
is never realized on the equilibrium path.

Observation 1: For the game represented in Figure 3, the
project chooses Setup and the developer chooses Code on the
equilibrium path if and only if both E1 and E2 hold.

What is a natural interpretation of having both E1 and
E2 in real software development situations? In many realistic
situations it may be natural to assume pK = 0. Therefore, E2
is equally described as

pS < bC − bD,

meaning that the cost of making a new setup for the developer
is smaller than the benefit from the immigration of the
developer to writing code.

Also, the other condition E1 can be rewritten as follows:

βC,S − βD,S > πC,S − πD,S ,

meaning that the gain by moving to write code is bigger than
the loss by the move. In the following subsection we will
conduct another case study for a more elaborated setting.

C. Considering Continuous Actions

In realistic software development situations, it seems quite
natural to think that the project has more than two actions, e.g.,
making a half-baked setup. Such an option is actually very
realistic when the cost depends on the level of the action. In
this subsection we consider continuous actions of the project,
as a generalization of the discussion in the previous subsection.

1) Game Description: Let x ∈ [0, 1] be the level (or
quality) of setup being chosen at the root node by the project,
in which a bigger x means a better setup. For instance,
choosing x = 0 corresponds to choosing K and choosing
x = 1 corresponds to choosing S in the previous binary case.
After observing the level x, the developer chooses between C
and D, which is still a binary decision. The game tree can be
drawn as Figure 4.

0 1

developer

project

Fig. 4. The extensive form game with continuous actions

Fig. 5. Example of two curves satisfying condition F1

All the constants that were affected from the choice between
K and S in the previous binary case are now going to be re-
defined as functions on x. The price of the project is given as a
function p that is increasing on x, and the benefit/price of the
developer are given as βC(x), βD(x), πC(x) and πD(x). We
still focus on the case that βD(0)− πD(0) > βC(0)− πC(0),
meaning that under no setup, the developer never chooses C.
For technical reasons, we also assume that βC(x), βD(x),
πC(x), and πD(x) are continuous.

2) Equilibrium Analysis: Even though there are infinitely
many nodes in this continuous model, we can still apply the
idea of backward induction to calculate an SPNE. For any
given level x chosen by the project, the developer chooses C
if βC(x)−πC(x) > βD(x)−πD(x), and chooses D otherwise.
Let us refer this best response strategy of the developer as BR.

Since all βC , βD, πC , and πD are continuous and we assume
βD(0)−πD(0) > βC(0)−πC(0), either of the followings must
be the case:
F1: The two curves βC(x)−πC(x) and βD(x)−πD(x)

have at least one cross point during the domain x ∈
[0, 1] as shown in Figure 5.

not F1: For any x ∈ [0, 1], βD(x)−πD(x) > βC(x)−πC(x).
If above F1 is the case, then we can find a smallest x such

that βC(x) − πC(x) = βD(x) − πD(x) holds. Let us refer

such x as x∗. Intuitively, x∗ is the smallest level of setup
under which the developer chooses C. Notice that x∗ > 0.
Then, the project compares bC − p(x∗) and bD − p(0). If

bC − p(x∗) > bD − p(0) (F2)

Then, the project chooses x = x∗ if above F1 and F2
simultaneously occur, and chooses x = 0 if either (i) F1 but
not F2 or (ii) not F1 occurs.

As a result, SPNEs are described as follows:
• F1 and F2: (x∗, BR)
• F1 but not F2: (0, BR)
• not F1: (0, D)
3) Discussion: As in the case of binary actions, we consider

when the developer chooses C on the equilibrium path. We
have just seen that when F1 is not the case, the developer
never chooses C. On the other hand, when F1 is the case, the
developer chooses C on the equilibrium path if F2 also holds.

Observation 2: For the game represented in Figure 4, the
project chooses the level x∗ of setup and the developer chooses
C on the equilibrium path if and only if F1 and F2 holds.

