
A Hosting Service of Multi-Language Historage
Repositories

Kyohei Uemura∗, Yusuke Saito∗, Shin Fujiwara∗, Daiki Tanaka∗, Kenji Fujiwara†, Hajimu Iida∗, Kenichi Matsumoto∗
∗ Nara Institute of Science and Technology

Ikoma, Nara 630–0192
Email: {uemura.kyohei.ub9@is, saito.yusuke.sl9@is, fujiwara.shin.fe5@is,tanaka.daiki.sx4@is

hata@is, iida@itc, matumoto@is }.naist.jp
† National Institute of Technology, Toyota College

Toyota, Aichi 471–8525
Email: fujiwara@toyota-ct.ac.jp

Abstract—In the research of Mining Software Repositories,
source code repositories are one of the core sources since it
contains the product and the process of software development.
A source code repository stores the versions of files and makes
it possible to browse the histories of files, such as modification
dates, authors, messages, so on. Although such rich information
of file histories is easily available, extracting the histories of meth-
ods/functions, which are elements of source code files, is not easy
from general code repositories. To tackle this difficulty, we have
developed Historage, a fine-grained version control system.
Historage repository is a Git repository, which is built upon an
original Git repository. Therefore, similar mining techniques for
general Git repositories are applicable to Historage repositories.
We also have developed Kataribe, a hosting service of Historage
repositories, which contains hundreds of Historage repositories
constructed from repositories in GitHub, which are written in
C#, Java, Python and Ruby. The list of all Historage and original
repositories are available at http://kataribe.naist.jp/public. With
this dataset, we will promote in-depth and fine-grained software
evolution research with diversity of programming languages.

I. INTRODUCTION

Mining source code repositories tell us not only how soft-
ware had been developed but also how we are ablet to develop
software more rapidly and efficiency. For example, by mining
history of source code changes, we can predict the location of
the bugs [12], [18], [31], analyze source code evolution [4],
[27], automatically generate patches of the bugs [16], [21], and
so on. Modern topics of MSR have combined various sources
such as bug reports [6], [24], crash reports [5], [17], [29], and
energy consumptions [13], [22].

Since empirical studies rely largely on data, furthering rich
data should deepen the Mining Software Repositories (MSR)
research. Analysis of the histories of methods or functions,
which is called as fine-grained histories, is one of the expected
further research. However, it is not easy to collect fine-grained
entity histories from usual code repositories. Several tools
have been proposed and used in research [2], [9], [28], [32].
However, Previous tools have limitations, that is, selective
(not entire) versions and/or limited rename identification. We
have addressed these problems by proposing Historage,
fine-grained source code repositories [10]. The key idea of

Historage is using Git, one of the version control systems,
as a storage of fine-grained entity histories. Since Historage
repositories are also Git repositories, method histories can
be obtained by similar procedures used for file histories. In
addition, entire histories are stored, and renames are identified
similarly to file-level code repositories. For the MSR commu-
nity, we have provided Historage repositories of Java projects
[7].

As pointed out by Nagappan et al., one of the goals of
software engineering research is to achieve generality [20].
Since the previous version of Kataribe provided only Java
repositories, it was not viable to perform MSR research with
wide diversity. To support diversity in MSR research, we will
provide 583 of Historage repositories written in C#, Java,
Python and Ruby, by extending the previous Kataribe [7]. The
following two points are the criteria we focus on for selecting
the languages to be newly supported in Kataribe. First, the
language is object oriented. Second, there are an adequate
number of repositories written in that languages registered on
Github. We selected Python, and Ruby not only because they
are widely used, but also they are script languages, which
are different from Java. In addition, since C# is a compiled
language like Java, it is also selected as one of the newly
supported languages in Kataribe.

II. BACKGROUND ON WHERE THE DATA CAME FROM

We collected (file-level) Git repositories from the Github1.
The selected projects are mainly written in C#, Java, Python
or Ruby. The current project collection procedure for each
language as follow.

1) Search projects that have been forked at least once and
stared from more than 300 users, from
https://github.com/search/advanced.
There are 265, 1,343, 1461, and 1,314 projects for C#,
Java, Python, and Ruby respectively. Currently, we chose
top 100 projects of sort-result by Most Stars and top 100
projects of sort-result by MostForks, for each language.

1https://github.com



2) Add trending projects (25 projects for each) from
https://github.com/trending.

3) Remove projects that have less than 30 commits or only
one developer contributed to the project.

