
Pilot Study of Collective Decision-making
in the Code Review Process

Toshiki Hirao
Graduate School of
Information Science,

Nara Institute of Science and
Technology, Japan

hirao.toshiki.ho7@
is.naist.jp

Akinori Ihara
Graduate School of
Information Science,

Nara Institute of Science and
Technology, Japan

akinori-i@is.naist.jp

Ken-ichi Matsumoto
Graduate School of
Information Science,

Nara Institute of Science and
Technology, Japan

matumoto@is.naist.jp

ABSTRACT
Political arguments and voting requirements often follow a
simple majority method which is a decision rule that selects
various alternatives that have a majority, that is, more than
half the votes. On the other hand, Q&A services such as
StackExchange and Yahoo! Answers use the simple major-
ity method only as a reference point. In other words, even if
an answer receives a majority vote (which represents a pre-
ferred answer for followers), the questioner might not accept
the answer. In this case, the voting is used only as a refer-
ence. Open Source Software (OSS) projects might also use
the voting approach only as a reference on the code review
process, because a core reviewer (who makes the final de-
cision) might not integrate a patch which was approved by
reviewers into the version control system. Likewise, the votes
from other reviewers might also only be used as a reference.
This study identifies how many patch sets for code review fol-
low the simple majority method in collective decision-making
among reviewers. As a case study, we have analysed the cri-
teria needed to integrate patch sets using Qt project data.
From the results, we have found that only 59.5% patch sets
followed the simple majority method. Patch sets with more
negative votes than positive votes were likely to be rejected.
Furthermore, the last vote in the first review also impacted
the final decision in the first review.

Categories and Subject Descriptors
H.2.5 [Software Engineering]: Testing and Debugging—
Distributed debugging ; H.5.3 [Group and Organization
Interfaces]: Collaborative computing—supported coopera-
tive work, Web based interaction

General Terms
MANAGEMENT, MEASUREMENT

Keywords
Open Source Software, Code Review, Patch Submission

Copyright c©Toshiki Hirao, Akinori Ihara and Ken-ichi Matsumoto. Per-
mission to copy is hereby granted provided the original copyright notice is
reproduced in copies made..

1. INTRODUCTION
In Open Source Software (OSS) projects, an updated source

code (patch) is not always high quality and with good read-
ability, because OSS developers (including beginners) with
different technical skills contribute to creating new functions
or to maintaining the products. In such a case, the patch is
not always integrated into a version control system. When
reviewers reject a patch, they then often request a further
update or they abandon the patch entirely. Examples of the
rejected patches include patches with unfixed bugs, irrele-
vant comments, or duplicate patches. To correctly verify the
patch, OSS projects often collect votes from developers, and
verify the patch thorough the collective decision-making.

A simple majority method [4] is one type of major de-
cision rule. This method is a decision rule that selects al-
ternatives that have a majority, that is, more than half the
votes. The binary decision rule is used most often in influ-
ential decision-making bodies. Q&A services such as Stack-
Exchange and Yahoo! Answers also use the simple majority
method. However, this method is used only as reference. For
example, even if an answer receives a majority vote (which
represents a preferred answer for followers), the questioner
might choose another answer. In this case, the voting is used
only as a reference. Many OSS projects also might use the
same voting style only as a reference to verify a patch. If
many reviewers approve a patch, the patch is likely to be
integrated into a version control system. However, reviewers
do not always integrate the patch. Sometimes, they reject
the patch. In our experiment, we found that Qt projects re-
jected approximately 40% of patches, so that there was more
integration than disapproved patches. It is for this reason
that OSS projects might follow the minority voting depends
on intensities of preferences (meaning of voting) and politi-
cal equality (position of the developer in OSS project (e.g.
committer)).

The goal of this study identifies how many patch sets for
code review follow the simple majority method in collective
decision-making among reviewers. Using Qt project data, to
understand the criteria for integrating a patch in the OSS
project, we analyze the final decision (to integrate or reject
the patch) in the first review phase depending on the number
of positive votes which approve the patch and the number
of negative votes which disapprove of the patch. We target
the first review phase which verifies the patch by reviewers
for the first time after submitting the patch. Hence, the re-
jection in the first review phase includes abandonment and

!"#$%&

'()"*+,"'-!