For instance, consider the following linear (or constant)
benefit/price functions:

bC = 1, bD = 1/4

p(x) = x,βC(x) = x,βD(x) =
1

2
x+

1

4

πC(x) = −1

4
x,πD(x) =

1

8

In this case, F1 holds since the two curves cross at x = 1/2.
Then x∗ = 1/2. Furthermore, at x∗, the project’s utility is 0.5,
which is strictly greater than 1/4, the utility when it chooses
x = 0. Thus the condition F2 also holds. An SPNE is (0.5,
BR), and on the equilibrium path the project chooses x∗ = 0.5
and then the developer chooses to write code.

D. Innovation vs. Mandatory

We now consider a third-party who has an ability to bring an
innovation to the software development situation. The purpose
of this subsection is to search for a way to incentivize both the
project and the developer to work coordinately, even when on
the equilibrium path the project and the developer are choosing
K and D, respectively. An innovation brought by the third party
reduces costs of both the project p and the developer π. At
the same time, the developer’s gross benefit may be increased
by the innovation, but as the first step we ignore the effect for
the benefit functions.

When F1 does not hold, reducing the cost of the developer
for writing code could shift up so that there is at least one
point in which the two curves are crossing. Also, when F1
holds but the additional condition F2 does not hold, reducing
the cost of the project incentivize it to choose x = x∗ instead
of x = 0, which will lead a SPNE in which the project brings
(some level of) setup and then the developer commit on writing
code on the equilibrium path.

On the other hand, there might also be the situation where
writing code is mandatory for the developer. For instance,
developers in a company may be in charge of an open
source software due to their contract. Such situation can
be represented in our game theoretic model by defining
πD(x) = α with sufficiently large constant α ∈ R. Then,
βC(x)−πC(x) > βD(x)−πD(x) always holds, meaning that
regardless of the level of setup being chosen by the project,
the developer writes code. Thus an SPNE is represented as
follows:

• The project always chooses x = 0, i.e., no effort on Setup
• The developer chooses C for any x ∈ [0, 1]

Actually, from the viewpoint of the project, there is no
incentive to make any new setup into the project, because
it knows that the developer always writes code even if there
would be no new setup, and so choosing less setup gives better
utility for itself. Then, on the equilibrium path, no setup will
be implemented, which tends to result in a bad quality of
software development environments.

E. Summary

From the analysis of game-theoretical models, the follow-
ings are the options to incentivize developers to write code:

Setup: To increase the utility of writing code compared
to the utility of just discussing, projects need to setup the
development environment, which can decrease the cost of
writing code.

Mandatory: Employment is a big incentive to write code.
The project itself or other third-parties can select this option.

Innovation: Although it is not easy to make innovations,
innovations can decrease the cost and may increase the reward.
For example, developing new tools like Git, a version control
system, and deploying new services like GitHub, a web-base
hosting service and social networking system for developers,
can be regarded as such innovations.

IV. EMPIRICAL ANALYSIS

We analyzed the studied projects to find empirical evidence
that supports the results of game-theoretical analysis. We
conducted empirical analysis to see the impact of setup,
mandatory, and innovation.

A. Setup Coverage

In software development, preparing document is helpful
setup [9]. We list the following five setup candidates, and
survey the coverage (there can be other helpful documents
like contribute.md).

• Wiki: The project have prepared wiki in the GitHub page.
• Website: The project have its own webpage outside the

GitHub service.
• How to contribute: There is a document for contributing

code, how to contribute, in the wiki or other official
website.

• Coding guideline: There is a document for writing code,
including style guides and patch guides.

TABLE I
COVERAGE OF SETUP

Project Wiki Web How to Guide Multi # of y
(b)
rails n y y n n 2
jekyll y y y n n 3
django-cms n y n n n 1
jquery y y y y n 4
paperclip y y y n y 4
homebrew y y y y y 5
nde y y y n n 3
tornade y y n n n 2
devise y y y n n 3
redis y y n n n 2
openFrameworks y y n n n 2
compass y y y y n 4
(d)
mongo n y y y n 3
akka n y n n n 1
(a)
ThinkUP y y n n n 2
django-debug
-toolbar y y n n n 2
http-parser n n n n n 0
beanstalkd y y n n n 2
MaNGOS n y n n n 1
kestrel y y n n n 2
(c)
scalatra n y n n n 1
blueprint-css y y n y n 3

• Multi-language document: There are other language doc-
uments in official, which should be beneficial.