III. HISTORAGE: WHAT TYPES OF DATA THE DATASET
CONTAINS

We then convert file-level Git repositories to Historage
repositories with a tool, Kenja2. Kenja constructs a directory
structure for the Historage based on the result of syntactic
analysis of all source code files in each commit. The original
version of the Historage proposed by Hata et al. keeps all
original files in the file-level repository [10]. However, the
Historage repository made by Kenja does not store original
files to save the building time. Thus, each commit of the
converted Historage repository has a link to the original
commit, which makes it possible to recover the original file
histories. We provide the link by using git notes, which
is a feature of Git.

Figure 1(b) shows an example of directory structure con-
verted by Kenja from the original structure shown in Figure
1(a). Kenja creates directories that correspond to original
source code files under the root of the converted repository.
Names of these directories are determined from the paths
of original source code files. Each top directories in the
converted repository contain syntactic information of original
Java file. For example, information of the classes is stored
under the [CN] directory. If a class extends another class,
the corresponding directory will include a file named as
extend which contains the name of the extended class. For
each directory corresponding to the class, information of the
methods is stored under the [MT] directory, information of the
constructor of the class is stored under the [CS] directory and
information of the fields is stored under the [FE] directory.

C# Support: In order to support C# on Kenja, we adopted
the Roslyn3 a .NET compiler platform provided by Microsoft
for parsing C# source code. Since the grammar and concept of
C# are similar to Java, Kenja creates same directory structure
from C# code. Compared with other languages, C# has a
unique specification called as a partial class. In C# language,
a developer can write a definition of a specific class into
the separated files. Since Kenja constructs a structure of the
directory that represents fine-grained entities per source code
file, definitions of the partial class will be stored in the multiple
directories. Thus, a researcher who mines C# repository should
have in mind that limitation of Historage.

Python Support: The standard library of Python contains
the ast package that allows us to access abstract syntax tree of
the Python code. Kenja uses that packages to parse a Python
script file and construct a directory structure for Historage.
Unlike Java and C#, Python is a kind of dynamic programming
language, and it allows writing statements in the top-level
of the file. To represent this characteristic of Python into

2http://github.com/niyaton/kenja
3https://github.com/dotnet/roslyn

�

�

�

�

/

foo/

bar/

HistorageConverter.java

Parser.java

(a) Original structure'

&

$

%

/

foo_bar_HistorageConverter.java/

package

[CN]/ # directory for classes

HistorageConverter/

extend

[MT]/ # directory for methods

convert(Parser)/

body

parameter

foo_bar_Parser.java/

package

[CN]/ # directory for classes

...

(b) Converted structure

Fig. 1. Directory structure converted by Kenja for Java source files

the Historage, Kenja creates top-level-statements file
that contains statements on the top-level of the file. In other
words, all statements without a declaration of the classes and
functions will be stored in this file.

Ruby Support: In order to support Ruby on Kenja, we
adopt a parser library its name is also Parser4. Same as Python,
programmers can write statements on the top-level of the file,
Kenja also creates a top-level-statements file for each Ruby
script file as we mentioned before.

IV. KATARIBE: HOSTING SERVICE OF HISTORAGE
REPOSITORIES

A. How to make the dataset easily accessible

We have developed Kataribe, a hosting service of Historage
repositories [7]. However, in our previous paper, Kataribe
hosted only Java repositories, we expanded it to host other
repositories too, which are C#, Python and Ruby repositories.
Kataribe uses Gitlab, which is a well-known OSS for hosting
Git repositories. Users can get Historage repositories from
Kataribe without registration. Registration at Kataribe enables
users to browse Historage repositories on the web. Gitlab
enables users to see logs and graphical statics of repositories.

Features of Kataribe include importing existing Git reposi-
tories that are provided on Git hosting services such as Github,
and also constructing Historage repositories incrementally.
Since a Historage repository created by Kenja is separated
from the original repositories, users of Kataribe can continue
their development regardless of their Historage repositories.
When developer pushes her/his commits into their original

4https://github.com/whitequark/parser



TABLE I
DETAIL OF THE DATA

Language Number of Projects Calculation Method Number of Files Number of Commits Number of Authors

C# 165
Min 26 40 2
Max 10,288 11,333 859
Average 549.76 719.58 29.27

Java 186
Min 35 49 3
Max 45,049 159,324 2,339
Average 1,673.60 5,449.10 148.70

Python 151
Min 23 46 2
Max 74,529 148,304 3421
Average 1,461.91 5,216.95 190.88

Ruby 81
Min 24 82 7
Max 9,828 49,993 5,818
Average 975.62 5,210.77 309.47

1

10

100

1000

10000

100000

1 10 100 1000 10000

N
um

be
r

of
M

et
ho

d

Number of Class

C_sharp

Java

Python

Ruby

Fig. 2. Scatterplot: Number of class and method

repositories, Kataribe automatically converts pushed commits
into the corresponding Historage repositories. These features
allow researchers to get latest fine-grained histories when they
want to start their new research.