.+/&0(,&$&'()"*+,"'-&

.++/&1'($,(&$&)$,#2&

.+3/&4(56(*,&$7&6)8$,(&&

&&&&&&9"'&,2(&)$,#2&

.+3/&:7,(;'$,(&,2(&)$,#2&

.+3/&<=$78"7&,2(&)$,#2&

.+++/&>('+9-&,2(&)$,#2&

?2$'(8&

'()"*+,"'-!

Figure 1: Overview of Modern Code Review Process

resubmission to request the patch again. Furthermore, to
understand the impact of the decisive votes, we analyze the
order of positive or negative votes. In the case where votes
are split fifty-fifty between positive and negative votes, the
reviewer would not have an easy time of making a final de-
cision, because the reviewers would not be able to follow the
simple majority method.
Contribution: The voting style based on the simple major-
ity method is often used in many situations such as political
choices. Nowadays, social network services such as Q&A ser-
vices use a voting system only as a reference. In our case
study, the results will aid in understanding the meaning and
value of the voting style as a reference.

This paper is arranged as follows. Section 2 describes the
background to this paper and related work. Section 3 pro-
vides the criteria for integrating a patch into OSS projects,
Section 4 presents the impact of the voting order. Sec-
tion 5 discusses our study’s limitations. Finally, Section 6
concludes this paper and describes our future work.

2. CODE REVIEW PROCESS
Until recently, OSS projects have primarily used low-tech

tools for patch submission and code review such as mailing
lists [2, 3, 7] or issue tracking systems [9, 8] Unfortunately,
developers have discussed the changed code and voted by
text, because these tools are not for code review. Nowadays,
there are various tools 1 that are dedicated to managing the
code review process in OSS projects or projects in industry.
Code review tools have helpful functions (e.g. for viewing
the updated lines of code, add in-line comments in the up-
dated lines of code, discussions and voting systems), and
these functions often coordinate with version control sys-
tems such as Github. This lightweight, tool-supported style
of code review found in proprietary and open source set-
tings [6] is referred to as Modern Code Review (MCR) [1].
Figure 1 provides an overview of the Modern Code Review
process. In particular, the code review process after patch
submission acts as follows:

(1) One or more reviewers verify the changes proposed by
the patch owner. Then, revewers will post an approv-
ing positive vote or a disapproving vote.

1Gerrit: https://code.google.com/p/gerrit, Fabricator:
http://phabricator.org/, and ReviewBoard: https://
www.reviewboard.org/

Table 1: Patterns of automatically-generated voting
comments in the Gerrit code review system.

score automatic comments
positive +2 “Looks good to me, approved”

“Looks good to me”
+1 “Looks good to me, but someone else must approve”

“Works for me”
“Sanity review passed”
“Verified”

0 “No score”
negative -1 “I would prefer that you didn’t submit this”

“Sanity problems found”
-2 “I would prefer that you didn’t merge this”

“Major sanity problems found”
“Do not submit”

(2) Through discussion among reviewers, core reviewer de-
cides whether or not to integrate the patch into a ver-
sion control system.

The core reviewer is one of the developers who has a per-
mit to make a final decision. He or she would make the
decision based on the votes. Prior works have analyzed the
acceptance for patches. Developers and reviewers should ac-
tively communicate or discuss with other team members be-
fore and after submitting their patches, which increases the
chance of the patches being accepted [5, 8]. However, the de-
cision might not always completely follow the votes. In our
study, we confirm how many patches follow the simple ma-
jority method in collective decision-making among reviewers.

We conduct a case study on a large and successful OSS
project. We target the Qt system, which has recorded a
large amount of reviewing activity using modern code re-
viewing tools. Qt is a cross-platform application framework
whose development is supported by the Digia Corporation,
however, Qt welcomes contributions from the community-
at-large 2. To understand the patch decision in the modern
code review process, we use the code review data of the Ger-
rit review databases for the Qt project shared by [5]. The
databases have 70,705 review reports for Qt and contain the
review status, the patch ID from the VCS repositories, votes
of the reviewers, and the review comments.