Table I summarizes the result of the setup coverage. Note
that the software population pyramids are created with data in
2012, but this survey is conducted in 2014. So the coverages
may be different from 2012. The projects are classified into
4 as discussed in Section II. The result is relatively clear.
The projects in (b), which have balanced software population
pyramids with many coding and discussion contributors, have
many y’s (yes), that is, there are various helpful documents
in such popular projects. The projects in (a) and (c), which
do not have many coding contributors, tend to provide only a
few documents. Especially, there is no “How to Contribute”
documents. This result indicates that setting up useful docu-
ments can be the key of attracting coding contributors. And
this may be the reason of what makes the differences between
the software population pyramids of (a) and (b), only (b) have
many coding contributors although both attract developers.

B. Employment

The projects in (d) seems strange because there are not so
many discussion contributors but many coding contributors. In
addition, the project akka does not prepare enough documents
to reduce the writing cost as shown in Table I. However, the

reason of this is clear: both projects are owned by companies.
When we see developers as paid if their GitHub account
belong to any organization, there are 12 paid developers out
of 34 on 2012/12 for akka, and 25 paid developers out of
116 on the same period for mongo. Since we counted paid
developers roughly, the correct number may be different. For
example, some developers belonging to organizations may
contribute to the projects voluntarily. However, the existence
of paid developers in this two projects is clear, and this may
be the reason not to attract many developers for discussion
and coding.

C. The Impact of Innovation

The impact of Social Coding introduced by GitHub has
attracted researchers [10], [11]. Starting the service of GitHub
can be regarded as innovation in the meaning of our models.

Figure 6 presents the transition of software population
pyramids of the rails project from December 2007 to
December 2010. Note that the scales of the x-axis are not
the same. At the initial snapshot (2007/12), there are only
eight coding contributors although the project had more than
three year histories. Since the project had no data in GitHub
at that time, we cannot show the discussion contributors. The
project moved to GitHub on August 20082. After that first the
project attracted discussion contributors, and lately it seems
that it successfully attracted coding contributors. Although it
is difficult to distinguish other factors, the project attracted
coding contributors incomparably after it moved to GitHub.

V. DISCUSSION

A. Limitations of Theoretical Models

Bounded rationality. Some readers may claim about the
applicability of game theory into the real human environment,
because humans are known not to be rational in general.
Nevertheless, we would like to emphasize that our approach
based on game theory is quite important for analyzing human
behaviors in real life. One of the main reasons is that we
need such mathematical models for several scientific situ-
ations, such as estimating market dynamics or simulating
crowd behavior in emergency situations. Furthermore, having
a theoretical foundation enables us to easily extend the result
of the analysis to a bit different situations, such as a new
market with a slight modified pricing rules and/or social laws.

Too much simplification. Another possible criticism for our
model is its immoderate simplification. We absolutely agree
with that point, but at the same time we also believe that
simplicity is a pro, rather than a con. Actually, even in our
simple model, some new theoretical findings are revealed, as
we already discussed in the previous section. Introducing an
elaborate model is an obviously meaningful future direction.

Future direction. Although we obtained a bunch of new
findings by focusing on SPNE, it must be very interesting to
take into account different equilibrium concepts, such as Nash
equilibrium and/or sequential equilibrium. We should carefully

2Rails Moving to Git, https://github.com/blog/32-rails-moving-to-git.

1 year
2 years
3 years
4 years
5 years
6 years
7 years
8 years

5 0 5

2007/12

1 year
2 years
3 years
4 years
5 years
6 years
7 years
8 years

200 100 0 100 200

2008/12

1 year
2 years
3 years
4 years
5 years
6 years
7 years
8 years

200 100 0 100 200

2010/12

Fig. 6. The transition of software population pyramids of the rails project. This project moved to GitHub on 2008/4

choose one of them depending on the level of players rational-
ity. Another possible direction is presuming that the third party
considered in the paper is a mechanism designer, which could
determine the market rule. The discussion with mandatory
coding is one of such example with a bad mechanism. By
doing so, we can naturally handle with the participation of
more than one player, which enables us to consider several
features in real market, such as competition between players.

