
The Impact of Mislabelling on the Performance and

Interpretation of Defect Prediction Models

Chakkrit Tantithamthavorn†, Shane McIntosh‡, Ahmed E. Hassan‡, Akinori Ihara†, Kenichi Matsumoto†

†Graduate School of Information Science, Nara Institute of Science and Technology, Japan.

{chakkrit-t,akinori-i,matumoto}@is.naist.jp
‡School of Computing, Queen’s University, Canada.

{mcintosh,ahmed}@cs.queensu.ca

Abstract—The reliability of a prediction model depends on
the quality of the data from which it was trained. Therefore,
defect prediction models may be unreliable if they are trained
using noisy data. Recent research suggests that randomly-injected
noise that changes the classification (label) of software modules
from defective to clean (and vice versa) can impact the perfor-
mance of defect models. Yet, in reality, incorrectly labelled (i.e.,
mislabelled) issue reports are likely non-random. In this paper,
we study whether mislabelling is random, and the impact that
realistic mislabelling has on the performance and interpretation
of defect models. Through a case study of 3,931 manually-curated
issue reports from the Apache Jackrabbit and Lucene systems, we
find that: (1) issue report mislabelling is not random; (2) precision
is rarely impacted by mislabelled issue reports, suggesting that
practitioners can rely on the accuracy of modules labelled as
defective by models that are trained using noisy data; (3) however,
models trained on noisy data typically achieve 56%-68% of the
recall of models trained on clean data; and (4) only the metrics in
top influence rank of our defect models are robust to the noise
introduced by mislabelling, suggesting that the less influential
metrics of models that are trained on noisy data should not be
interpreted or used to make decisions.

I. INTRODUCTION

Defect models, which identify defect-prone software mod-

ules using a variety of software metrics [15, 39, 45], serve

two main purposes. First, defect models can be used to predict

[1, 11, 17, 27, 33, 34, 36, 42, 51] modules that are likely to

be defect-prone. Software Quality Assurance (SQA) teams can

use defect models in a prediction setting to effectively allocate

their limited resources to the modules that are most likely to

be defective. Second, defect models can be used to understand

[10, 30, 32, 33, 46, 47] the impact that various software metrics

have on the defect-proneness of a module. The insights derived

from defect models can help software teams to avoid pitfalls

that have often led to defective software modules in the past.

The accuracy of the predictions and insights derived from

defect models depends on the quality of the data from which

these models are trained. Indeed, Mockus argues that poor data

quality can lead to biased conclusions [31]. Defect models are

trained using datasets that connect issue reports recorded in

an Issue Tracking System (ITS) with the software modules

that are impacted by the associated code changes that address

these issue reports. The code changes are in turn recorded in

a Version Control System (VCS). Thus, the quality of the data

recorded in the ITS and VCS impacts the quality of the data

used to train defect models [2, 5, 6, 19, 37].

Recent research shows that the noise that is generated

by issue report mislabelling, i.e., issue reports that describe

defects but were not classified as such (or vice versa), may

impact the performance of defect models [26, 41]. Yet, while

issue report mislabelling is likely influenced by characteristics

of the issue itself — e.g., novice developers may be more

likely to mislabel an issue than an experienced developer —

the prior work randomly generates mislabelled issues.

In this paper, we set out to investigate whether mislabelled

issue reports can be accurately explained using characteristics

of the issue reports themselves, and what impact a realistic

amount of noise has on the predictions and insights derived

from defect models. Using the manually-curated dataset of

mislabelled issue reports provided by Herzig et al. [19], we

generate three types of defect datasets: (1) realistic noisy

datasets that contain mislabelled issue reports as classified

manually by Herzig et al., (2) random noisy datasets that

contain the same proportion of mislabelled issue reports as

contained in the realistic noisy dataset, however the misla-

belled issue reports are selected at random, and (3) clean

datasets that contain no mislabelled issues (we use Herzig et

al.’s data to reassign the mislabelled issue reports to their

correct categories). Through a case study of 3,931 issue reports

spread across 22 releases of the Apache Jackrabbit and Lucene

systems, we address the following three research questions:

(RQ1) Is mislabelling truly random?

Issue report mislabelling is not random. Our models

can predict mislabelled issue reports with a mean F-

measure that is 4-34 times better than that of random

guessing. The tendency of a reporter to mislabel issues

in the past is consistently the most influential metric

used by our models.

(RQ2) How does mislabelling impact the performance of

defect models?

We find that the precision of our defect models is

rarely impacted by mislabelling. Hence, practitioners

can rely on the accuracy of modules labelled as

defective by defect models that are trained using

noisy data. However, cleaning the data prior to

training the defect models will likely improve their

ability to identify all defective modules.

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.93

812

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.93

812

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.93

812

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.93

812 ICSE 2015, Florence, Italy

(RQ3) How does mislabelling impact the interpretation of

defect models?

We find that 80%-85% of the metrics in the top

influence rank of the clean models also appear in the

top influence rank of the noisy models, indicating that

the most influential metrics are not heavily impacted

by issue report mislabelling. On the other hand, as

little as 18% of the metrics in the second and third

influence rank of the clean models appear in the same

rank in the noisy models, which suggests that the less

influential metrics are more unstable.

Furthermore, we find that randomly injecting mislabelled

defects tends to overestimate the impact that mislabelling truly

has on model performance and model interpretation.

Paper organization. The remainder of this paper is organized

as follows. Section II situates this paper with respect to the

related work. Section III discusses the design of our case

study, while Section IV presents the results with respect to our

three research questions. Section V discloses the threats to the

validity of our work. Finally, Section VI draws conclusions.

II. RELATED WORK & RESEARCH QUESTIONS

Given a software module, such as a source code file, a defect

model classifies it as either likely to be defective or clean.

Defect models do so by modelling the relationship between

module metrics (e.g., size and complexity), and module class

(defective or clean).

As shown in Figure 1, module metrics and classes are

typically mined from historical repositories, such as ITSs and

VCSs. First, issue reports, which describe defects, feature

requests, and general maintenance tasks, are extracted from

the ITS. Next, the historical code changes that are recorded in

a VCS are extracted. Finally, these issue reports are linked to

the code changes that have been performed in order to address

them. For example, a module’s class is set to defective if it

has been affected by a code change that addresses an issue

report that is classified as a defect.

Various data quality issues can arise when constructing

defect prediction datasets. Specifically, prior work has inves-

tigated data quality issues with respect to the linkage process

and the issue reports themselves. We describe the prior work

with respect to each data quality issue below.

A. Linkage of Issue Reports with Code Changes

The process of linking issue reports with code changes

can generate noise in defect prediction datasets, since the

linkage process often depends on manually-entered links that

are provided by developers. Bachmann et al. find that the issue

reports of several defects are not identified in the commit

logs [5], and thus are not visible to the automated linking

tools that are used to extract defect datasets. Wu et al. [50]

and Nguyen et al. [37] use the textual similarity between issue

reports and version control logs to recover the missing links

between the ITS and VCS repositories.