We focus our analysis on those patches that are in the
merged or abandoned state. To detect the votes of reviewers,
we scan the comments for known patterns of automatically-
generated voting comments as shown in Table 1. These votes
are not only posted by an developers, but also some votes
posted by automatic testing system. We target the votes
posted from the automatic testing system as reviewers. Since
we were not be able to detect any votes from the other fields
of a review report, we filter away patches that had no re-
viewer comments and no reviewer votes. Finally, we tar-
geted 66,393 review reports include the integrated 33,892
patch sets, 32,501 rejected patch sets (including 6,049 aban-
doned patch sets, and 26,452 re-submitted patch sets) in the
first review phase.

In particular, we focused on positive votes and negative
votes posted from reviewers before the final decision (Inte-
gration, Abandonment, or Resubmission) in the first review
phase. In common rules of voting, the final decision would
follow the majority voting. However, the number of positive
votes might be the same as the number of negative votes.
In this study, we analyze whether or not the final decision
follows the majority voting method. In order to count the

2http://qt.digia.com/

Table 2: Distribution of the voting patterns.
Result N = 0 N = 1 N = 2 N = 3

#Integration - 2 0 0
P = 0 #Abandonment - 596 125 18

#Resubmission - 4188 322 32
#Integration 548 381 4 0

P = 1 #Abandonment 2,611 1,163 203 22
#Resubmission 11,834 4,009 350 25
#Integration 26,239 404 1 0

P = 2 #Abandonment 583 261 31 4
#Resubmission 3,624 778 67 5
#Integration 5,119 95 1 0

P = 3 #Abandonment 109 34 12 1
#Resubmission 628 129 8 1

positive and negative votes, we define the positive votes and
negative votes using a review score that was defined in the
Gerrit tool. The positive votes and negative votes are shown
in Table 1. The positive votes are represented by positive
numbers (+1 or +2), and the negative votes by the negative
numbers (-1 or -2). In this study, we do not target zero,
because reviewers could not count the votes as a reference.

3. CRITERIA OF PATCH INTEGRATION
This section presents how many code reviews based on col-

lective decision-making follow the simple majority method.
These results should receive criteria to judge whether or not
a patch should be integrated into a version control system.
As mentioned, we analysed the final decision in the first re-
view phase based on the number of positive and negative
votes using the review repository dataset of the Qt project.

Table 2 shows that the reviewer’s decision (integration,
abandonment, resubmission) depends on the number of votes
(positive (P) and negative (N)). #integration represents the
number of merged patch sets. #abandonment represents
the number of rejected patch sets. Finally, #resubmission
represents the number of patch sets for which reviewers re-
quested another update. As we mentioned in the previous
section, we do not target the patch sets with without votes
{P = 0, N = 0}, because reviewers could not count the votes
as reference. Hence, we target the patch sets with less than
three positive votes or less than three negative votes.

From Table 2, we found that only 59.5% of all patch
sets follow the simple majority method. Those patch sets
consist of integrated patch sets with more positive votes
{#P > #N} and the rejected patch sets with more negative
votes {#P < #N}. These sets do not include the rejected
patch sets with more positive votes {#P > #N}, the inte-
grated patch sets with more positive votes {#P < #N}, and
the patch sets with the same number of votes {#P = #N}.
In particular, the 99.9% patch sets with more negative votes
{#P < #N} were rejected. On the other hand, we surpris-
ingly found that only 61.6% patch sets with more positive
votes {#P > #N} were integrated.