Beside these two directions, there are several possibilities
on modeling software development situations via game theory
and microeconomics theory. For instance, we could investigate
the way to achieve sustainable cooperation between developers
based on repeated games, incentivize developers to participate
based on online/dynamic mechanism design, analyze the pop-
ulation dynamics based on segregation model, and make a
decision for a new release of software based on voting theory.

B. Threats to Validity
Limited dataset. In our study, we studied 22 OSS projects

in GitHub. Although there seem to be varieties of projects
in the dataset, the dataset can be biased to popular projects.
Therefore there can be a threat of generalization of results.
Since the history of GitHub is not long, collecting a lot of
project data enough for population analysis is not easy now.
If we have more data, we can mitigate this threat by analyzing
various project data.

Analysis results may have error. Although we analyzed
documentation manually, the results may have errors. We
might think that there are no documents although there are.
In addition, there may be other important setup that can affect
developers to write code. We have not checked whether the
documents were up-to-date or not. Outdated documentation
can harm the newcomers. Identifying paid developers may
have errors too.

VI. CONCLUSION

This paper studied the characteristics of sustainable OSS
projects by a theoretical and an empirical analysis. We con-
sider projects that can attract and retain coding contributors
as sustainable projects. Based on game-theoretical models,

we obtained the possible options to incentivize developers to
write code, that is, setup the development environment like
documentation to decrease the cost of writing code, employ
developers, and make innovations. From the empirical study,
we found that the projects that can successfully attract coding
contributors have prepared documents, and/or employed de-
velopers. In addition, the impact of GitHub can be regarded
as the innovation to incentivize developers to code.

ACKNOWLEDGMENT

This study has been supported by JSPS KAKENHI Grant
Number 26540029, and has been conducted as a part of
Program for Advancing Strategic International Networks to
Accelerate the Circulation of Talented Researchers.

REFERENCES

[1] K. Yamashita, S. McIntosh, Y. Kamei, and N. Ubayashi, “Magnet or
sticky? an oss project-by-project typology,” in Proc. of MSR ’14, 2014,
pp. 344–347.

[2] I. Steinmacher, I. Wiese, A. Chaves, and M. Gerosa, “Why do newcom-
ers abandon open source software projects?” in Proc. of CHASE ’13,
2013, pp. 25–32.

[3] C. Hannebauer, M. Book, and V. Gruhn, “An exploratory study
of contribution barriers experienced by newcomers to open source
software projects,” in Proc. of CSI-SE ’14, 2014, pp. 11–14.

[4] I. Steinmacher, I. S. Wiese, T. Conte, M. A. Gerosa, and D. Redmiles,
“The hard life of open source software project newcomers,” in Proc. of
CHASE ’14, 2014, pp. 72–78.

[5] S. Onoue, H. Hata, and K. Matsumoto, “Software population pyramids:
The current and the future of oss development communities,” in Proc.
of ESEM ’14, 2014, pp. 34:1–34:4.

[6] G. Gousios, “The ghtorent dataset and tool suite,” in Proc. of MSR
’13, 2013, pp. 233–236.

[7] Y. Shoham and K. Leyton-Brown, Multiagent Systems: Algorithmic,
Game-Theoretic, and Logical Foundations, Cambridge University Press,
2008.

[8] M. Tambe, Security and Game Theory: Algorithms, Deployed Systems,
Lessons Learned, 1st ed, Cambridge University Press, 2011.

[9] I. Steinmacher, A. Chaves, T. Conte, and M. Gerosa, “Preliminary
empirical identification of barriers faced by newcomers to open source
software projects,” in Proc. of SBES ’14, Sept 2014, pp. 51–60.

[10] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in Proc. of CSCW ’12, 2012, pp. 1277–1286.

[11] J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of social and technical
factors for evaluating contribution in github,” in Proc. of ICSE ’14,