Issue Tracking  
System (ITS)

Version Control 
System (VCS)

Linking
Defect  

Prediction 
Dataset

Issue 
Reports

Code  
Changes

Defect

Fig. 1. The construction of defect prediction datasets.

The noise generated by missing links in defect prediction

datasets introduces bias. Bird et al. find that more experienced

developers are more likely to explicitly link issue reports to

the corresponding code changes [6]. Nguyen et al. find that

such biases also exist in commercial datasets [38], which

were suspected to be “near-ideal.” Rahman et al. examined

the impact of bias on defect models by generating artificially

biased datasets [40], reporting that the size of the generated

dataset matters more than the amount of injected bias.

Linkage noise and bias are addressed by modern tools like

JIRA1 and IBM Jazz2 that automatically link issue reports

with code changes. Nevertheless, recent work by Nguyen et

al. shows that even when such modern tools are used, bias still

creeps into defect datasets [38]. Hence, techniques are needed

to detect and cope with biases in defect prediction datasets.

B. Mislabelled Issue Reports

Even if all of the links between issue reports and code

changes are correctly recovered, noise may creep into defect

prediction datasets if the issue reports themselves are misla-

belled. Aranda and Venolia find that ITS and VCS repositories

are noisy sources of data [3]. Antoniol et al. find that textual

features can be used to classify issue reports [2], e.g., the term

“crash” is more often used in the issue reports of defects than

other types of issue reports. Herzig et al. find that 43% of all

issue reports are mislabelled, and this mislabelling impacts the

ranking of the most defect-prone files [19].

Mislabelled issue reports generate noise that impacts defect

prediction models. Yet, little is known about the nature of

mislabelling. For example, do mislabelled issue reports truly

appear at random throughout defect prediction datasets, or

are they explainable using characteristics of code changes

and issue reports? Knowledge of the characteristics that lead

to mislabelling would help researchers to more effectively

filter (or repair) mislabelled issue reports in defect prediction

datasets. Hence, we formulate the following research question:

(RQ1) Is mislabelling truly random?

Prior work has shown that issue report mislabelling may

impact the performance of defect models. Kim et al. find

1https://issues.apache.org/jira/
2http://www.jazz.net/

813813813813 ICSE 2015, Florence, Italy

TABLE I
AN OVERVIEW OF THE STUDIED SYSTEMS. THOSE ABOVE THE DOUBLE LINE SATISFY OUR CRITERIA FOR ANALYSIS.

Overview Studied Issue Reports Releases & Source Code Information

System Tracker #Issues Link #Defective %Mislabelled #Non-Defective %Mislabelled Releases #Files %Defective
Name Type Rate Issues Issues Files

Jackrabbit JIRA 2,402 79% 966 24% 922 2% 11 1,236 - 2,931 <1% - 7%
Lucene JIRA 2,443 84% 838 29% 1205 1% 11 517 - 4,820 2% - 6%

HTTPClient JIRA 746 31% 125 27% 106 2% - - -
Rhino Bugzilla 584 - - - - - - - -
Tomcat5 Bugzilla 1,077 - - - - - - - -

that defect models are considerably less accurate when they

are trained using datasets that have a 20%-35% mislabelling

rate [26]. Seiffert et al. conduct a comprehensive study [44],

and the results confirm the prior findings of Kim et al. [26].

However, prior work assumes that issue report mislabelling

is random, which is not necessarily true. For example, novice

developers may be more likely to mislabel an issue report

than experienced developers. Hence, we set out to address the

following research question:

(RQ2) How does mislabelling impact the performance of

defect models?

In addition to being used for prediction, defect models

are also used to understand the characteristics of defect-

prone modules. Mockus et al. study the relationship between

developer-centric measures of organizational change and the

probability of customer-reported defects in the context of a

large software system [32]. Cataldo et al. study the impact

of software and work dependencies on software quality [10].

Shihab et al. study the characteristics of high-impact and

surprise defects [47]. McIntosh et al. study the relationship be-

tween software quality and modern code review practices [30].

Such an understanding of defect-proneness is essential to chart

quality improvement plans.

Mislabelled issue reports likely impact the interpretation of

defect models as well. To investigate this, we formulate the

following research question:

(RQ3) How does mislabelling impact the interpretation of

defect models?

III. CASE STUDY DESIGN

In this section, we outline our criteria for selecting the stud-

ied systems, and our data extraction and analysis approaches.

A. Studied Systems

To address our research questions, we need a dataset of

mislabelled issue reports. In selecting the studied systems, we

identified two important criteria that needed to be satisfied:

– Criterion 1 — Mislabelled issue report oracle: In

order to study the impact that mislabelling has on defect

prediction models, we need an oracle of which issues

have been mislabelled.

– Criterion 2 — Issue report linking rate: The issue

reports for each studied system must be traceable, i.e., an

issue report must establish a link to the code change that

addresses it. Systems with low rates of traceable issue re-

ports will introduce too many missing links [5, 6], which

may impact the performance of our defect models [40].

Hence, we only study systems where a large proportion

of issue reports can be mapped to the code changes that

address them.

To satisfy criterion 1, we began our study using the corpus

of mislabelled issue reports that was manually-curated by

Herzig et al. [20]. Table I provides an overview of the five

systems in the corpus.

To satisfy criterion 2, we first select the set of systems in the

corpus of Herzig et al. that use the JIRA ITS.1 JIRA explicitly

links code changes to the issue reports that they address. Since

Rhino and Tomcat5 do not use JIRA, we removed them from

our analysis. Next, we discard systems that do not have a

high linkage rate. We discard HTTPClient, since fewer than

half of the issue reports could be linked to the code changes

that address them.

Table I shows that the Jackrabbit and Lucene systems

satisfied our criteria for analysis. Jackrabbit is a digital content

repository that stores versioned entries in a hierarchy.3 Lucene

is a library offering common search indexing functionality.4

B. Data Extraction

In order to produce the datasets necessary for our study, we

first need to extract data from the ITS of each studied system.

Next, we need to link the extracted ITS data with entries from

the respective VCS repositories, as well as with the oracle of

mislabelled issue reports. Figure 2 provides an overview of

our data extraction approach, which is further divided into the

four steps that we describe below.

(DE 1) Link issue reports to code changes. We first extract

the issue reports from the ITS of each studied system. Then,

we extract the references to code changes from those issue

reports. Finally, we extract the commit information for the

referenced code changes from the VCS.

3http://jackrabbit.apache.org/
4http://lucene.apache.org/

814814814814 ICSE 2015, Florence, Italy

Oracle of  
Mislabelled  

Issue Reports

Issue 
Tracking System

Version  
Control System

Link issue
reports to

code changes

Dataset for  
Prediction of  
Mislabelled  

Issue Reports

Dataset for  
Prediction of  
Defect-Prone  

Files

Analyze model
performance

Analyze
impact of
metrics

(DA 2)

(DA 3)

(DA 4)

(DE 1)

(DE 3)
(1) Data Extraction (DE) (2) Data Analysis (DA)

(DA 1)

Modelel

fIntegrate
oracle of

mislabelled 
issue reports

(DE 2)

Linked 
Data

(())

Calculate
metrics for

prediction of
mislabelled

issue reports

Calculate
metrics for

prediction of
defect-prone

files

(DE 4)

()

Generate 
subsample 

datasets

()

Construct 
models

Fig. 2. An overview of our data extraction and analysis approaches.

