
1304
IEICE TRANS. INF. & SYST., VOL.99, NO.5 MAY 2016

PAPER

Investigating and Projecting Population Structures in Open

Source Software Projects: A Case Study of Projects in

GitHub

Saya ONOUE†a), Hideaki HATA†b), Nonmembers, Akito MONDEN††c), Member,
and Kenichi MATSUMOTO†d), Fellow

SUMMARY GitHub is a developers’ social networking service
that hosts a great number of open source software (OSS) projects.
Although some of the hosted projects are growing and have many
developers, most projects are organized by a few developers and
face difficulties in terms of sustainability. OSS projects depend
mainly on volunteer developers, and attracting and retaining these
volunteers are major concerns of the project stakeholders. To in-
vestigate the population structures of OSS development communi-
ties in detail and conduct software analytics to obtain actionable
information, we apply a demographic approach. Demography is
the scientific study of population and seeks to identify the levels
and trends in the size and components of a population. This paper
presents a case study, investigating the characteristics of the pop-
ulation structures of OSS projects on GitHub, and shows popula-
tion projections generated with the well-known cohort component
method. We found that there are four types of population struc-
tures in OSS development communities in terms of experiences and
contributions. In addition, we projected the future population ac-
curately using a cohort component population projection method.
This method predicts a population of the next period using a sur-
vival rate calculated from past population. To the best of our
knowledge, this is the first study that applied demography to the
field of OSS research. Our approach addressing OSS-related prob-
lems based on demography will bring new insights, since studying
population is novel in OSS research. Understanding current and
future structures of OSS projects can help practitioners to monitor
a project, gain awareness of what is happening, manage risks, and
evaluate past decisions.
key words: OSS, Software Development Communities, Software
Population Pyramids, Demography

1. Introduction

As of 2014, GitHub reported having over 3.4 million users
and 16.7 million repositories∗. Why does GitHub attract
so many developers? Several studies have identified the
essence of this success [1]–[4]. GitHub is a distributed
version control system (DVCS) and a web-based hosting
service for Git repositories. Brindescu et al. assessed the

Manuscript received September 4, 2015.
Manuscript revised January 4, 2016.
Manuscript publicized February 5, 2016.

†The authors are with Nara Institute of Science and Tech-
nology, Ikoma-shi 630-0192 Japan

††The authors is with Okayama University, Okayama-shi,
700-0082 Japan
a)E-mail: onoue.saya.og0@is.naist.jp
b)E-mail: hata@is.naist.jp
c) E-mail: monden@okayama-u.ac.jp
d)E-mail: matumoto@is.naist.jp

DOI: 10.1587/transinf.2015EDP7363
∗Marisa Whitaker, “Former UC student establishes a cele-

brated website in GitHub that simplifies coding collaboration
for millions of users,” University of Cincinnati, April 2014,
http://magazine.uc.edu/favorites/web-only/wanstrath.html.

differences between the centralized version control sys-
tem (CVCS) and DVCS [1]. They reported that devel-
opers prefer DVCS because of its useful features, such as
the ability to commit locally, work offline while retaining
full project history, and create merging branches cheaply.
Muşlu et al. reported that developers moved from CVCS
to DVCS because DVCS has the ability to work offline,
to work incrementally, and to context switch and do ex-
ploratory coding efficiently [2]. GitHub has tapped into
the opportunity to facilitate pull-based development by
offering workflow support tools, such as code reviewing
systems and integrated issue trackers. Gousios et al. re-
ported the impacts of pull-based development based on
mining repository data: fast development, transparency
in project management, attracting contributions, crowd
sourcing of code review, and democratizing development
[3]. GitHub is also considered as a developers’ social
networking service, and it promotes software develop-
ment through formal and informal collaboration, called
social coding. Dabbish et al. examined the value of
transparency and collaboration in OSS, reporting that
developers form a rich set of social inferences, including
inferring technical goals and vision and trying to iden-
tify projects with similar, and developers combine these
inferences into effective strategies for coordinating work,
advancing technical skills, and managing their reputa-
tions [4].

Although GitHub has many attractive features and
many users and repositories, most projects are inactive
and have very few commits. Based on a qualitative man-
ual analysis of GitHub repositories, Kalliamvakou et al.
reported that the majority of the projects are personal
and inactive [5]. To survive and succeed, software de-
velopment communities need to attract and retain con-
tributors. Yamashita et al. proposed a pair of pop-
ulation metrics, namely, magnetism and stickiness [6].
Magnet projects are defined as those that attract a large
proportion of new contributors, and sticky projects as
those where a large proportion of the contributors will
continue to make contributions. With the two values
of magnetism and stickiness, OSS projects are classified
into the following four categories: (1) Attractive projects
have high magnet and high sticky values. These projects
are successful both at attracting new contributors and
at retaining existing ones. (2) Fluctuating projects have
high magnet but low sticky values. These projects are
successful at attracting new contributors but unsuccess-
ful at retaining them. Therefore, the members of these

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1305

OSS development communities fluctuate from year to
year. (3) Stagnant projects have low magnet but high
sticky values. In contrast to fluctuating projects, stag-
nant projects retain existing contributors but cannot at-
tract new ones. (4) Terminal projects have low magnet
and low sticky values. Based on this classification, Ya-
mashita et al. empirically studied OSS project histories
and identified at-risk projects.

The work of Yamashita et al. suggests that we
should go further to analyze moving human resources
of OSS projects in more details not only for the eval-
uation of project sustainability but also for providing
actionable information to help practitioners monitor a
project, know what is really working, improve efficiency,
manage risk, anticipate changes, and evaluate past deci-
sions [7]. For example, if one could know that a project
is attracting new contributors but loosing experienced
contributors, then it can be considered that the project
is changing its direction originally intended by the expe-
rienced contributors. For a straightforward way to ana-
lyze such moving human resources, this paper focuses on
the populations of development communities. And, to
conduct software analytics in populations of OSS devel-
opment communities, we apply an approach taken from
demography. Demography is the scientific study of pop-
ulation. Demographers seek to uncover the levels and
trends in a population’s size and components [8]. Every
population has a different composition: the number and
proportion of males and females in each age group. This
structure can have considerable impact on the popula-
tion’s current and future social and economic situation.
Government policymakers and planners worldwide use
population projections to gauge future demand for ser-
vices and to forecast future demographic characteristics.
We believe this perspective, that is, demography for ac-
tionable information, is also important for OSS projects
to manage sustainable development communities.