B. Detail of hosting repositories by Kataribe

Table I shows details of projects which are selected by the
procedure described in Section II and they are available in
Kataribe. Kataribe provides 583 projects in total. Figure 2
shows the relationship between the number of classes and the
number of methods for all investigated projects, which are
written in different languages.

C. Where the data set currently is

The followings are Kataribe web cite and its support page:

http : //kataribe.naist.jp/public

http : //sdlab.naist.jp/kataribe/

D. How the data can be obtained

Since Historage repositories are Git repositories, users can
easily obtain Historage repositories by cloning from Kataribe.
To analyze the histories of methods or functions, git commands
like git log can be available. For example, the history of

method including renaming can be obtained with the following
Git command:
git log --name-status -M <path of a method body file>

E. Any challenges in obtaining the data

Since Historage repositories retain the same commit infor-
mation in original Git repositories, it is easy to link method
histories with other sources like bug reports, crash reports, and
code reviews. We recommend users to do some linking, and
work with repositories written with different languages and
sizes.

V. EXAMPLES OF ANALYSIS WITH KATARIBE AND
HISTORAGES

In this section, we introduce several examples of analysis
with Kataribe and Historages. First, we analyzed transition of
the project scale based on the number of the classes and the
number of the methods in section V-A. Secondly, we analyze
code clone at method-level in section V-B.

A. Analysis of Fine-Grained Project Scales

In Historage, the structure of source code is represented as
directories structure. Even though each programming language
has its own characteristics, it introduces no difference when the



TABLE II
DETAIL OF TARGET PROJECT

Repository Name Language #Commit
Nrefactory C# 4,380
druid Java 4,469
CouchPotatoServer Python 4,869
redcar Ruby 4,849

TABLE III
RESULT OF DETECIT METHOD LEVEL CODE CLONES

Project Name Language #Class #Method #Similar Method
libopenmetaverse C# 2,596 7,817 518
storm Java 1,392 8,056 525
nupic Python 1,021 7,660 235
ruby Ruby 732 7,557 314

structure of methods and classes is interpreted as a directory
structure. Therefore, with this directory representation, anal-
ysis on classes and methods can be performed independently
from the written language. For example, the number of classes
can be known by counting the directories within the directory
named as [CN]. Similarly, the number of methods can be
retrieved by counting the directories within the directory
named as [MT]. In addition, since Historage applies git for
version management, changes within each commit can be
conveniently investigated as well.

From here, we present the result from an investigation
that we actually conducted by using Historage provided in
Kataribe. Table II shows the four selected projects for our
investigation. They are intentionally chosen because they have
similar number of commits and are respectively written in four
languages. Figure 3 shows the relative transitions between the
number of classes and the number of methods for the projects.
In general, the number of classes and the number of methods
within each project change simultaneously, and neither of the
number reflects any unilaterally large fluctuation. In addition,
beside druid, sudden changes in terms of the number of classes
and the number of the methods can be observed in the other
three projects. It can be due to the possibility that large number
of functions are added/deleted, or the source code was re-
organized by refactoring.

As indicated by this analysis, Kataribe can be used for
performing fine-grained analysis or visualization on source
code at class or method level. Besides, since 583 projects from
four major programming languages are available in Kataribe,
investigating the respective characteristics of each language is
considered to be possible.

B. Analysis of Similar Methods

In Historage, every method directory contains a body file
that describes the contents of method in plain text. Therefore,
by detecting code clones from such body file, we can per-
form investigations on code clones at method level. In this
subsection, we present how we detect similar methods by
using CCFinderX, which the most commonly used code clone
detection tool.