TABLE II
FACTORS USED TO STUDY THE NATURE OF MISLABELLED ISSUE REPORTS

(RQ1).

Metrics Description

Diffusion Dimension

Files, # Components,
Subsystems

The number of unique files, components,
and subsystems that are involved in the code
changes that address an issue report.

Entropy The dispersion of a change across the in-
volved files.

Size Dimension

Commits The number of commits made to address an
issue report.

Churn The sum of the added and removed lines in
the code changes made to address an issue
report.

History Dimension

Reporter tendency The proportion of prior issue reports that
were previously filed by the reporter of this
issue and that were mislabelled.

Code tendency For each file involved in the code changes
that address an issue report, we calculate
the proportion of its prior issue reports that
were mislabelled. For each issue report, we
select the maximum of the proportions of
each of its files.

Communication Dimension

Discussion length The number of comments that were posted
on the issue report.

(DE 2) Integrate oracle of mislabelled issue reports. We

link the oracle of mislabelled issue reports with our defect

datasets for two purposes. First, we record the mislabelled

issues in order to train models that predict and explain the

nature of mislabelling (cf. RQ1). Second, we use the oracle to

correct mislabelled issues in order to produce clean (mislabel-

free) versions of our defect prediction datasets. We use this

data to study the impact of mislabelling on the performance

and interpretation of our models (cf. RQ2 and RQ3).

(DE 3) Calculate metrics for the prediction of mislabelled

issue reports. In order to address RQ1, we train models that

classify whether an issue report is mislabelled or not. Table II

shows the nine metrics that we use to predict whether an issue

report is mislabelled or not. These nine metrics capture four

dimensions of an issue report that we briefly describe below.

Diffusion metrics measure the dispersion of a change

across modules. Since broadly-dispersed code changes

may contain several different concepts, they are likely

TABLE III
THE FACTORS THAT WE USE TO BUILD OUR DEFECT MODELS (RQ2, RQ3).

Metrics Description

Process Metrics

Commits Number of commits made to a file during a
studied release.

Normalized lines
added

Number of added lines in this file normalized by
the sum of all lines added to all files during a
studied release.

Normalized lines
deleted

Number of deleted lines in this file normalized
by the sum of all lines deleted from all files
during a studied release.

Churn The sum of added and removed lines in a file
during a studied release.

Developer Metrics

Active developer Number of developers who made a change to a
file during a studied release.

Distinct developer Number of distinct developers who made a
change to a file during or prior to a studied
release.

Minor contributor Number of developers who have authored less
than 5% of the changes to a file.

Ownership Metrics

Ownership ratio The propotion of lines written by the author who
made the most changes to a file.

Owner experience The experience (i.e., the proportion of all of the
lines in a project that have been written by an
author) of the most active contributor to a file.

Committer experience The geometric mean of the experiences of all of
the developers that contributed to a file.

difficult to accurately label. We use four metrics to

measure diffusion as described below. The # Subsystems,

Components, and # Files metrics measure the spread of

a change at different granularities. For example, for a file

org/apache/lucene/index/values/Reader.java,

the subsystem is org.apache.lucene.index and the

component is org/apache/lucene/index/values.

We count the number of unique subsystems, components,

and files that are modified by a change by analyzing the

file paths as described above. We also measure the entropy

(i.e., disorder) of a change. We use the entropy definition

of prior work [17, 23], i.e., the entropy of a change C is

H(C) = −
∑

n

k=1
(pk × log2 pk), where N is the number of

files included in a change, pk is the proportion of change C

that impacts file k. The larger the entropy value, the more

broadly that a change is dispersed among files.

815815815815 ICSE 2015, Florence, Italy

Size metrics measure how much code change was required

to address an issue report. Similar to diffusion, we suspect

that larger changes may contain more concepts, which likely

makes the task of labelling more difficult. We measure the size

of a change by the # commits (i.e., the number of changes in

the VCS history that are related to this issue report) and the

churn (i.e., the sum of the added and removed lines).

History metrics measure the tendency of files and reporters

to be involved with mislabelled issue reports. Files and re-

porters that have often been involved with mislabelled issue

reports in the past are likely to be involved with mislabelled

issue reports in the future. The reporter tendency is the propor-

tion of prior issue reports that were created by a given reporter

and were mislabelled. To calculate the code tendency for an

issue report r, we first compute the tendency of mislabelling

for each involved file fk, i.e., the proportion of prior issue

reports that involve fk that were mislabelled. We select the

maximum of the mislabelling tendencies of fk to represent r.

Communication metrics measure the degree of discussion

that occurred on an issue report. Issue reports that are dis-

cussed more are likely better understood, and hence are less

likely to be mislabelled. We represent the communication

dimension with the discussion length metric, which counts the

number of comments posted on an issue report.

(DE 4) Calculate metrics for the prediction of defect-prone

files. In order to address RQ2 and RQ3, we train defect

models that identify defect-prone files. Table III shows the ten

metrics that are spread across three dimensions that we use

to predict defect-prone files. These metrics have been used

in several previous defect prediction studies [4, 7, 24, 33–

35, 40, 46, 49]. We briefly describe each dimension below.

Process metrics measure the change activity of a file. We

count the number of commits, lines added, lines deleted, and

churn to measure change activity of each file. Similar to

Rahman et al. [40], we normalize the lines added and lines

deleted of a file by the total lines added and lines deleted.

Developer metrics measure the size of the team involved in

the development of each file [7]. Active developers counts the

developers who have made changes to a file during the studied

release period. Distinct developers counts the developers who

have made changes to a file up to (and including) the studied

release period. Minor developers counts the number of devel-

opers who have authored less than 5% of the changes to a file

in the studied release period.

Ownership metrics measure how much of the change to a

file has been contributed by a single author [7]. Ownership

ratio is the proportion of the changed lines to a file that have

been contributed by the most active author. We measure the

experience of an author using the proportion of changed lines

in all of the system files that have been contributed by that

author. Owner experience is the experience of the most active

author of a file. Committer experience is the geometric mean

of the experiences of the authors that contributed to a file.

C. Data Analysis

We train models using the datasets that we extracted from

each studied system. We then analyze the performance of these

models, and measure the influence that each of our metrics has

on model predictions. Figure 2 provides an overview of our

data analysis approach, which is divided into four steps. We

describe each step below.