A population pyramid is a graphical illustration of
the distribution of the various age groups in a popula-
tion. Depending on the countries’ conditions, the shape
of population pyramids varies. Population pyramids are
used to show the current status of a country’s popula-
tion and provide insights about political and social sta-
bility, as well as economic growth. Population projec-
tion is a powerful approach to discuss future populations
[9]. In a previous study, we applied population pyramids
to OSS development communities. We dubbed this ap-
proach software population pyramids [10]. In software
population pyramids, contributors are grouped by their
experiences in the communities. Extending the previ-
ous study [10], this paper investigates the characteristics
of the population structures observed in OSS projects
in GitHub by introducing demographic analysis. In ad-
dition, we project the future of population structures
using the well-known cohort component method. We
address the following research questions in this paper:
What characteristics of population structures exist in
OSS projects in GitHub, and can we project future pop-
ulation structures? The differences between this study
and the Yamashita et al. study [6] can be summarized
as follows:

（a) India in 2010

（b） Japan in 2050

Fig. 1 General population pyramid.
(http://populationpyramid.net/)

• The study of Yamashita et al. is based on popu-
lation migration metrics. Therefore, their research
specialized in the migration and remaining of devel-
opers. In contrast, we introduced the demographic
approach. Therefore, we can investigate population
structures deeply and predict the future of develop-
ment communities with a well-known method.

• Yamashita et al. considered developers to be au-
thors of code changes, so they focused only on the
commit and pull request activities. However, we are
also interested in other contributors who send issues
and comments. So we analyze other activities as well
as commit and pull request activities, which makes
it possible to understand development communities
in detail.

• Our software population pyramids consist of various
experience groups in a software development com-
munities. Our method thus allows us to see long-
term contributors, though the previous study did
not distinguish between the experiences of individ-
ual developers.

1306
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

2. Demographic Analysis

2.1 Population Structures

Age and sex are the most basic characteristics of a pop-
ulation. Every population has a different age and sex
composition, and this population structure can have con-
siderable impact on the population’s current and future
social and economic situation [8]. A population pyramid
graphically displays a population’s age and sex compo-
sition.

In a general population pyramid, the population is
distributed along the horizontal axis, with males shown
on the left and females on the right. The male and
female populations are broken down into five-year age
groups represented by horizontal bars along the verti-
cal axis, with the youngest age groups at the bottom
and the oldest at the top. The shape of the population
pyramid gradually evolves over time, following trends in
fertility, mortality, and international migration. We can
understand the status of a country just by looking at
population pyramids. Figure 1(a) shows the population
pyramid of India in 2010. This pyramid is large toward
bottom, a form that is common in developing countries.
Population pyramids are also useful for predicting the
future composition of a population. Figure 1(b) shows
the projected population pyramid of Japan in 2050. It
seems like a tower rather than a pyramid. This form
is common in low birth rate and high longevity coun-
tries. Depending on the countries’ status, the shape of
population pyramids varies.

2.2 Software Population Pyramids

There are various contributors to the OSS project. There
are, for example, bug reporters, commenters, reviewers,
and coding contributors. All contributions and various
contributors are important for OSS projects. For exam-
ple, bug reporters assume an important role in improv-
ing the quality of OSS [11]. Also, developers can keep up
motivation by getting some comments of thanks, admi-
ration, or opinion. However, coding contributors, bug re-
porters, and commenters differ essentially. Contributors
can comment or report bugs without a deep understand-
ing of source code files, but coding contributors need to
understand them. So, coding contributors are considered
to be required to have specific skills, unlike bug reporters
or commenters. Therefore, in this study, we distinguish
coding contributors with other, non-coding contributors.

It is often the case that core developers contribute
to both coding and non-coding activities. We identify
individuals as coding contributors if the contributors
have experienced code-related activities at least once in
his/her existing period. If a contributor only has non-
coding activities in a given period, he/she is regarded as
a non-coding contributor. Then if the contributor begins
code-related activities later, he/she will be classified as
a coding contributor. To clarify such transitions, we call
such contributors “moved contributors”. End users play

an important role in maintaining contributors’ motiva-
tion [12]. However, because contributions of end users
are not recorded in software repositories in general, our
study do not consider them.

We have proposed software population pyramids:
population pyramids of software development commu-
nities [10]. Contributors are considered to be the con-
stituent member of the communities, and the contribu-
tion periods are regarded as existing periods or lifetimes.
A software population pyramid consists of two back-to-
back bar graphs, with the population plotted on the X-
axis and experience on the Y-axis. The bar graph on
the right shows coding contributors, and the bar graph
on the left shows non-coding contributors in a partic-
ular population in three-month experience groups. In
a general population pyramid, the populations are bro-
ken down into five-year age groups. However, we should
make software population pyramids with shorter peri-
ods because the five-year length is too long for OSS
projects. In our previous study, we analyzed software
population pyramids in one year length[10]. However,
we found that many contributors leave projects within
a year. In addition, less than three months is too short
for many projects to obtain enough data to draw a pop-
ulation pyramid. So, in this study, we make software
population pyramids with three months groups, and an-
alyze population of contributors in OSS projects.

There are some differences between our software
population pyramids and the general population pyra-
mids.

• Whereas a population pyramid consists of bars for
males and females, a software population pyramid
consists of coding bars for contributors and non-
coding contributors.