0

500

1000

1500

0

2000

4000

6000

8000

10000

N
u
m

be
r

of
C

la
ss

N
u
m

be
r

of
M

et
ho

d

Nrefactory (C# Project) Method Class

(a) Nrefactory

0

500

1000

1500

2000

2500

3000

0

5000

10000

15000

20000

N
um

b
er

 o
f 

C
la

ss

N
um

b
er

 o
f 

M
et

oh
d

druid (Java Project) Method Class

(b) druid

0

500

1000

1500

2000

2500

3000

0

5000

10000

15000

N
um

be
r 

of
 C

la
ss

N
um

be
r 

of
 M

et
ho

d

CouchPotatoServer (Python Project) Method Class

(c) CouchPotatoServer

0

50

100

150

200

0

200

400

600

800

1000

1200

N
u`

m
be

r 
of

 C
la

ss

N
um

be
r 

ot
 M

et
ho

d

redcar (Ruby Project)
Method Class

(d) redcar

Fig. 3. Transition of Number of Class and Method

CCFinderX can detect code clone in source code which is
written in C++, java, C#, or COBOL. In addition, it can detect
clone from plane text file as well. For detecting the code clone
from body file in Historage, we set the detecting mode to target
the type of plain text file. From the detection result, we can
identify similar methods by extracting the group of body files
with high RSA values, which indicate the ratios of code clones
occupying the body files.

We performed out test case of detecting similar methods
on four purposely selected projects. The chosen projects have
similar number of methods and they are respectively written
in four different languages. The threshold of RSA for clone
detection is set to be 0.8. The detection result and the scatter
plot of code clone for each project are respectively shown in
Table III and Figure 4. Within the scatter plot, the black dots
represents the location of similar method. The vertical axis
and the horizontal axis refer to the number of lines in the
source code, while the gray line indicates the border lin of
the file. According to the result, projects of JAVA or C# have
relatively more similar methods, compared to those written in
Python and Ruby. Furthermore, for the projects written Java



List 1. Sample of Similar Method
1 def mapParamFromPythonToC(self, paramName):

2 ’\n Map Python object values to
equivalent enumerated C values.\n ’

3 if (paramName == ’boundaryMode’):

4 if (self. boundaryMode == ’constrained’):

5 enumValue = 0

6 elif (self. boundaryMode == ’sweepOff’):

7 enumValue = 1

8 return self. convertEnumValue(enumValue)

9 elif (paramName == ’phaseMode’):

10 if (self. phaseMode == ’single’):

11 enumValue = 0

12 elif (self. phaseMode == ’dual’):

13 enumValue = 1

14 return self. convertEnumValue(enumValue)

15 elif (paramName == ’normalizationMethod’):

16 if (self. normalizationMethod == ’fixed’):

17 enumValue = 0

18 elif (self. normalizationMethod == ’max’):

19 enumValue = 1

20 elif (self. normalizationMethod == ’mean’):

21 enumValue = 2

22 return self. convertEnumValue(enumValue)

23 elif (paramName == ’perPlaneNormalization’):

24 if (not self. perPlaneNormalization):

25 enumValue = 0
26 else:

27 enumValue = 1

28 return self. convertEnumValue(enumValue)

29 elif (paramName == ’perPhaseNormalization’):

30 if (not self. perPhaseNormalization):

31 enumValue = 0
32 else:

33 enumValue = 1

34 return self. convertEnumValue(enumValue)

35 elif (paramName == ’postProcessingMethod’):

36 if (self. postProcessingMethod == ’raw’):

37 enumValue = 0

38 elif (self. postProcessingMethod == ’sigmoid’):

39 enumValue = 1

40 elif (self. postProcessingMethod == ’threshold’):

41 enumValue = 2

42 return self. convertEnumValue(enumValue)
43 else:

44 assert False

or C#, the similar methods tend to exist closely together. List
1 shows a sample of similar method which was detected. The
method which is named as mapParamFromPythonToC exists
both in GaborNode2.py and Convolution.py from the nupic
project which is written in Python.

We consider that the detected similar methods can be
regarded as the candidates for refactoring.

VI. A SAMPLE LIST OF WAYS THAT THE DATA COULD BE
USED

Here are some ideas of research using our method/function
level datasets, and some related work on file-level studies.

Quality:
Investigate quality of methods and its histories. Re-
lated studies: Code ownership and software quality
[8]. Dormant bugs [3].

Human Aspects:
Analyze developers’ behaviors. Related studies: The
intent of changes [19].