(DA 1) Generate bootstrap datasets. In order to ensure that

the conclusions that we draw about our models are robust, we

use the bootstrap resampling technique [12]. The bootstrap

randomly samples K observations with replacement from the

original dataset of size K. Using the bootstrap technique,

we repeat our experiments several times, i.e., once for each

bootstrap sample. We use implementation of the bootstrap

algorithm provided by the boot R package [9].

Unlike k-fold cross-validation, the bootstrap technique fits

models using the entire dataset. Cross-validation splits the data

into k equal parts, using k - 1 parts for fitting the model, setting

aside 1 fold for testing. The process is repeated k times, using

a different part for testing each time. Notice, however, that

models are fit using k - 1 folds (i.e., a subset) of the dataset.

Models fit using the full dataset are not directly tested when

using k-fold cross-validation. Previous research demonstrates

that the bootstrap leads to considerably more stable results for

unseen data points [12, 16]. Moreover, the use of bootstrap is

recommended for high-skewed datasets [16], as is the case in

our defect prediction datasets.

(DA 2) Construct models. We train our models using the

random forest classification technique [8]. Random forest is

an accurate classification technique that is robust to noisy

data [22, 48], and has been used in several previous stud-

ies [13, 14, 22, 24, 28]. The random forest technique constructs

a large number of decision trees at training time. Each node

in a decision tree is split using a random subset of all of the

metrics. Performing this random split ensures that all of the

trees have a low correlation between them. Since each tree in

the forest may report a different outcome, the final class of a

work item is decided by aggregating the votes from all trees

and deciding whether the final score is higher than a chosen

threshold. We use the implementation of the random forest

technique provided by the bigrf R package [29].

We use the approach described by Harrell Jr. to train and test

our models using the bootstrap and original samples [16]. In

theory, the relationship between the bootstrap samples and the

original data is asymptotically equivalent to the relationship

between the original data and its population [16]. Since the

population of our datasets is unknown, we cannot train a model

on the original dataset and test it on the population. Hence, we

use the bootstrap samples to approximate this by using several

thousand bootstrap samples to train several models, and test

each of them using the original data.

Handling skewed metrics: Analysis of the distributions of

our metrics reveals that they are right-skewed. To mitigate

this skew, we log-transform each metric prior to training our

models (ln(x+ 1)).

816816816816 ICSE 2015, Florence, Italy

TABLE IV
EXAMPLE CONFUSION MATRICES.

(a) Prediction of mislabelled issue
reports.

Actual

Classified as Mislabel Correct

Mislabelled TP FP
Correct FN TN

(b) Prediction of defect-prone files.

Actual

Classified as Defective Non-Defective

Defective TP FP
Non-defective FN TN

Handling redundant metrics: Correlation analysis reduces

collinearity among our metrics, however it would not detect

all of the redundant metrics, i.e., metrics that do not have a

unique signal with respect to the other metrics. Redundant

metrics will interfere with each other, distorting the modelled

relationship between the module metrics and its class. We,

therefore, remove redundant metrics prior to constructing our

defect models. In order to detect redundant metrics, we fit

preliminary models that explain each metric using the other

metrics. We use the R2 value of the preliminary models to

measure how well each metric is explained by the others.

We use the implementation of this approach provided by

the redun function of the rms R package. The function

builds preliminary models for each metric for each bootstrap

iteration. The metric that is most well-explained by the other

metrics is iteratively dropped until either: (1) no preliminary

model achieves an R2 above a cutoff threshold (for this

paper, we use the default threshold of 0.9), or (2) removing

a metric would make a previously dropped metric no longer

explainable, i.e., its preliminary model will no longer achieve

an R2 exceeding our 0.9 threshold.

Handling imbalanced categories: Table I shows that our de-

pendent variables are imbalanced, e.g., there are more correctly

labelled issue reports than mislabelled ones. If left untreated,

the models trained using imbalanced data will favour the

majority category, since it offers more predictive power. In

our case, the models will more accurately identify correctly-

labelled issue reports than mislabelled ones.

To combat the bias of imbalanced categories, we re-balance

the training corpus to improve the performance of the minority

category. We re-balance the data using a re-sampling technique

that removes samples from the majority category (under-

sampling) and repeats samples in the minority category (over-

sampling). We only apply re-balancing to bootstrap samples

(training data) — the original (testing) data is not re-balanced.

(DA 3) Analyze model performance. To evaluate the perfor-

mance of the prediction models, we use the traditional eval-

uation metrics in defect prediction, i.e., precision, recall, and

F-measure. These metrics are calculated using the confusion

matrices of Table IV. Precision measures the proportion of

classified entities that are correct (TP
TP+FP

). Recall measures the

proportion of correctly classified entities (TP
TP+FN

). F-measure

is the harmonic mean of precision and recall (2×Precision×Recall
Precision+Recall

).
(DA 4) Analyze influence of metrics. To study the most

influential metrics in our random forest models, we compute

Breiman’s variable importance score [8] for each studied

metric. The larger the score, the greater the influence of the

metric on our models. We use the varimp function of the

bigrf R package [29] to compute the variable importance

scores of our metrics.

To study the influence that the studied metrics have on

our models, we apply the Scott-Knott test [43]. Each metric

will have several variable importance scores (i.e., one from

each of the releases). The Scott-Knott test will cluster the

metrics according to statistically significant differences in

their mean variable importance scores (α = 0.05). We use

the implementation of the Scott-Knott test provided by the

ScottKnott R package [21]. The Scott-Knott test ranks

each metric exactly once, however several metrics may appear

within one rank.

IV. CASE STUDY RESULTS

In this section, we present the results of our case study with

respect to our three research questions.

(RQ1) Is mislabelling truly random?

To address RQ1, we train models that indicate whether or

not an issue report was mislabelled. We build two types of

mislabelling models — one to predict issue reports that were

incorrectly labelled as defects (defect mislabelling, i.e., false

positives), and another to predict issue reports that should have

been labelled as defects, but were not (non-defect mislabelling,

i.e., false negatives). We then measure the performance of

these models (RQ1-a) and study the impact of each of our

issue report metrics in Table II (RQ1-b).

(RQ1-a) Model performance. Figure 3 shows the perfor-

mance of 1,000 bootstrap-trained models. The error bars

indicate the 95% confidence interval of the performance of

the bootstrap-trained models, while the height of the bars

indicates the mean performance of these models. We compare

the performance of our models to random guessing.

Our models achieve a mean F-measure of 0.38-0.73,

which is 4-34 times better than random guessing. Figure 3

also shows that our models also achieve a mean precision of

0.68-0.78, which is 6-75 times better than random guessing.

Due to the scarcity of non-defect mislabelling (see Table I),

we observe broader ranges covered by the confidence intervals

of the performance values in Figure 3(b). Nonetheless, the

ranges covered by the confidence intervals of the precision

and F-measure of all of our models does not overlap with

those of random guessing. Given the skewed nature of the

distributions at hand, we opt to use a bootstrap t-test, which is

distribution independent. The results show that the differences

are statistically significant (α = 0.05).