• In a general population pyramid, people appear at
birth and disappear when they die, but in a soft-
ware population pyramid, contributors start their
experiences when they enter and finish when they
leave the development communities. In this study,
we consider that a contributor left a project when
he/she did not give any contribution on that project
for more than three months. However, very few con-
tributors might come back to the project after three-
month (or more) interval. They disappear from the
pyramids while they are inactive temporarily. In
that case, we consider them as experienced contrib-
utors when they come back to the project.

• The height of general population pyramids are sim-
ilar to each other, because maximal life-span of hu-
man is not so different in each country. However,
software population pyramids have different heights,
because OSS projects have different existing periods
and people can leave freely.

• Because the parent-child relationships exist in pop-
ulation pyramids, there are correlations between the
volume of the parent population and the population
of children. However, software population pyramid
do not exhibit such relationships. This can cause
the pyramid to change dramatically.

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1307

Table 1 GitHub development activities

Development Activities Overview Separation

commits Commit to the repository coding
pull requests Request a commit to committers

commit comments Comment against commit
issues An issue associated with a repository non-coding
issue comments Comment against commit
pull request comments Comment against commit pull request
events This is a read-only API to the GitHub events.
followers A follower to a user.
forks A copy of a repository
org members Users that are members of an organization.
repo collaborators Users with access to the repository. excluded in this study
repo labels Label list is labeled to the repositories
repos A dump of every public repository
issues events An event on an issue
users Github users.
watchers Users that have starred (was watched) a project

Fig. 2 Distribution of development periods and the number of
contributors.

Fig. 3 Distribution of the number of coding contributors and the
number of non-coding contributors.

2.3 Datasets

We analyze the GitHub dataset provided by Gousios [13].
This dataset includes developers’ activity histories for 90
OSS projects. Figures 2 and 3 show point diagrams that
plot metrics of projects. Figure 2 shows the distribu-
tion of development periods and the number of contrib-
utors. From Figure 2, we can see that homebrew has
many contributors and that the development period of
rails is long. Figure 3 shows the distribution of the num-
ber of coding contributors and the number of non-coding
contributors by project. From Figure 3, we see that
homebrew and rails have many coding and non-coding
contributors. From small to large-scale projects, this
dataset includes various types of projects. In total, this

Table 2 Example of data of activity and activity periods of
contributors in t1 and t2.

Pyramids in t1 Pyramids in t2
Working months Working months

Contributor coding non-coding coding non-coding

C1 1 - 4 -
C2 - - - 2
C3 - 3 2 6
C4 5 2 8 5
C5 - 4 - 7
C6 3 5 6 8

dataset includes 16 development activities, but to focus
on contributors’ activities, we use only six development
activities. Table 1 shows the name of 16 development
activities and an explanation of the content of these ac-
tivities. Pull request and commits are considered to be
coding-related activities, whereas commit comments, is-
sue comments, pull request comments and issue events
are considered non-coding activities. Events, follow-
ers, org members, repo collaborators, repo labels, repos,
users and watchers are not related to contributors’ activ-
ities. “Forks” is generally a contributor’s activity; how-
ever, fork itself does not contribute to the development,
and also fork is often done by a person before he/she
participate in a development as a contributor. So we
excluded it from the contributors’ activity list.

We classified contributors as coding and non-coding
contributors. Coding contributors are contributors who
have at least one code-related activity in their existing
periods. Non-coding contributors are contributors who
have not experienced code-related activities but have ex-
perienced non-coding activities. We obtained the dates
of those events for each contributor, and identified the
contribution period from the first event until the last
event. Details of how to obtain the data are explained in
Appendix A. Contribution periods are divided into cod-
ing periods and non-coding periods based on the
classification of the activity events. If a contributor has
only non-coding activities in his/her early period, the
period is regarded as a non-coding period and he/she
is regarded as a non-coding contributor. If a contribu-
tor has coding-related activities, the period is regarded
as a coding period and he/she is regarded as a coding
contributor.

1308
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

3 months

6 months

9 months

3 0 3

Number of contributors

A
c
ti
v
it
y
 p

e
ri

o
d

C6 C1

C4C5

C3

(a) Pyramids in t1.

3 months

6 months

9 months

3 0 3

Number of contributors

A
c
ti
v
it
y
 p

e
ri

o
d

C3

C6 C1

C4C5

C2

(b) Pyramids in t2.

Fig. 4 Examples of software population pyramids in t1 and t2

Table 2 shows an example of data of activity and
activity periods of contributors, and Figure 4 shows soft-
ware population pyramids that plot the data of Table 2.
The time t2 is three months later to the time t1. The
X-axis is the number of contributors. The center is zero,
the right side shows the number of coding contributors,
and left side shows non-coding contributors. The Y-axis
is the activity period of contributors. For example, con-
tributor C1 has coding activity periods of one month in
t1 and four months in t2. Therefore, he/she is plotted
as C1 in location in Figure 4 (a) and Figure 4 (b) as
a coding contributor. Contributor C2 has a non-coding
activity period of two months in t2. He/she is plotted
as C2 in location in Figure 4 (b) as a non-coding con-
tributor. In contrast, contributor C3 has a non-coding
activity period of three months in t1. He/she is plotted
as C3 in location in Figure 4 (a) as a non-coding con-
tributor. However, he/she has a coding activity period
of two months in t2. Therefore, he/she is plotted as C3 in
location in Figure 4 (b), having moved to the contributor
side.

The method of calculating activity periods used here
does not take into account actual activity between start
and end. In a previous study, we analyzed the frequency
of activities of contributors, finding that, although some
contributors continued to make small contributions for
long periods, there is no contributor that stops activities
in a project and then rejoins the project later [14]. How-
ever, it is important to take into account the frequencies
of contributions. This could be the future work of this
study.

