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ABSTRACT

Defect prediction models are classifiers that are trained to
identify defect-prone software modules. Such classifiers have
configurable parameters that control their characteristics (e.g.,
the number of trees in a random forest classifier). Recent
studies show that these classifiers may underperform due
to the use of suboptimal default parameter settings. How-
ever, it is impractical to assess all of the possible settings
in the parameter spaces. In this paper, we investigate the
performance of defect prediction models where Caret — an
automated parameter optimization technique — has been
applied. Through a case study of 18 datasets from systems
that span both proprietary and open source domains, we
find that (1) Caret improves the AUC performance of de-
fect prediction models by as much as 40 percentage points;
(2) Caret-optimized classifiers are at least as stable as (with
35% of them being more stable than) classifiers that are
trained using the default settings; and (3) Caret increases
the likelihood of producing a top-performing classifier by as
much as 83%. Hence, we conclude that parameter settings
can indeed have a large impact on the performance of de-
fect prediction models, suggesting that researchers should
experiment with the parameters of the classification tech-
niques. Since automated parameter optimization techniques
like Caret yield substantially benefits in terms of perfor-
mance improvement and stability, while incurring a manage-
able additional computational cost, they should be included
in future defect prediction studies.

CCS Concepts

•General and reference → Experimentation; •Software
and its engineering→ Software defect analysis; Search-
based software engineering;
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1. INTRODUCTION
The limited Software Quality Assurance (SQA) resources

of software organizations must focus on software modules
(e.g., source code files) that are likely to be defective in the
future. To that end, defect prediction models are trained to
identify defect-prone software modules using statistical or
machine learning classification techniques.

Such classification techniques often have configurable pa-
rameters that control characteristics of the classifiers that
they produce. For example, the number of decision trees of
which a random forest classifier is comprised can be config-
ured prior to training the forest. Furthermore, the number
of non-overlapping clusters of which a k-nearest neighbours
classifier is comprised must be configured prior to using the
classification technique.

Since the optimal settings for these parameters are not
known ahead of time, the settings are often left at default
values. Prior work suggests that defect prediction models
may underperform if they are trained using suboptimal pa-
rameter settings. For example, Jiang et al. [22] and Tosun et
al. [58] also point out that the default parameter settings of
random forest and naive bayes are often suboptimal. Koru et
al. [13] and Mende et al. [36, 37] show that selecting differ-
ent parameter settings can impact the performance of de-
fect models. Hall et al. [15] show that unstable classification
techniques may underperform due to the use of default pa-
rameter settings. Mittas et al. [41] and Menzies et al. [40]
argue that unstable classification techniques can make repli-
cation of defect prediction studies more difficult.

Indeed, we perform a literature analysis that reveals that
26 of the 30 most commonly used classification techniques
(87%) require at least one parameter setting. Since such
parameter settings may impact the performance of defect
prediction models, the settings should be carefully selected.
However, it is impractical to assess all of the possible settings
in the parameter space of a single classification technique [1,
16, 27]. For example, Kocaguneli et al. [27] point out that
there are at least 17,000 possible settings to explore when
training k-nearest neighbours classifier.

In this paper, we investigate the performance of defect
prediction models where Caret [30] — an off-the-shelf au-
tomated parameter optimization technique — has been ap-
plied. Caret evaluates candidate parameter settings and sug-
gests the optimized setting that achieves the highest perfor-
mance. Through a case study of 18 datasets from systems
that span both proprietary and open source domains, we
record our observations with respect to two dimensions:

http://dx.doi.org/10.1145/2884781.2884857


Table 1: Overview of studied parameters.
Family Family Description Parameter Name Parameter Description Classification techniques that

apply with their default and can-

didate parameter values.

Naive
Bayes

Naive Bayes is a probability model that assumes that pre-
dictors are independent of each other.
Techniques: Naive Bayes (NB).

Laplace Correction [N] Laplace correction (0 indicates no
correction).

NB={0}

Distribution Type [L] TRUE indicates a kernel density es-
timation, while FALSE indicates a nor-
mal density estimation.

NB={TRUE, FALSE}

Nearest
Neigh-
bour

Nearest neighbour is an algorithm that stores all available
observations and classifies new observations based on its
similarity to prior observations.
Techniques: k-Nearest Neighbour (KNN).

#Clusters [N] The numbers of non-overlapping
clusters to produce.

KNN={1, 5, 9, 13, 17}

Regression

Logistic regression is a technique for explaining binary de-
pendent variables. MARS is a non-linear regression mod-
elling technique.
Techniques: GLM and MARS.