Figure 3(b) shows that the only case where our models

under-perform with respect to random guessing is the non-

defect mislabelling model on the Jackrabbit system. Although

the mean recall of our model is lower in this case, the mean

precision and F-measure are still much higher than that of

random guessing.

(RQ1-b) Influence of metrics. We calculate the variable

importance scores of our metrics in 1,000 bootstrap-trained

models, and cluster the results using the Scott-Knott test.

817817817817 ICSE 2015, Florence, Italy

Jackrabbit Lucene

0.78

0.12

0.64

0.50

0.70

0.19

0.75

0.12

0.71

0.50

0.73

0.19

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision Recall F−Measure Precision Recall F−Measure

P
er

fo
rm

an
ce

 V
al

ue

Our Model Random Guessing

(a) Defect mislabelling (false positive)

Jackrabbit Lucene

0.75

0.01

0.26

0.50

0.38

0.02

0.68

0.01

0.70

0.50

0.68

0.02
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Precision Recall F−Measure Precision Recall F−Measure

P
er

fo
rm

an
ce

 V
al

ue

Our Model Random Guessing

(b) Non-defect mislabelling (false negative)

Fig. 3. A comparison of the performance of our models that are trained to identify mislabelled issue reports (blue) against random guessing (white). Error
bars indicate the 95% confidence interval based on 1,000 bootstrap iterations.

A reporter’s tendency to mislabel issues in the past

is the most influential metric for predicting mislabelled

issue reports. We find that reporter tendency is the only

metric in the top Scott-Knott cluster, indicating that it is

consistently the most influential metric for our mislabelling

models. Moreover, for defect mislabelling, reporter tendency

is the most influential metric in 94% of our bootstrapped

Jackrabbit models and 86% of our Lucene models.

Similar to RQ1-a, we find that there is more variability in the

influential metrics of our non-defect mislabelling models than

our defect mislabelling ones. Nonetheless, reporter tendency is

still the only metric in the top Scott-Knott cluster. Furthermore,

reporter tendency is the most influential metric in 46% of our

Jackrabbit models and 73% of our Lucene models.

Issue report mislabelling is not random.

Our models can predict mislabelled issue reports with a

mean F-measure that is 4-34 times better than that of

random guessing. The tendency of a reporter to mislabel

issues in the past is consistently the most influential

metric used by our models.

(RQ2) How does mislabelling impact the performance of

defect models?

Approach. We use the same high-level approach to address

RQ2 and RQ3. Figure 4 provides an overview of the steps in

that approach. We describe how we implement each step to

address RQ2 in particular below.

(Step 1) Construct models: For each bootstrap iteration, we

train models using clean, realistic noisy, and random noisy

samples. The clean sample is the unmodified bootstrap sample.

The realistic noisy sample is generated by re-introducing the

mislabelled issue reports in the bootstrap sample. To generate

the random noisy sample, we randomly inject mislabelled issue

Realistically 
Noisy Sample

Randomly  
Noisy Sample

Modelel

Modelel

Repeat 1,000 times

(Step 1) Construct models

In
te

rp
re

t 
re

su
lt

s

Modelel

Analyze 
models

(Step 2) (Step 3)

Bootstrap 
Sample

Clean 
Data

Clean Sample

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

Realistic

Random

Fig. 4. An overview of our approach to study the impact of issue report
mislabelling.

reports in the bootstrap sample until the rate of mislabelled

issue reports is the same as the realistic noisy sample. Finally,

we train models on each of the three samples.

(Step 2) Analyze models: We want to measure the impact

that real mislabelling and random mislabelling have on defect

prediction. Thus, we compute the ratio of the performance

of models that are trained using the noisy samples to that of

the clean sample. Since we have three performance measures,

we generate six ratios for each bootstrap iteration, i.e., the

precision, recall, and F-measure ratios for realistic noisy and

random noisy samples compared to the clean sample.

(Step 3) Interpret results: We repeat the bootstrap experi-

ment for each studied release individually. Finally, we com-

pare the distributions of each performance ratio using bean-

plots [25]. Beanplots are boxplots in which the vertical curves

summarize the distributions of different data sets. The hori-

zontal lines indicate the median values. We choose beanplots

over boxplots, since beanplots show contours of the data that

are hidden by the flat edges of boxplots.

818818818818 ICSE 2015, Florence, Italy

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
ea

lis
tic

/C
le

an
 R

at
io

(a) Jackrabbit

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
ea

lis
tic

/C
le

an
 R

at
io

(b) Lucene

Fig. 5. The difference in performance between models trained using realistic noisy samples and clean samples. All models are tested on clean samples (defect
mislabelling).

Results. Figure 5 shows the distribution of the ratios of our

performance metrics in all of the studied releases.

Similar to RQ1, we perform experiments for defect mis-

labelling and non-defect mislabelling individually. We find

that, likely due to scarcity, non-defect mislabelled issue reports

have little impact on our models. Hence, we focus on defect

mislabelling for the remainder of this section.

The modules classified as defective by models trained

using noisy data are typically as reliable as the modules

classified as defective by models trained using clean data.

Figure 5 shows that there is a median ratio of one between the

precision of models trained using the realistic noisy and clean

samples for both of the studied systems. Furthermore, we find

that the 95% confidence interval for the distributions are 0.88-

1.20 (Jackrabbit) and 0.90-1.19 (Lucene). This tight range of

values that are centred at one suggests that the precision of

our models is not typically impacted by mislabelled defects.

On the other hand, models trained using noisy data

tend to miss more defective modules than models trained

using clean data. Figure 5 shows that the median ratio

between the recall of models trained using the realistic noisy

and clean samples is 0.68 (Jackrabbit) and 0.56 (Lucene).

This indicates that models trained using data with mislabelled

defects typically achieve 56%-68% of the recall that models

trained on clean data would achieve when tested on clean data.

While defect mislabelling rarely impacts the precision of

defect models, the recall is often impacted. Practitioners

can rely on the modules classified as defective by defect

models trained on noisy data. However, cleaning

historical data prior to training defect models will likely

improve their recall.

Random mislabelling issue reports tends to overesti-

mate the impact that realistic mislabelling has on model

performance. Figure 6 shows that while the median ratio

between the precision of realistic and random noisy models is

1 for both studied systems, the median recall and F-measure

ratios are 0.84-0.90 and 0.88-0.93 respectively. In fact, 64%-

66% of the recall and F-measure ratios are below 1 in our

studied systems, indicating that models trained using randomly

mislabelled issues tend to overestimate the impact that real

mislabelling has on the recall and F-measure of our models.

When randomly injecting mislabelled defects, our results

suggest that the impact of the mislabelling will be

overestimated by 7-16 percentage points.

(RQ3) How does mislabelling impact the interpretation of

defect models?

Approach. We again use the high-level approach of Figure 4

to address RQ3. While Step 1 of the approach is identical for

RQ2 and RQ3, Steps 2 and 3 are performed differently. We

describe the different Steps 2 and 3 below.