3. Characteristics of Population Structures

We classify the shapes of software population pyramid,

Fig. 5 Distribution of CCR and NCR of OSS projects in GitHub.

and investigate their characteristics. For this purpose,
we propose two new measures. One is the proportion of
the number of non-coding contributors (non) to the num-
ber of coding contributors (coding), called the Coding
Contributors Ratio (CCR). CCR is defined as follows:

CCR =


coding − non

coding
(coding ≥ non)

coding − non

non
(coding < non)

CCR ranges from −1 to 1. Higher values mean that
more contributors are coding contributors, and lower val-
ues mean that more contributors are non-coding contrib-
utors. If the value is close to 0, the number of coding
contributors and the number of non-coding contributors
are similar.

The other proposed measure is the proportion of
the number of experienced contributors to the number of
newcomers (new contributors), called the New Contribu-
tors Ratio (NCR). In this study, we define newcomers as
contributors who have less than three months of activity
periods, and we define experienced contributors as those
with longer activity periods. NCR is defined as follows:

NCR =


new − experience

new
(new ≥ experience)

new − experience

experience
(new < experience)

NCR ranges from −1 to 1. Higher values mean that
more contributors are new contributors, and lower val-
ues mean that more contributors are experienced con-
tributors. If the value is close to 0, the number of new
contributors and the number of experienced contributors
are similar.

Figure 5 shows the distribution of the projects using
the CCR and the NCR in September 2013. Because four

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1309

1 year
2 years
3 years
4 years
5 years
6 years
7 years

30 15 0 15 30
jquery

1 year

2 years

3 years

4 years

5 years

30 15 0 15 30
django-cms

(a) Type A

1 year

2 years

750 500 250 0 250 500 750
Font-Awsome

1 year

2 years

500 250 0 250 500
gitlabhq

(b) Type B

1 year
2 years
3 years
4 years
5 years
6 years

50 25 0 25 50
cakephp

1 year

2 years

3 years

30 15 0 15 30
CraftBukkit

(c) Type C

Fig. 6 Examples of software population pyramids of each type. (Note that scales are
different)

1 year

2 years

3 years

4 years

600 400 200 0 200 400 600
homebrew

1 year
2 years
3 years
4 years
5 years
6 years

300 200 100 0 100 200 300
rails

Fig. 7 Examples of software population pyramids (CCR and NCR are close to 0). Scales
are different.

1310
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

projects did not have any contributors in this period,
we could not plot them. For that reason, there are 86
projects displayed in Figure 5. With this distribution,
we can classify the projects into the following four types:

• Type A: There are more newcomers than experi-
enced contributors, and more coding contributors
than non-coding ones in a project. So, the shape
of software population pyramid on the right side is
larger than the left side, and the bottom is larger
than others, also experienced contributors are plot-
ted intermittently.

• Type B: There are more newcomers than experi-
enced contributors, and more non-coding contribu-
tors than coding ones in a project. So, the shape
of software population pyramid on the right side is
larger than the left side,and the bottom part is larger
than other parts. Also, experienced contributors are
plotted intermittently.

• Type C: There are more experienced contributors
than newcomers, and more coding contributors than
non-coding ones in a project. So, the shape of soft-
ware population pyramid on the left side is larger
than the right side, and the bottom part is larger
than other parts. Also, experienced contributors are
plotted intermittently.

• Type D: There are more experienced contributors
than newcomers, and more non-coding contributors
than coding ones in a project. So, the shape of soft-
ware population pyramid on the left side is larger
than the right side, and experienced contributors
are plotted continuously.

There are 23 projects categorized Type A, 42
projects as Type B, 18 projects as Type C, and three
projects as Type D.Figure 6 presents examples of soft-
ware population pyramids belonging to Type A, Type B,
and Type C.

(a) Type A In these projects, there are few expe-
rienced non-coding contributors. In django-cms,
there are many moved contributors. Because many
developers moved from non-coding to coding, these
projects have many coding contributors.

(b) Type B Font-Awesome has many non-coding con-
tributors. This project makes Web icon fonts, and
many people sent requests for new icons to this
project. Therefore, many non-coding contributors
leave this project immediately following a short pe-
riod of contribution.

(c) Type C There are many moved contributors in
CraftBukkit. Also, there are many coding newcom-
ers. However, many coding contributors continue
their activities, because there are more experienced
contributors than there are newcomers.

In Figure 6, we see that the shapes of the pyramids
are different from each other. OSS projects are managed
by voluntary contributors, so contributors may not cor-
respond to the many bug reports in projects of Type B.
Additionally, it is difficult to obtain coding newcomers,
because there are no moved newcomers. However, there
are a few contributors that report bugs, such as in Type

A or C, so these projects have little chance of improving
the quality of the OSS through bug reports.

Figure 7 shows the software population pyramids of
homebrew and rails. Homebrew belongs to Type A, and
rails belongs to Type D. In these projects, both CCR
and NCR values are close to 0. These projects are con-
tinually gaining contributors because their software pop-
ulation pyramids do not have intermittent bars. In ad-
dition, there are many moved contributors. We can see
that these projects succeeded in attracting and retaining
new/experienced and coding/non-coding contributors.

Projects that are plotted close to the center of the
graph are well balanced in CCR and NCR. In these
projects, there are an almost equal the number of con-
tributors and newcomers, and almost equal the number
of non-coding contributors and coding ones too. It is our
important future work to consider adding another (5th)
project type to distinguish such projects from others.
For example, if we distinguish the projects that plotted
around the origin belonging to the top 10% and others,
six project such as homebrew, rails, bitcoin, diaspora,
openFrameworks and redis meet that definition.

4. Population Projection

For project managers, it is important to maintain experi-
enced contributors. Therefore, we propose a population
projection method of the number of contributors in OSS
projects using demographic methods.