The reviewer’s decisions do not always follow the
simple majority method. Some patch sets followed the
simple majority method as in {P = 2, N = 0}, {P = 0, N =
1}. 86.1% (= 26,239

26,239+583+3,624
) of the cases of {P = 2, N =

0} were integrated as the patch sets. Also, 99.9% (= 594+4188
2+594+4188

)

of the cases of {P = 0, N = 1} rejected as the patch sets. On
the other hand, some patch sets did not follow the majority
voting from reviewers, such as {P = 2, N = 1}. Though we
assumed that {P = 2, N = 1} would be integrated, 72.0%

(= 261+778
404+261+778

) of the cases rejected the patch sets.
The patch sets with more than one negative votes

were likely to be rejected. As we mentioned, there were
only 61.6% patch sets with more positive votes {#P > #N}
were integrated. In addition, when the number of positive
votes is same as the number of negative votes, {P = N},
it would be difficult for reviewers to judge whether or not
the patch sets should be integrated. However, the patch sets
of most cases ({P = 1, N = 1}, {P = 2, N = 2}, or {P =
3, N = 3}) were rejected. Indeed, 93.1% in {P = 1, N = 1},
98.9% in {P = 2, N = 2} and 100% in {P = 3, N = 3} were
rejected.

4. IMPACT OF DECISIVE VOTES
In the section 3, we found that some patch sets do not

always follow the simple majority method. Also, the patch
sets with more than one negative votes are likely to be re-
jected. This section shows which review processes lead to
those final decisions (integration, abandonment resubmis-
sion) in the first review phase. To conduct on this analysis,
we target patch sets with 2 or 3 reviewers’ votes. Table 3
shows the final decision in patch sets with 2 reviewers’ votes.
Table 4 shows the final decision with patch sets with 3 re-
viewers votes. For example, in the Table 4, P P N means
that the first reviewer posted a positive vote, the second re-
viewer posted a positive vote, and the third reviewer finally
posted a negative vote. In this case we found 894 patch sets
in this case.

In patch sets with 2 reviewers’ votes, there were 4 voting
patterns as shown in Table 3. Patch sets with the same kind
of votes (positive or negative) by both reviewers followed
the simple majority method. Indeed, 86.2% patch sets of {P
P} were integrated. Also, 100% patch sets of {N N} with
negative votes by both reviewers were rejected. On the other
hand, another pattern of patch sets appeared with different
kinds of votes by different reviewers such as {P N}, {N P}.
99.5% of {P N} were rejected and 55.5% of {N P} were
integrated. Core reviewer seemed to make a decision based
on the second reviewer’s vote.

In patch sets with 3 reviewers’ vote, there were 8 voting
patterns shown in Table 4. The patch sets with 3 review-
ers’ votes had the majority, because more than 2 reviewers
had to posts a vote which was either positive or negative.
In this case, reviewers ideally followed the simple majority
method. However, as mentioned before, patch sets do not
always follow the method such as in {P = 2, N = 1}. From
Table 4, we surprisingly found that less patch sets of only
{P P N} followed the simple majority method. 95.4% patch
sets of {P P N} were rejected. On the other hand, more
patch sets of {P N P} and {N P P} followed the simple
majority method. Next, we focus on the patch sets with
different votes between the first reviewer and the second re-
viewer such as {P N P}, {N P P}, {P N N} and {N P N}. In
this case, it might be difficult for the core reviewer to make
a final decision on these patch sets before a third reviewer
votes. However, these patch sets seemed to make a decision
based on the third reviewer’s vote, even if it did not follow
the majority votes.

In sum, the latter votes are likely to lead the final decision
to merge or reject the patch sets in the first review phase.
We read some actual review reports manually and found that
the first reviewer’s vote was posted automatically by tests

Table 3: Final decision in patch sets with 2 reviewers’ votes.
Pattern #Integration #Abandonment #Resubmission Total

{P=2,N=0} P P 26,293 (86.2%) 583 (1.9%) 3,624 (11.8%) 30,500
{P=1,N=1} P N 18 (0.3%) 1,130 (23.0%) 3,751 (76.5%) 4,899

N P 363 (55.5%) 33 (5.0%) 258 (39.4%) 654
{P=0,N=2} N N 0 (0.0%) 125 (27.9%) 322 (72.0%) 447

Table 4: Final decision in patch sets with 3 reviewers’ votes.
Pattern #Integration #Abandonment #Resubmission Total

{P=3,N=0} P P P 5119 (87.4%) 109 (1.8%) 628 (10.7%) 5,856
{P=2,N=1} P P N 40 (4.4%) 219 (24.4%) 635 (71.0%) 894

P N P 96 (43.6%) 37 (16.8%) 87 (39.5%) 220
N P P 268 (81.4%) 5 (1.5%) 56 (17.0%) 329

{P=1,N=2} P N N 0 (0.0%) 186 (37.8%) 305 (62.1%) 491
N P N 1 (1.7%) 16 (28.5%) 39 (69.6%) 56
N N P 3 (30.0%) 1 (10.0%) 6 (60.0%) 10

{P=0,N=3} N N N 0 (0.0%) 18 (36.0%) 32 (64.0%) 50

in many review reports 3. That is, many patch sets were
decided based on the final decision made by the developer’s
vote.