Process:
Identify the relation between method evolution and
code review or test. Related studies: Modern code

(a) libopenmetaverse (b) storm

(c) nupic (d) ruby

Fig. 4. Scatterplots of Method Level - Code Clone

review practices in defective and clean files [26]. Co-
evolution of infrastructure and source code files [14].
Patterns of changes [23].

VII. ANY RESEARCH THAT HAS USED THE DATASET UP TO
THIS POINT

The followings are studies that used Historage repositories
and Kataribe service.

Hata et al. collected method-level historical metrics, and
realized method-level defect prediction with them [12]. The
collected method-level metrics include churn, the number of
changes, ages, logical coupling, process complexity, owner-
ship, and so on.

Tantithamthavorn et al. conducted information retrieval
(IR)-based bug localization at method level [25]. They dis-
cussed the impact of granularity levels on IR-based bug
localization between method level and class level.

Yuzuki et al. conducted an empirical study of method-level
conflict resolution [30]. They reported the statistics of patterns
in conflicts and conflict resolutions from 10 OSS projects
written in Java.

Hata et al. proposed a technique to identify logical structural
changes [11]. Using Historage repositories, it can provide the
summary of changes including modify, rename, hide, unhide,
and move to methods, classes, and packages for every commit.

Kashiwabara et al. proposed a technique to recommend can-
didate of verbs for method names so that developers can use
various verbs consistently. They evaluated their proposal with
actual method renaming extracted from Historage repositories
[15].



The Fujiwara et al. proposed high-speed and highl-precise
refactoring detection technique using Historage [1]. Based on
this technique, an implemented tool named as Kenja is able to
detect two ”Extract Method” and of ”Pull Up Method”. Not
only as a tool to construct Historage, Kenja is able to detect
refactoring in any existing Historages as well.

VIII. CONCLUSION

In this study, based on our precedent works on Histor-
age which is the fine-grained git-repository and its hosting
service, Kataribe, we expand the usage by supporting more
languages. Currently, Historage is compatible with C#, JAVA,
Python and Ruby. As such, a total of 583 repositories from
these four languages are presented in Kataribe. By using the
Historage provided in Kataribe, it is possible to perform fine-
grained analysis on source code. Such analysis can be carried
out by applying the same techniques used in git repository
analysis from traditional MSR research. As an example of
demonstrating how analysis on Historage can be conducted,
we investigated the relative transitions between the number of
methods and the number of classes on four projects from four
different languages. Furthermore, another example we showed
is investigating similar methods by applying code clone de-
tection technique. Among all the conducted investigations in
this study, we selected only one project from each language.
We consider that by performing further investigations on
more subjects, we can analyze the differences among the
characteristics of each language.

Kataribe is a scalable data source. As GitHub grows,
Kataribe will also grow. This allows MSR researchers to
conduct their studies with latest datasets. Kenja, a tool to create
Historage, is publicly available. Therefore, it is possible for
users to prepare other Historage repositories by themselves.
In addition, supporting other languages is also possible. We
are welcome to any contributions that can expand our datasets.

IX. ACKNOWLEDGMENTS

This work has been supported by JSPS KAKENHI Grant
Number 16H05857 and Program for Advancing Strategic In-
ternational Networks to Accelerate the Circulation of Talented
Researchers: Interdisciplinary Global Networks for Accelerat-
ing Theory and Practice in Software Ecosystem.

The first author would like to thank Chan Kar Long for his
corrections.

REFERENCES

[1] K. Fujiwara,N. Yoshida,H. Iida. An Approach for Fine-grained Detection
of Refactoring Instances using Repository with Syntactic Information(in
Japanese). IPSJ Journal,volume 56, number 12, pages 2346-2357
December 2015.

[2] J. Bevan, E. J. Whitehead, Jr., S. Kim, and M. Godfrey. Facilitating
software evolution research with kenyon. ESEC/FSE-13, pages 177–
186, 2005.

[3] T.-H. Chen, M. Nagappan, E. Shihab, and A. E. Hassan. An empirical
study of dormant bugs. MSR ’14, pages 82–91, 2014.

[4] J. Davies, D. M. German, M. W. Godfrey, and A. Hindle. Software
bertillonage. Empirical Softw. Eng., 18(6):1195–1237, Dec. 2013.

[5] T. Dhaliwal, F. Khomh, and Y. Zou. Classifying field crash reports for
fixing bugs: A case study of mozilla firefox. ICSM ’11, pages 333–342,
2011.

[6] M. Erfani Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for me!
characterizing non-reproducible bug reports. MSR ’14, pages 62–71,
2014.