(Step 2) Analyze models: For each bootstrap iteration, we

calculate the variable importance score for each metric in

each type of model (i.e., clean, realistic noisy, and random

noisy). Hence, the variable importance score for each metric

is calculated three times in each bootstrap iteration.

(Step 3) Interpret results: We cluster the variable impor-

tance scores of metrics in each type of model using Scott-Knott

tests to produce statistically distinct ranks of metrics for clean,

realistic noisy, and random noisy models. Thus, each metric

has a rank for each type of model.

To estimate the impact that random and realistic misla-

belling have on model interpretation, we compute the differ-

ence in the ranks of the metrics that appear in the top-three

ranks of the clean models. For example, if a metric m appears

in the top rank in the clean and realistic noisy models then

the metric would have a rank difference of zero. However, if

m appears in the third rank in the random noisy model, then

the rank difference of m would be negative two.

819819819819 ICSE 2015, Florence, Italy

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
an

do
m

/R
ea

lis
tic

 R
at

io

(a) Jackrabbit

0.
0

0.
5

1.
0

1.
5

2.
0

Precision Recall F−Measure

R
an

do
m

/R
ea

lis
tic

 R
at

io

(b) Lucene

Fig. 6. The difference in performance between models trained using random noisy and realistic noisy samples. All models are tested on clean samples (defect
mislabelling).

Ranked 1 Ranked 2 Ranked 3

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Jackrabbit
Lucene

2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5 2 1 0 −1 −2 −3 −4 −5
Difference in rank

P
er

ce
nt

ag
e

Realistic Noisy Sample Random Noisy Sample

Fig. 7. The difference in the ranks for the metrics according to their variable
importance scores among the clean and noisy models. The bars indicate the
percentage of variables that appear in that rank in the clean model while also
appearing in that rank in the noisy models.

Similar to RQ2, we repeat the whole experiment for each

studied release individually.

Results. Figure 7 shows the rank differences for all of the

studied releases. We again perform experiments for defect

mislabelling and non-defect mislabelling individually. The

scarcity of non-defect mislabelling limits the impact that it

can have on model interpretation. Indeed, we find that there

are very few rank differences in the non-defect mislabelling

results. Hence, we focus on defect mislabelling for the remain-

der of this section.

The most influential metrics are generally robust to the

noise introduced by defect mislabelling. Figure 7 shows

that 80% (Lucene) to 85% (Jackrabbit) of the metrics in

the top rank of the clean model (most often, the committer

experience) also appear in the top rank of the realistic noisy

model. Similarly, 80% (Lucene) to 85% (Jackrabbit) of the

metrics in the top rank of the clean model appear in the top

rank of the random noisy model. Moreover, the 10%-15% of

metrics in the top rank of the clean model that do not appear

in the top rank of the noisy models only decrease by one rank.

Conversely, the metrics in the second and third ranks

are less stable. Figure 7 shows that 31% (Jackrabbit) to

75% (Lucene) of the metrics in the second rank and 38%

(Jackrabbit) to 82% (Lucene) of the metrics in the third rank

of the clean model (most often, the process and developer

metrics) do not appear in the second rank of the realistic noisy

model, indicating that these metrics are influenced by defect

mislabelling. Furthermore, 8%-33% of the second and third

rank variables drop by two or more ranks in the noisy models.

The most influential metrics are generally robust to defect

mislabelling, with 80%-85% of the most influential

metrics from the clean models appearing in the top rank

of the noisy models as well. On the other hand, the

second and third ranks are unstable, with as little as 18%

of the metrics from the clean models appearing in those

ranks in the noisy models.

Randomly injected mislabelled defects have a more dam-

aging impact on model interpretation than real mislabelled

defects do. Figure 7 shows that a smaller percentage of the

metrics of the clean models are found at the same rank in the

random noisy models than the realistic noisy models.

Randomly injecting mislabelled defects tends to distort

the interpretation of influential metrics more than truly

mislabelled defects do.

V. DISCUSSION & THREATS TO VALIDITY

We now discuss the results of our case study with respect to

other work on issue report mislabelling, as well as the threats

to the validity of our case study.

820820820820 ICSE 2015, Florence, Italy

A. Discussion

In prior work, Herzig et al. show that issue report mis-

labelling has a drastic impact on the relative order of the

most defect-prone files [19] — 16%-40% of the top-10% most

defect-prone files do not belong in that group. The impact

that issue report mislabelling has on the ordering of the most

defect-prone files suggests that defect models (such as the ones

that we build in this study) will also be drastically impacted,

both in terms of precision and recall.

Yet in this study, we find that issue report mislabelling has

little impact on the precision of defect models, which may

seem to be incongruent with the prior work. We suspect that

the differences in the conclusions that we draw have to do

with the differences in our defect prediction experiments.

In the study of Herzig et al., files are ranked according

to the number of defect reports that are mapped to a file.

The files at the top of this ranked list are the most defect-

prone, and would yield the most benefit from additional quality

assurance effort [18]. Instability in the top-10% of files in this

ranked list occurs if these highly defect-prone file have several

mislabelled defects mapped to them.

On the other hand, our defect models classify whether a file

is defective or clean. In order for a file to be remapped from

defective to clean, all of the defects that are mapped to a file

must be mislabelled, reducing the number of defects to zero.

Otherwise, a file would still be considered defective. Hence,

the instability that Herzig et al. observe with respect to the

most defect-prone files may not have as much of an impact

on the files that our defect models will consider defective.

B. Threats to Validity

External validity. We focus our study on two subject sys-

tems, due to the low number of systems that satisfied our

analysis criteria (cf. Section III). The lack of a curated oracle

of mislabelled issue reports presented a major challenge.

Nonetheless, additional replication studies are needed.

Construct validity. Although the studied datasets have high

link rates of issue reports and code changes, we make the

implicit assumption that these links are correct. On the other

hand, we rely on JIRA links from issue reports to code

changes, which others have noted lead to more accurate links

than links constructed from code changes to issue reports [40].

Internal validity. We use nine metrics to train models that

identify mislabelled issue reports, and ten metrics to train

models that identify defective files. We selected metrics that

cover a variety of dimensions for each type of model. However,

other metrics that we may have overlooked could also improve

the performance of our models.

We focus on the random forest classification technique.

Although prior studies have also used random forest [13, 14,

22, 24, 28], our findings are entirely bound to this technique.

We plan to explore the impact that issue report mislabelling

has on other classification techniques in future work.

VI. CONCLUSIONS

Defect models identify potentially defective software mod-

ules. However, the accuracy of the predictions and the insights

derived from defect models depend on the quality of the data

from which these models are trained. While recent work has

shown that issue report mislabelling may impact the perfor-

mance of defect prediction models [26, 40], the mislabelled

issue reports were generated randomly.

In this paper, we study the nature of mislabelled issue

reports and the impact that truly mislabelled issue reports

have on the performance and interpretation of defect models.