5. THREATS TO VALIDITY
We focused our study on positive votes and negative votes

posted by reviewers and by automatic testing. Those votes
by reviewers have several meanings. For example, a negative
vote means that the patch should not be integrated, or the
patch should be fixed again. Our next major challenge is to
understand the actual meaning of the votes automatically
from the reviewers’ discussions.

Also, we have not analyzed who posts the vote. In really,
an experienced developer’s vote should have a higher impact
in deciding patch integration than the other reviewers. The
core reviewer most likely would give a fair evaluation of the
votes among reviewers. Our another challenge is to analyze
who posts the vote.

Finally, in this case study, we focused only on the first
review phase and one large OSS project as the pilot study.
To identify the validity of our results, we should conduct
this analysis on whole review phases using dataset from the
other projects as well.

6. CONCLUSION
In this paper, we identified only 59.5% of code reviews

that followed the simple majority method through collective
decision-making. Also, we found that the reviewer’s decision
s do not always follow the method. Hence, we confirmed that
the reviewers used the votes only as a reference. Further-
more, we found that the core reviewer might agree with the
final votes in first review phase, even if they do not follow
the simple majority method. In the future work, we would
like to study how reviewers’ votes lead to make a decision
for patch sets. Furthermore, we build a prediction model to
make a decision for patch sets automatically based on the
voting approach.

7. ACKNOWLEDGMENTS
This work has been conducted as part of our research un-

der the Program for Advancing Strategic International Net-

3e.g. https://codereview.qt-project.org/#/c/11751

works to Accelerate the Circulation of Talented Researchers.

8. REFERENCES
[1] A. Bacchelli and C. Bird. Expectations, outcomes, and

challenges of modern code review. In Proceedings of the
35th International Conference on Software Engineering
(ICSE’13), pages 712–721, 2013.

[2] C. Bird, A. Gourley, and P. Devanbu. Detecting patch
submission and acceptance in oss projects. In
Proceedings of the Fourth International Workshop on
Mining Software Repositories (MSR’07), pages 26–29,
2007.

[3] Y. Jiang, B. Adams, and D. M. German. Will my patch
make it? and how fast?: Case study on the linux kernel.
In Proceedings of the 10th Working Conference on
Mining Software Repositories (MSR’13), pages 101–110,
2013.

[4] K. O. May. A set of independent necessary and
sufficient conditions for simple majority decisions.
Econometrica, 20(4):680–684, 1952.

[5] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan.
The impact of code review coverage and code review
participation on software quality: A case study of the
qt, vtk, and itk projects. In Proceedings of the 11th
Working Conference on Mining Software Repositories
(MSR’14), pages 192–201, 2014.

[6] P. C. Rigby and C. Bird. Convergent contemporary
software peer review practices. In Proceedings of the 9th
Joint Meeting on Foundations of Software Engineering
(ESEC/FSE’13), pages 202–212, 2013.

[7] P. C. Rigby and M.-A. Storey. Understanding broadcast
based peer review on open source software projects. In
Proceedings of the 33rd International Conference on
Software Engineering (ICSE’11), pages 541–550, 2011.

[8] Y. Tao, D. Han, and S. Kim. Writing acceptable
patches: An empirical study of open source project
patches. In Proceedings of the International Conference
on Software Maintenance and Evolution (ICSME’14),
pages 271–280, 2014.

[9] P. Weißgerber, D. Neu, and S. Diehl. Small patches get
in! In Proceedings of the 5th International Working
Conference on Mining Software Repositories (MSR’08),
pages 67–76, 2008.