4.1 Cohort component population projection

We predict the number of contributors using a simplified
cohort component population projection. In demogra-
phy, a cohort is a group of subjects share a particular
event during a particular time span. Cohort component
population projection is the simplest population projec-
tion method. Isserman offers a way to project the size
of populations [15]. Isserman’s method uses the survival
rate [16], as well as fertility, mortality, and migration
data. We can project the size of populations at a certain
age cohort using following formulas:

Population of age (X + n) in year (T + n) =

Survival Rate× Population of age X in year T

where

Survival Rate =

Population of age (X + n) in year T

Population of age X in year (T − n)

X is the age of the cohort being examined, n is an interval
of time usually set at ten years representing the period
of time between the two most recent censuses, and T
is the year of the most recent census. We replace each
variable in our software population pyramids such that X
is the activity period of the cohort being examined, n is
an interval of time set at three months representing the

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1311

Table 3 Median of ABRE.

non-coding moved coding All
cohort baseline method cohort baseline method cohort baseline method cohort baseline method

Type A 0.4993 0.5000 0.3027 0.5000 0.1865 0.3731 0.2534 0.5000
Type B 0.5000 0.6332 0.3923 0.5000 0.5000 0.5750 0.5000 0.5917
Type C 0.6711 1.0000 0.2500 0.7179 0.3684 0.6250 0.3333 0.7500
Type D 0.3137 1.0000 0.2378 0.2500 0.4808 0.6154 0.2875 0.6667
All types 0.5000 0.6667 0.3299 0.5000 0.4074 0.5417 0.4000 0.6000

period of time between the two most recent contributors
counting, and 3 m in year T is the month of most recent
contributors counting.

For example, we consider a case of a projection 10
to 19 year-old population in 2020. In this projection,
we use 0 to 9 year-old population in 2000 and 10 to 19
year-old population in 2010 to calculate a survival rate
of 0 to 9 year-old population. Here, the survival rate is
calculated as follows.

Survival Rate =

Population of age (10 to 19) in 2010

Population of age (0 to 9) in 2000

where

Population of age (10 to 19) in 2020 =

Survival Rate of 0 to 9×
Population of age (0 to 9) in 2010

In this way, to calculate the population of each co-
hort and to sum them. The cohort component method
includes birth and net migrants in general. Births are
the same as newcomers to an OSS project in our study.
Births are derived from the number of mothers and the
birth rate. However, these input data do not exist for the
number of contributors, so we use following very simple
formula to calculate newcomers:

newcomer =

(P {T} + P {T − n}) / 2

where

P {T} = Population activity period 3 m in year T

Additionally, we do not consider that contributors
move to other projects in our study, so we do not calcu-
late net migration.

4.2 Evaluation

With the cohort component population projection
method, we project a future population size for the 36
projects that have more than 100 contributors. There are
four projects categorized as Type A, 21 projects as Type
B, nine projects as Type C, and two projects as Type
D. In this study, we project the number of contributors
of September 2013 by calculating the survival rate from
the number of contributors of March and June 2013. In
order to verify the projection accuracy of our proposed
method, we compared it with the baseline method, which

assumes that the number of contributors of September
and June 2013 are the same. Populations are projected
for non-coding, moved, and coding contributors, sepa-
rately.

To evaluate the projection accuracy, we compare the
projection error of our propose method to the baseline
method one. MRE (Magnitude of Relative Error) [17] or
MER (Magnitude of Error Relative to estimate) [18] are
used to evaluate the prediction accuracy. We use ABRE
(Absolute Balanced Relative Error) [19] as an evalua-
tion metric of the prediction accuracy for the number of
contributors remaining.

Measured values of the number of contributors is
denoted as x, and the predicted value of the number of
contributors is denoted as x̂. Each indicator is deter-
mined by the following equation:

MRE =
|x− x̂|

x

MER =
|x− x̂|

x̂

ABRE =


|x̂− x|

x
(x̂− x ≥ 0)

|x̂− x|
x̂

(x̂− x < 0)

For these metrics, lower values indicate higher ac-
curacy. MRE is the relative error of the predicted value
to the actual value and MER is the relative error be-
tween predicted and actual values to the predicted value.
However, MRE and MER share the problem that these
measures cannot distinguish excessive prediction and too
little prediction. In this study, we evaluated projection
accuracy by using the ABRE to evaluate the balance be-
tween excessive prediction and too little prediction.

To investigate the projection accuracy, we used
the Wilcoxon non-parametric statistical hypothesis test.
Wilcoxon test is generally used when comparing two re-
lated samples to assess whether their population mean
ranks differ. It can be used as an alternative to the
paired Student’s t-test, t-test for matching pairs, or the
t-test for dependent samples when the population can-
not be assumed to be normally distributed. With the
Wilcoxon test, we test the difference between the ABREs
of our propose method and the ABREs of the baseline
method. In particular, we test each project type (Type
A-D) and each contribution type (non-coding, moved,
coding). Then, we test their measures of central ten-
dency, and investigate whether there are significant dif-
ferences in projection accuracy.

Table 3 shows the median of the ABREs. If the

1312
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Table 4 Result of Wilcoxon test.

p-value
non-coding moved coding All

Type A 0.02748 0.00158 0.26867 0.00014
Type B 0.00037 0.01845 0.06200 0.00001
Type C 0.05935 0.00035 0.16000 0.00013
Type D 0.00001 0.02700 0.02901 0.00000
All types 0.00000 0.00000 0.00116 0.00000

ABRE value is close to 0, the projection accuracy is high.
In Table 3, projection accuracies of our proposed method
are higher than the baseline method in all predictions.
Table 4 shows the result of the Wilcoxon test (95% con-
fidence), where bold numbers indicate the statistical sig-
nificant improvements by the proposed (cohort) method.
In Table 4, projection of non-coding contributors has no
significant difference in Type C, and projections of cod-
ing contributors have no significant difference in Type
A, B, and C. However, projection of all contributors and
all types have significant difference. In this result, the
projection accuracy of our proposed method was higher
than the baseline method. On the other hand, there
was no difference in the predictive accuracy between dif-
ferent project types in this projection. This result shows
the possibility that the reduction of contributors depends
little on type of activities, the number of newcomers or
experienced contributors.