Degree Interaction [N] The maximum degree of interac-
tion (Friedman’s mi). The default is 1,
meaning build an additive model (i.e.,
no interaction terms).

MARS={1}

Partial
Least
Squares

Partial Least Squares regression generalizes and combines
features from principal component analysis and multiple
regression.
Techniques: Generalized Partial Least Squares (GPLS).

#Components [N] The number of PLS components. GPLS={1, 2, 3, 4, 5}

Neural
Network

Neural network techniques are used to estimate or ap-
proximate functions that can depend on a large number
of inputs and are generally unknown.
Techniques: Standard (NNet), Model Averaged (AVN-
Net), Feature Extraction (PCANNet), Radial Basis Func-
tions (RBF), Multi-layer Perceptron (MLP), Voted-MLP
(MLPWeightDecay), and Penalized Multinomial Regres-
sion (PMR).

Bagging [L] Should each repetition apply bag-
gin?

AVNNet={TRUE, FALSE}

Weight Decay [N] A penalty factor to be applied to
the errors function.

MLPWeightDecay, PMR, AVNNet,
NNet, PCANNet={0, 0.0001, 0.001,
0.01, 0.1}, SVMLinear={1}

#Hidden Units [N] Numbers of neurons in the hidden
layers of the network that are used to
produce the prediction.

MLP, MLPWeightDecay, AVNNet,
NNet, PCANNet={1, 3, 5, 7, 9},
RBF={11, 13, 15, 17, 19}

Discrimina-
tion
Analysis

Discriminant analysis applies different kernel functions
(e.g., linear) to classify a set of observations into prede-
fined classes based on a set of predictors.
Techniques: Linear Discriminant Analysis (LDA), Pe-
nalized Discriminant Analysis (PDA), and Flexible Dis-
criminant Analysis (FDA).

Product Degree [N] The number of degrees of freedom
that are available for each term.

FDA={1}

Shrinkage Penalty
Coefficient

[N] A shrinkage parameter to be applied
to each tree in the expansion (a.k.a.,
learning rate or step-size reduction).

PDA={1, 2, 3, 4, 5}

#Terms [N] The number of terms in the model. FDA={10, 20, 30, 40, 50}

Rule-based

Rule-based techniques transcribe decision trees using a set
of rules for classification.
Techniques: Rule-based classifier (Rule), and Ripper
classifier (Ripper).

#Optimizations [N] The number of optimization itera-
tions.

Ripper={1, 2, 3, 4, 5}

Decision
Trees-
Based

Decision trees use feature values to classify instances.
Techniques: C4.5-like trees (J48), Logistic Model Trees
(LMT), and Classification And Regression Trees (CART).

Complexity [N] A penalty factor to be applied to
the error rate of the terminal nodes of
the tree.

CART={0.0001, 0.001, 0.01, 0.1,
0.5}

Confidence [N] The confidence factor used for prun-
ing (smaller values incur more pruning).

J48={0.25}

#Iterations [N] The numbers of iterations. LMT={1, 21, 41, 61, 81}

SVM

Support Vector Machines (SVMs) use a hyperplane to sep-
arate two classes (i.e., defective or not).
Techniques: SVM with Linear kernel (SVMLinear), and
SVM with Radial basis function kernel (SVMRadial).

Sigma [N] The width of Gaussian kernels. SVMRadial={0.1, 0.3, 0.5, 0.7, 0.9}
Cost [N] A penalty factor to be applied to

the number of errors.
SVMRadial={0.25, 0.5, 1, 2, 4},
SVMLinear={1}

Bagging

Bagging methods combine different base learners together
to solve one problem.
Technique: Random Forest (RF), Bagged CART
(BaggedCART)

#Trees [N] The numbers of classification trees. RF={10, 20, 30, 40, 50}

Boosting

Boosting performs multiple iterations, each with different
example weights, and makes predictions using voting of
classifiers.
Techniques: Gradient Boosting Machine (GBM), Adap-
tive Boosting (AdaBoost), Generalized linear and Addi-
tive Models Boosting (GAMBoost), Logistic Regression
Boosting (LogitBoost), eXtreme Gradient Boosting Tree
(xGBTree), and C5.0.

#Boosting Itera-
tions

[N] The numbers of iterations that are
used to construct models.

C5.0={1, 10, 20, 30, 40}, GAM-
Boost={50, 100, 150, 200, 250},
LogitBoost={11, 21, 31, 41, 51},
GBM,xGBTree={50, 100, 150, 200, 250}

#Trees [N] The numbers of classification trees. AdaBoost={50, 100, 150, 200, 250}
Shrinkage [N] A shrinkage factor to be applied to

each tree in the expansion (a.k.a., learn-
ing rate or step-size reduction).