Through a case study of two large and successful open source

systems, we make the following observations:

– Mislabelling is not random. Models trained to identify

mislabelled issue reports achieve a mean F-measure that

is 4-34 times better than that of random guessing. A

reporter’s tendency to mislabel issues in the past is con-

sistently the most influential metric used by our models.

– Since we observe that the precision of our defect models

is rarely impacted by defect mislabelling, practitioners

can rely on the accuracy of modules labelled as defective

by defect models that are trained using noisy data — the

files that are classified as defect-prone by models trained

using noisy data are often just as accurate as the defect-

prone predictions of models trained using clean data

(i.e., mislabel-free). However, cleaning the data prior to

training defect models will likely allow them to identify

more of the truly defective modules.

– The most influential metrics are generally robust to defect

mislabelling. 80%-85% of the most influential metrics

from the clean models appear in the top ranks of the

noisy models as well.

– On the other hand, the second- and third-most influential

metrics are more unstable than the most influential ones.

As little as 18% of the metrics in the second and third

influence rank of the clean models also appear in the

same rank in the noisy models.

– Randomly injecting mislabelled defects tends to over-

estimate the impact that defect mislabelling has on the

performance and interpretation of defect models.

ACKNOWLEDGMENTS

This work would not have been possible without the

manually-curated oracle of mislabelled issue reports provided

by Herzig et al. [19]. This work was conducted as a part of

the Program for Advancing Strategic International Networks

to Accelerate the Circulation of Talented Researchers; and the

Japan Society for the Promotion of Science, Grant-in-Aid for

Young Scientists (B: 25730045) and Scientific Research (B:

23300009). This work was also supported by the Natural Sci-

ences and Engineering Research Council of Canada (NSERC).

821821821821 ICSE 2015, Florence, Italy

REFERENCES

[1] F. Akiyama, “An Example of Software System Debug-

ging,” in Proceedings of the International Federation

of Information Processing Societies Congress (IFIP’71),

1971, pp. 353–359.

[2] G. Antoniol, K. Ayari, M. D. Penta, and F. Khomh, “Is

it a Bug or an Enhancement? A Text-based Approach to

Classify Change Requests,” in Proceedings of the IBM

Centre for Advanced Studies Conference (CASCON’08),

2008, pp. 1–15.

[3] J. Aranda and G. Venolia, “The Secret Life of Bugs:

Going Past the Errors and Omissions in Software Repos-

itories,” in Proceedings of the International Conference

on Software Engineering (ICSE’09), 2009, pp. 298–308.

[4] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A

Systematic and Comprehensive Investigation of Methods

to Build and Evaluate Fault Prediction Models,” Journal

of Systems and Software, vol. 83, no. 1, pp. 2–17, 2010.

[5] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and

A. Bernstein, “The Missing Links: Bugs and Bug-fix

Commits,” in Proceedings of the International Sym-

posium on the Foundations of Software Engineering

(FSE’10), 2010, pp. 97–106.

[6] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein,

V. Filkov, and P. Devanbu, “Fair and Balanced? Bias in

Bug-Fix Datasets,” in Proceedings of the joint meeting of

the European Software Engineering Conference and the

symposium on the Foundations of Software Engineering

(ESEC/FSE’09), 2009, pp. 121–130.

[7] C. Bird, B. Murphy, and H. Gall, “Don’t Touch My

Code! Examining the Effects of Ownership on Soft-

ware Quality,” in Proceedings of the joint meeting of

the European Software Engineering Conference and the

symposium on the Foundations of Software Engineering

(ESEC/FSE’11), 2011, pp. 4–14.

[8] L. Breiman, “Random Forests,” Machine Learning,

vol. 45, no. 1, pp. 5–32, 2001.

[9] A. Canty and B. Ripley, boot: Bootstrap R (S-Plus)

Functions, 2014. [Online]. Available: http://CRAN.

R-project.org/package=boot

[10] M. Cataldo, A. Mockus, J. Roberts, and J. Herbsleb,

“Software Dependencies, Work Dependencies, and Their

Impact on Failures,” Transactions on Software Engineer-

ing, vol. 35, no. 6, pp. 864–878, 2009.

[11] M. D’Ambros, M. Lanza, and R. Robbes, “An Ex-

tensive Comparison of Bug Prediction Approaches,” in

Prooceedings of the Working Conference on Mining

Software Repositories (MSR’10), 2010, pp. 31–41.

[12] R. Efron, B. and Tibshirani, An Introduction to the

Bootstrap. Chapman & Hall, 1993.

[13] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita,

and N. Ubayashi, “An Empirical Study of Just-in-Time

Defect Prediction using Cross-Project Models,” in Pro-

ceedings of the Working Conference on Mining Software

Repositories (MSR’14), 2014, pp. 172–181.

[14] G. Gousios, M. Pinzger, and A. V. Deursen, “An Ex-

ploratory Study of the Pull-Based Software Development

Model,” in Proceedings of the International Conference

on Software Engineering (ICSE’14), 2014, pp. 345–355.

[15] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell,

“A Systematic Literature Review on Fault Prediction

Performance in Software Engineering,” Transactions on

Software Engineering, vol. 38, no. 6, pp. 1276–1304,

2012.

[16] F. E. Harrell Jr., Regression Modeling Strategies, 1st ed.

Springer, 2002.

[17] A. E. Hassan, “Predicting Faults Using the Complexity

of Code Changes,” in Proceedings of the International

Conference on Software Engineering (ICSE’09), 2009,

pp. 78–88.

[18] A. E. Hassan and R. C. Holt, “The Top Ten List: Dy-

namic Fault Prediction,” in Proceedings of the Interna-

tional Conference on Software Maintenance (ICSM’05),

2005, pp. 263–272.

[19] K. Herzig, S. Just, and A. Zeller, “It’s Not a Bug, It’s a

Feature: How Misclassication Impacts Bug Prediction,”

in Proceedings of the International Conference on Soft-

ware Engineering (ICSE’13), 2013, pp. 392–401.

[20] K. Herzig and A. Zeller, “The Impact of Tangled Code

Changes,” in Proceedings of the Working Conference on

Mining Software Repositories (MSR’13), 2013, pp. 121–

130.

[21] E. G. Jelihovschi, J. C. Faria, and I. B. Allaman,

“ScottKnott: A Package for Performing the Scott-Knott

Clustering Algorithm in R,” Tendłncias em Matemtica

Aplicada e Computacioal - TEMA., vol. 15, no. 1, pp.

3–17, 2014.

[22] Y. Jiang, B. Cukic, and T. Menzies, “Can Data Transfor-

mation Help in the Detection of Fault-prone Modules?”

in Proceedings of the Workshop on Defects in Large

Software Systems (DEFECTS’08), 2008, pp. 16–20.

[23] Y. Kamei, E. Shihab, B. Adams, a. E. Hassan,

A. Mockus, A. Sinha, and N. Ubayashi, “A Large-Scale

Empirical Study of Just-in-Time Quality Assurance,”

Transactions on Software Engineering, vol. 39, no. 6,

pp. 757–773, 2013.