Figure 8 shows actual software population pyramids
and lines of predicted values. We can see that most of
the lines are surprisingly well fitted to the observed data,
especially near the top of each pyramid. In this study,
we define short-term contributors as contributors that
have activity period of less than one year, and define
long-term contributors as contributors that have activity
period of equal to or more than one year. The median of
ABRE of short-term contributors is 0.4055, and median
of ABRE of long-term contributors is 0.3333. The result
of the Wilcoxon rank test (95% confidence) showed that
the difference is significant (p-value = 0.0460), which in-
dicates that the projection of the number of long-term
contributors is higher accuracy than the projection of the
number of short-term contributors.

5. Related Work

Web services for software developers, such as GitHub†

and Open Hub††, are popular. Therefore, we can easily
understand the activity of contributors in OSS. Dabbish
et al. asserted that exposing the activity of contribu-
tors through social network services is likely to rapidly
promote cooperation and learning in OSS development.
They interviewed GitHub users and examined coopera-
tion and learning in the OSS community [4]. They found
that contributors build a set from the activity informa-
tion in GitHub, such as consulting someone else’s tech-
nique when they edit code.

There are many studies that focus on the social as-
pects of software development. Bogdan noted the success
of an OSS project depends to a large extent on the so-

†GitHub https://github.com/
††Open Hub https://www.openhub.net/

cial aspects. He sought to increase understanding of how
human aspects, gamification, and social media influence
OSS [20]. Phillips et al. considered the building of team
effectiveness and found that many challenges are social,
not technical. They applied insights from group dynam-
ics and organizations to inform the design of engineering
tools and practices to improve the building of team ef-
fectiveness [21].

We considered that homebrew and rails are success-
ful projects. However, the success of software devel-
opment cannot be decided easily. Ralph et al. inter-
viewed an interdisciplinary sample of 191 design profes-
sionals concerning their perceptions of software engineer-
ing success. They concluded that stakeholder impacts
are driven by project efficiency, artifact quality, and mar-
ket performance [22]. However, we consider the success
of OSS to be related to contributors as well.

There are studies about prediction of contributors
and the continuity of contributors’ activity. Steinmacher
et al. argued that the sustainability of many OSS
projects relies on retaining newcomers. They discussed
some barriers faced by newcomers to OSS [6]. Addition-
ally, they found that 20% of new contributors become
long-term contributors [23].

Rastogi et al. presented a framework that charac-
terizes the stability of the community in software main-
tenance projects using community participation pat-
terns. They modeled community participation pat-
terns of contributors and forecast future behavior to
help plan and support informed decision making [24].
Also, Loyala et al. proposed a methodology that adapts
Lotka-Volterra-based biological models used for describ-
ing host-parasite interactions to understand how the
population of OSS contributors evolves over time. Their
experiments showed that the proposed approach per-
forms effectively in terms of providing an estimation of
the population of developers for each project over time
[25].

Zhou and Mockus studied long-term contributors
(LTC), analyzing the behavior of individual participants
in Gnome and Mozilla [26]. They reported that future
LTCs tend to be more active and show more community-
oriented attitudes than do other joiners during their first
month.

Social network analysis is a research area related to
this study. For example, Bird et al. reported that de-
velopers play a significant social role in email lists [27].
Similarly, Bird et al. analyzed email addresses in OSS
projects to examine the community structure among de-
velopers [28].

Onoue et al. studied the characteristics of develop-
ers’ activities, finding that various developers Are char-
acterized by different types of development activities [14].

Hata et al. studied the characteristics of sustain-
able OSS projects through game theoretical analysis and
empirical analysis[29]. They reported that to have cod-
ing developers, that is, to incentivize developers to code,
the projects should prepare documents, or the projects
or third parties should hire developers. These strate-
gies were in fact implemented by sustainable projects in
GitHub.

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1313

1 year

2 years

3 years

150 100 50 0 50 100 150
（a） elasticsearch

1 year

2 years

600 300 0 300 600
（b） gitlabhq

1 year

2 years

3 years

4 years

500 250 0 250 500
（c） homebrew

1 year

2 years

3 years

4 years

5 years

500 250 0 250 500
（d） rails

1 year

2 years

3 years

4 years

250 200 150 100 50 0 50 100 150 200 250
（e） symfony

1 year

2 years

3 years

4 years

75 50 25 0 25 50 75
（f） TrinityCore

Fig. 8 Comparing measured and predicted values of the number of contributors.

6. Discussion and Conclusion

In this study, we focus on contributors to OSS projects
using a demographic approach. In OSS projects, many
people are involved in development, meaning that human
resources are very important for OSS. We conclude that
we can predict the future of participation in OSS projects
by analyzing them from a demographic perspective.

In the field of demography, researchers create popu-
lation pyramids to analyze the current situation of se-
lected countries. We proposed a population pyramid
for OSS projects called the software population pyramid.
Contributors are considered the constituent member of
the communities, and the contribution periods are re-
garded as experience periods or lifetimes. A software
population pyramid consists of two back-to-back bar
graphs, with the population plotted on the X-axis and
experience on the Y-axis. One of the bar graphs shows
coding contributors and the other shows non-coding con-
tributors in a particular population in three-month ex-
perience groups.

We classified shapes of the software population pyra-
mid and compared them. To classify the shape of these
pyramids, we proposed two new measures, CCR and
NCR. CCR is the proportion of the number of non-
coding to the number of coding contributors, and NCR
is the proportion of the number of experienced contribu-

tors to the number of newcomers. Using these measures,
we classified 86 software population pyramids into four
types as follows.

• Type A: There are more newcomers than experi-
enced contributors, and more coding contributors
than non-coding ones in a project.

• Type B: There are more newcomers than experi-
enced contributors, and more non-coding contribu-
tors than coding ones in a project.