[7] K. Fujiwara, H. Hata, E. Makihara, Y. Fujihara, N. Nakayama, H. Iida,
and K. Matsumoto. Kataribe: A hosting service of historage repositories.
MSR ’14, pages 380–383, 2014.

[8] M. Greiler, K. Herzig, and J. Czerwonka. Code ownership and software
quality: A replication study. MSR ’15, pages 2–12. IEEE, May 2015.

[9] A. E. Hassan and R. C. Holt. C-REX: An evolutionary code extractor
for C. CSER meeting, Montreal, Canada, 2004.

[10] H. Hata, O. Mizuno, and T. Kikuno. Historage: Fine-grained version
control system for Java. IWPSE-EVOL ’11, pages 96–100, 2011.

[11] H. Hata, O. Mizuno, and T. Kikuno. Inferring restructuring operations
on logical structure of Java source code. IWESEP ’11, pages 17–22,
2011.

[12] H. Hata, O. Mizuno, and T. Kikuno. Bug prediction based on fine-
grained module histories. ICSE ’12, pages 200–210, 2012.

[13] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky. Greenminer: A hardware based mining software
repositories software energy consumption framework. MSR ’14 pages
12–21, 2014.

[14] Y. Jiang and B. Adams. Co-evolution of infrastructure and source code
– an empirical study. MSR ’15, pages 45–55, 2015.

[15] Y. Kashiwabara, T. Ishio, H. Hata, and K. Inoue. Method verb recom-
mendation using association rule mining in a set of existing projects.
IEICE Transactions on Information and Systems, E98-D(3):627–636, 3
2015.

[16] D. Kim, J. Nam, J. Song, and S. Kim. Automatic patch generation
learned from human-written patches. ICSE ’13, pages 802–811, 2013.

[17] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung, and S. Park. Which
crashes should i fix first?: Predicting top crashes at an early stage to
prioritize debugging efforts. IEEE Trans. Softw. Eng., 37(3):430–447,
May 2011.

[18] S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software
changes: Clean or buggy? IEEE Trans. Softw. Eng., 34:181–196, March
2008.

[19] A. Mauczka, F. Brosch, C. Schanes, and T. Grechenig. Dataset of
developer-labeled commit messages. MSR ’15, pages 490–493, 2015.

[20] M. Nagappan, T. Zimmermann, and C. Bird. Diversity in software
engineering research. ESEC/FSE 2013, pages 466–476, 2013.

[21] F. S. Ocariza Jr., K. Pattabiraman, and A. Mesbah. Vejovis: Suggesting
fixes for javascript faults. ICSE 2014, pages 837–847, 2014.

[22] G. Pinto, F. Castor, and Y. D. Liu. Mining questions about software
energy consumption. MSR ’14, pages 22–31, 2014.

[23] B. Ray, M. Nagappan, C. Bird, N. Nagappan, and T. Zimmermann. The
uniqueness of changes: Characteristics and applications. MSR ’15, pages
34–44. 2015.

[24] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why so
complicated? simple term filtering and weighting for location-based bug
report assignment recommendation. MSR ’13, pages 2–11, 2013.

[25] C. Tantithamthavorn, A. Ihara, H. Hata, and K. Matsumoto. Impact
analysis of granularity levels on feature location technique. APRES
’14, pages 135–149, 2014.

[26] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida. Investigating
code review practices in defective files: An empirical study of the qt
system. MSR ’15, pages 168–179, 2015.

[27] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta. An
empirical study on the maintenance of source code clones. Empirical
Softw. Eng., 15(1):1–34, Feb. 2010.

[28] Q. Tu and M. W. Godfrey. An integrated approach for studying
architectural evolution. IWPC ’02, pages 127–136, 2002.

[29] S. Wang, F. Khomh, and Y. Zou. Improving bug management using
correlations in crash reports. Empirical Softw. Eng., pages 1–31, 2014.

[30] R. Yuzuki, H. Hata, and K. Matsumoto. How we resolve conflict: an
empirical study of method-level conflict resolution. SWAN ’15, pages
21–24, 2015.

[31] F. Zhang, A. Mockus, I. Keivanloo, and Y. Zou. Towards building a
universal defect prediction model. MSR 2014, pages 182–191, 2014.

[32] T. Zimmermann. Fine-grained processing of CVS archives with APFEL.
eclipse ’06, pages 16–20, 2006.