[24] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto,

B. Adams, and A. E. Hassan, “Revisiting Common

Bug Prediction Findings Using Effort-Aware Models,” in

Proceedings of the International Conference on Software

Maintenance (ICSM’10), 2010, pp. 1–10.

[25] P. Kampstra, “Beanplot: A Boxplot Alternative for Vi-

sual Comparison of Distributions,” Journal of Statistical

Software, vol. 28, no. 1, pp. 1–9, 2008.

[26] S. Kim, H. Zhang, R. Wu, and L. Gong, “Dealing with

Noise in Defect Prediction,” in Proceeding of the Inter-

national Conference on Software Engineering (ICSE’11),

2011, pp. 481–490.

[27] S. Kim, T. Zimmermann, E. J. Whitehead Jr., and

A. Zeller, “Predicting Faults from Cached History,” in

Proceedings of the International Conference on Software

822822822822 ICSE 2015, Florence, Italy

Engineering (ICSE’07), 2007, pp. 489–498.

[28] S. Lessmann, S. Member, B. Baesens, C. Mues, and

S. Pietsch, “Benchmarking Classification Models for

Software Defect Prediction: A Proposed Framework and

Novel Findings,” Transactions on Software Engineering,

vol. 34, no. 4, pp. 485–496, 2008.

[29] A. Lim, L. Breiman, and A. Cutler, bigrf: Big

Random Forests: Classification and Regression Forests

for Large Data Sets, 2014. [Online]. Available:

http://CRAN.R-project.org/package=bigrf

[30] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,

“The Impact of Code Review Coverage and Code Review

Participation on Software Quality,” in Proceedings of the

Working Conference on Mining Software Repositories

(MSR’14), 2014, pp. 192–201.

[31] A. Mockus, “Missing Data in Software Engineering,”

in Guide to Advanced Empirical Software Engineering,

2008, pp. 185–200.

[32] ——, “Organizational Volatility and its Effects on Soft-

ware Defects,” in Proceedings of the International

Symposium on Foundations of Software Engineering

(FSE’10), 2010, pp. 117–127.

[33] A. Mockus and D. M. Weiss, “Predicting Risk of Soft-

ware Changes,” Bell Labs Technical Journal, vol. 5,

no. 6, pp. 169–180, 2000.

[34] R. Moser, W. Pedrycz, and G. Succi, “A Comparative

Analysis of the Efficiency of Change Metrics and Static

Code Attributes for Defect Prediction,” in Proceedings

of the International Conference on Software Engineering

(ICSE’08), 2008, pp. 181–190.

[35] N. Nagappan, B. Murphy, and V. R. Basili, “The Influ-

ence of Organizational Structure on Software Quality:

An Empirical Case Study,” in Proceedings of the Inter-

national Conference on Software Engineering (ICSE’08),

2008, pp. 521–530.

[36] N. Nagappan, A. Zeller, T. Zimmermann, K. Herzig, and

B. Murphy, “Change Bursts as Defect Predictors,” in

Proceedings of the International Symposium on Software

Reliability Engineering (ISSRE’10), 2010, pp. 309–318.

[37] A. T. Nguyen, T. T. Nguyen, H. A. Nguyen, and T. N.

Nguyen, “Multi-layered Approach for Recovering Links

between Bug Reports and Fixes,” in Proceedings of the

International Symposium on the Foundations of Software

Engineering (FSE’12), 2012, pp. 63:1–63:11.

[38] T. H. Nguyen, B. Adams, and A. E. Hassan, “A Case

Study of Bias in Bug-Fix Datasets,” in Proceedings

of the Working Conference on Reverse Engineering

(WCRE’10), 2010, pp. 259–268.

[39] D. Radjenovic, M. Hericko, R. Torkar, and A. Zivkovic,

“Software Fault Prediction Metrics: A Systematic Lit-

erature Review,” Information and Software Technology,

vol. 55, no. 8, pp. 1397–1418, 2013.

[40] F. Rahman and P. Devanbu, “How, and Why, Process

Metrics Are Better,” in Proceedings of the International

Conference on Software Engineering (ICSE’13), 2013,

pp. 432–441.

[41] F. Rahman, I. Herraiz, D. Posnett, and P. Devanbu, “Sam-

ple Size vs. Bias in Defect Prediction,” in Proceedings of

the joint meeting of the European Software Engineering

Conference and the symposium on the Foundations of

Software Engineering (FSE’13), 2013, pp. 147–157.

[42] F. Rahman, D. Posnett, A. Hindle, E. Barr, and P. De-

vanbu, “BugCache for Inspections: Hit or Miss?” in

Proceedings of the joint meeting of the European Soft-

ware Engineering Conference and the symposium on the

Foundations of Software Engineering (ESEC/FSE’11),

2011, pp. 322–331.

[43] A. J. Scott and M. Knott, “A Cluster Analysis Method

for Grouping Means in the Analysis of Variance,” Bio-

metrics, vol. 30, no. 3, pp. 507–512, 1974.

[44] C. Seiffert, T. M. Khoshgoftaar, J. Van Hulse, and

A. Folleco, “An Empirical Study of the Classification

Performance of Learners on Imbalanced and Noisy Soft-

ware Quality Data,” Information Sciences, vol. 259, pp.

571–595, 2014.

[45] E. Shihab, “An Exploration of Challenges Limiting Prag-

matic Software Defect Prediction,” Ph.D. dissertation,

Queen’s University, 2012.

[46] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and

A. E. Hassan, “Understanding the Impact of Code and

Process Metrics on Post-Release Defects: A Case Study

on the Eclipse Project,” in Proceedings of the Interna-

tional Symposium on Empirical Software Engineering

and Measurement (ESEM’10), 2010.

[47] E. Shihab, Y. Kamei, B. Adams, and A. E. Hassan,

“High-Impact Defects: A Study of Breakage and Sur-

prise Defects,” in Proceedings of the joint meeting of

the European Software Engineering Conference and the

symposium on the Foundations of Software Engineering

(ESEC/FSE’11), 2011, pp. 300–310.

[48] M. R. Sikonja, “Improving Random Forests,” in Proceed-

ings of the European Conference on Machine Learning

(ECML’04), 2004, pp. 359–370.

[49] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too

many cooks spoil the broth? Using the number of de-

velopers to enhance defect prediction models,” Empirical

Software Engineering, vol. 13, no. 5, pp. 539–559, 2008.

[50] R. Wu, H. Zhang, S. Kim, and S. C. Cheung, “ReLink:

Recovering Links between Bugs and Changes,” in Pro-

ceedings of the joint meeting of the European Software

Engineering Conference and the symposium on the Foun-

dations of Software Engineering (ESEC/FSE’11), 2011,

pp. 15–25.

[51] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting

Defects for Eclipse,” in Proceedings of the International

Workshop on Predictor Models in Software Engineering

(PROMISE’07), 2007, pp. 9–20.

823823823823 ICSE 2015, Florence, Italy