• Type C: There are more experienced contributors
than newcomers, and more coding contributors than
non-coding ones in a project.

• Type D: There are more experienced contributors
than newcomers, and more non-coding contributors
than coding ones in a project.

There were 23 projects categorized as Type A, 42
projects as Type B, 18 projects as Type C, and three
projects as Type D. The result indicates that, for
projects in Type A and Type B, contributors do not stay
long time in their projects after their contributions. For
projects of Type C and Type D, they can not get enough
newcomers; thus, they should consider how to recruit
newcomers. So, those projects should consider how to
get newcomers. Especially, Type C projects should at-
tract non-coding newcomers, e.g. who post many issues,
so that some of them might become coding newcomers
as well.

1314
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.5 MAY 2016

Through empirical research, we found that the
shapes and the transitions of software population pyra-
mids vary depending on the status of the development
communities. However, it is difficult to clarify the com-
ponents of the contributor population of OSS projects
using only these values. Other, new metrics are needed
to clarify contributors’ components in OSS projects. For
example, the number of activities or frequency of activi-
ties should be considered.

The demographic approach of population projection
is a powerful way to predict future population dynam-
ics. In this study, we projected the number of con-
tributors of September 2013 using the simplified cohort
component population projection that calculates the sur-
vival rate from the number of contributors of March and
June 2013. In order to verify the projection accuracy of
our proposed method, we compare it with the baseline
method, which assumes that the number of contribu-
tors of September and June 2013 are the same. To sta-
tistically compare the projection accuracy, we used the
Wilcoxon non-parametric statistical hypothesis test. As
a result, the projection accuracy of our proposed method
was higher than the baseline method. However, this
projection method cannot predict long-term contribu-
tion patterns because it does not predict newcomers in
a narrow sense. Therefore, our future work includes im-
proving the accuracy of these predictions and expanding
the prediction to account for newcomers and to extend
predictions into the long-term future. We believe this
perspective is also important for OSS projects to man-
age sustainable development communities.

Acknowledgments

This work has been supported by JSPS KAKENHI
Grant Number 26540029 and Program for Advanc-
ing Strategic International Networks to Accelerate the
Circulation of Talented Researchers: Interdisciplinary
Global Networks for Accelerating Theory and Practice
in Software Ecosystem.

References

[1] C. Brindescu, M. Codoban, S. Shmarkatiuk, and D. Dig,
“How do centralized and distributed version control systems
impact software changes?,” Proc. of 36th Int. Conf. on Softw.
Eng., ICSE 2014, New York, NY, USA, pp.322–333, ACM,
2014.

[2] K. Muşlu, C. Bird, N. Nagappan, and J. Czerwonka, “Transi-
tion from centralized to decentralized version control systems:
A case study on reasons, barriers, and outcomes,” Proc. of
36th Int. Conf. on Softw. Eng., ICSE 2014, New York, NY,
USA, pp.334–344, ACM, 2014.

[3] G. Gousios, M. Pinzger, and A.v. Deursen, “An exploratory
study of the pull-based software development model,” Proc.
of 36th Int. Conf. on Softw. Eng., ICSE 2014, New York, NY,
USA, pp.345–355, ACM, 2014.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social cod-
ing in github: Transparency and collaboration in an open
software repository,” Proc. of 2012 ACM Conf. on Comput.
Supported Cooperative Work, CSCW ’12, New York, NY,
USA, pp.1277–1286, ACM, 2012.

[5] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M.

German, and D. Damian, “The promises and perils of mining
github,” Proc. of 11th Work. Conf. on Mining Softw. Repos-
itories, MSR ’14, New York, NY, USA, pp.92–101, ACM,
2014.

[6] K. Yamashita, S. McIntosh, Y. Kamei, and N. Ubayashi,
“Magnet or sticky? an oss project-by-project typology,”
Proc. of 11th Work. Conf. on Mining Softw. Repositories,
MSR ’14, New York, NY, USA, pp.344–347, ACM, 2014.

[7] R.P.L. Buse and T. Zimmermann, “Information needs for
software development analytics,” Proc. of 34th Int. Conf. on
Softw. Eng., ICSE ’12, Piscataway, NJ, USA, pp.987–996,
IEEE Press, 2012.

[8] A. Haupt, T. Kane, and C. Haub, PRB’s Population Hand-
book 6th ed., Population Reference Bureau, 2011.

[9] S. Pennec, APPSIM-Cohort component population projec-
tions to validate and align the dynamic microsimulation
model APPSIM, National Centre for Social and Economic
Modelling, 2009.

[10] S. Onoue, H. Hata, and K. Matsumoto, “Software population
pyramids: The current and the future of oss development
communities,” Proc. of 8th ACM/IEEE Int. Symp. on Em-
pirical Softw. Eng. and Measurement, ESEM ’14, New York,
NY, USA, pp.34:1–34:4, ACM, 2014.

[11] E. Raymond, The cathedral and the bazaar : musings on
linux and open source by an accidental revolutionary, ”
O’Reilly Media, Inc.”, Sebastapol, CA, O’ Reilly Media, Oct.
1990.

[12] M. Zhou and A. Mockus, “Does the initial environment im-
pact the future of developers?,” Proc. of 33rd Int. Conf. on
Softw. Eng., ICSE ’11, New York, NY, USA, pp.271–280,
ACM, 2011.

[13] G. Gousios, “The ghtorent dataset and tool suite,” Proc. of
10th Work. Conf. on Mining Softw. Repositories, MSR ’13,
Piscataway, NJ, USA, pp.233–236, IEEE Press, 2013.

[14] S. Onoue, H. Hata, and K.I. Matsumoto, “A study of the
characteristics of developers’ activities in github,” Proc. of
5th Int. Workshop on Empirical Softw. Eng. in Practice,
IWESEP ’13, pp.7–12, Dec 2013.

[15] A.M. Isserman, The Right People, the Right Rates, Journal
of the American Planning Association 59.1, 1993.

[16] J.C. Raymondo, Survival Rates: Census and Life Table
Methods, Population Estimation and Projection, Quorum
Books, New York, 1992.

[17] S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engi-
neering Metrics and Models, Benjamin-Cummings Publish-
ing Co., Inc., Redwood City, CA, USA, 1986.

[18] B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd,
“What accuracy statistics really measure [software estima-
tion],” Software, IEE Proceedings -, vol.148, no.3, pp.81–85,
Jun 2001.

[19] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Ro-
bust regression for developing software estimation models,”
J. Syst. Softw., vol.27, no.1, pp.3–16, Oct. 1994.

[20] B. Vasilescu, “Human aspects, gamification, and social me-
dia in collaborative software engineering,” Companion Pro-
ceedings of the 36th International Conference on Software
Engineering, ICSE Companion 2014, New York, NY, USA,
pp.646–649, ACM, 2014.

[21] S. Phillips, T. Zimmermann, and C. Bird, “Understanding
and improving software build teams,” Proceedings of the
36th International Conference on Software Engineering, ICSE
2014, New York, NY, USA, pp.735–744, ACM, 2014.

[22] P. Ralph and P. Kelly, “The dimensions of software engineer-
ing success,” Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE 2014, New York, NY,
USA, pp.24–35, ACM, 2014.

[23] I. Steinmacher, I.S. Wiese, T. Conte, Gerosa, and
M. Aurélio, “Why do newcomers abandon open source soft-
ware projects?,” Proc. of 6th Int. Workshop on Cooperative
and Human Aspects of Softw. Eng., CHASE ’13, pp.25–32,
May 2013.

ONOUE et al.: INVESTIGATING AND PROJECTING POPULATION STRUCTURES IN OSS PROJECTS
1315

[24] A. Rastogi and A. Sureka, “What community contribution
pattern says about stability of software project?,” Software
Engineering Conference (APSEC), 2014 21st Asia-Pacific,
pp.31–34, Dec 2014.

[25] P. Loyola and I. Ko, “Population Dynamics in Open Source
Communities: An Ecological Approach Applied to Github,”
Proceedings of the 23rd International Conference on World
Wide Web, WWW ’14 Companion, pp.993–998, April 2014.

[26] M. Zhou and A. Mockus, “What make long term contribu-
tors: Willingness and opportunity in oss community,” Proc.
of 34th Int. Conf. on Softw. Eng., ICSE ’12, Piscataway, NJ,
USA, pp.518–528, IEEE Press, 2012.

[27] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swami-
nathan, “Mining email social networks,” Proc. of 3rd Int.
Workshop on Mining Softw. Repositories, MSR ’06, New
York, NY, USA, pp.137–143, ACM, 2006.

[28] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. De-
vanbu, “Latent social structure in open source projects,”
Proc. of 16th ACM SIGSOFT Int. Symp. on Found. of Softw.
Eng., SIGSOFT ’08/FSE-16, New York, NY, USA, pp.24–35,
ACM, 2008.

[29] H. Hata, T. Todo, S. Onoue, and K. Matsumoto, “Character-
istics of sustainable oss projects: A theoretical and empirical
study,” Proc. of 8th Int. Workshop on Cooperative and Hu-
man Aspects of Softw. Eng., pp.15–21, 5 2015.

Appendix A: The method for obtaining data

In this appendix, we show the method for obtaining data.
We obtained the dates of development activities for each
contributor, and identified the contribution period from
the first activity to the last activity. Figure A· 1 shows
an example of the data of commit comments. This is a
record for one of the commit comment. It has dates such
as “created at” and “updated at”. We identify the con-
tribution period of contributors from those dates. Con-
tribution periods are divided into coding periods and
non-coding periods based on the classification of the
activities as shown in Table 1.

Saya Onoue received a BE degree in
information science from the Nara Women’s
University in 2013, and she received an ME
degree in information engineering from the
Nara Institute of Science and Technology
(NAIST) in 2015. She is currently a Ph.D
student at NAIST. Her research interest is
activity of contributors in OSS projects.

Hideaki Hata received a PhD de-
gree in information science and technol-
ogy from Osaka University in 2012. He is
now an assistant professor at Nara Institute
of Science and Technology. His research
interests include software analytics, soft-
ware economics, and human-software inter-
action. He is a member of the IPSJ, JSSST,
IEEE, and ACM.

{

 "html_url": "https://github.com/octocat/...",

 "url": "https://api.github.com/repos/octocat/...",

 "id": 1,

 "body": "Great stuff",

 "path": "file1.txt",

 "position": 4,

 "line": 14,

 "commit_id": "6dcb09b5b57875f334f61aebed6...",

 "user": {

 "login": "octocat",

 "id": 1,

 "avatar_url": "https://github.com/images/...",

 "html_url": "https://github.com/octocat",

 .

 .

 .

 "events_url": "https://api.github.com/users/...",

 "received_events_url": "https://api.github.com/...",

 "type": "User",

 "site_admin": false

 },

 "created_at": "2011-04-14T16:00:49Z",

 "updated_at": "2011-04-14T16:00:49Z"

}

Fig.A· 1 An examples of commit comments data.

Akito Monden received a BE degree in
1994 in electrical engineering from Nagoya
University and ME and DE degrees in 1996
and 1998 in information science from the
Nara Institute of Science and Technology.
He is currently a professor at Okayama Uni-
versity. He was an honorary research fellow
at the University of Auckland (2003-2004).
He is a member of the IEEE, ACM, and
IEICE,

Kenichi Matsumoto received a PhD
degree in information and computer sci-
ences from Osaka University. He is a pro-
fessor in the Graduate School of Informa-
tion Science at the Nara Institute of Sci-
ence and Technology. His research interests
include software measurement and software
process. He is a senior member of the IEEE,
and a member of the ACM, the IEICE, and
the IPSJ.