GBM={0.1}, xGBTree={0.3}

Max Tree Depth [N] The maximum depth per tree. AdaBoost, GBM, xGBTree={1, 2, 3,
4, 5}

Min. Terminal
Node Size

[N] The minimum terminal nodes in
trees.

GBM={10}

Winnow [L] Should predictor winnowing (i.e fea-
ture selection) be applied?

C5.0={FALSE, TRUE}

AIC Prune? [L] Should pruning using stepwise fea-
ture selection be applied?

GAMBoost={FALSE, TRUE}

Model Type [F] Either tree for the predicted class or
rules for model confidence values.

C5.0={rules, tree}

[N] denotes a numeric value; [L] denotes a logical value; [F] denotes a factor value.
The default values are shown in bold typeface and correspond to the default values of the Caret R package.

(1) Performance improvement: Caret improves the AUC
performance of defect prediction models by up to 40
percentage points. Moreover, the performance improve-
ment provided by Caret is non-negligible for 16 of the
26 studied classification techniques (62%).

(2) Performance stability: Caret-optimized classifiers are
at least as stable as classifiers that are trained using the
default settings. Moreover, the Caret-optimized clas-
sifiers of 9 of the 26 studied classification techniques
(35%) are more stable than classifiers that are trained
using the default values.

Since we find that parameter settings can have such an im-
pact on model performance, we revisit prior analyses that

rank classification techniques by their ability to yield top-
performing defect prediction models. We find that Caret
increases the likelihood of producing a top-performing clas-
sifier by as much as 83%, suggesting that automated pa-
rameter optimization can substantially shift the ranking of
classification techniques.

Our results lead us to conclude that parameter settings
can indeed have a large impact on the performance of de-
fect prediction models, suggesting that researchers should
experiment with the parameters of the classification tech-
niques. Since automated parameter optimization techniques
like Caret yield substantially benefits in terms of perfor-
mance improvement and stability, while incurring a manage-
able additional computational cost, they should be included
in future defect prediction studies.



To the best of our knowledge, this is the first paper to study:
– A large collection of 43 parameters that are derived

from 26 of the most frequently-used classification tech-
niques in the context of defect prediction.

– The improvement and stability of the performance of
defect prediction models when automated parameter
optimization is applied.

– The ranking of classification techniques for defect pre-
diction when automated parameter optimization is ap-
plied.

Paper Organization. The remainder of the paper is or-
ganized as follows. Section 2 illustrates the importance of
parameter settings of classification techniques for defect pre-
diction models. Section 3 positions this paper with respect
to the related work. Section 4 presents the design and ap-
proach of our case study. Section 5 presents the results of
our case study with respect to our two research questions.
Section 6 revisits prior analyses that rank classification tech-
niques by their likelihood of producing top-performing defect
prediction models. Section 7 discusses the broader implica-
tions of our findings. Section 8 discloses the threats to the
validity of our study. Finally, Section 9 draws conclusions.

2. THE RELEVANCE OF PARAMETER

SETTINGS FOR DEFECT PREDICTION

MODELS
A variety of classification techniques are used to train de-

fect prediction models. Since some classification techniques
do not require parameter settings (e.g., logistic regression),
we first assess whether the most commonly used classifica-
tion techniques require parameter settings.

We first start with the 6 families of classification tech-
niques that are used by Lessmann et al. [32]. Based on a
recent literature review of Laradji et al. [31], we add 5 ad-
ditional families of classification techniques that have been
recently used in defect prediction studies. In total, we study
30 classification techniques that span 11 classifier families.
Table 1 provides an overview of the 11 families of classifica-
tion techniques.

Our literature analysis reveals that 26 of the 30 most com-
monly used classification techniques (87%) require at least
one parameter setting. Table 1 provides an overview of the
25 unique parameters that apply to the studied classifica-
tion techniques.

26 of the 30 most commonly used classification techniques
(87%) require at least one parameter setting, indicating that
selecting an optimal parameter setting for defect prediction
models is an important experimental design choice.

3. RELATED WORK & RESEARCH QUES-

TIONS
Recent research has raised concerns about parameter set-

tings of classification techniques when applied to defect pre-
diction models. For example, Koru et al. [13] and Mende et
al. [36, 37] point out that selecting different parameter set-
tings can impact the performance of defect models. Jiang et
al. [22] and Tosun et al. [58] also point out that the de-
fault parameter settings of research toolkits (e.g., R [46],
Weka [14], Scikit-learn [44], MATLAB [35]) are suboptimal.

Although prior work suggests that defect prediction mod-
els may underperform if they are trained using suboptimal
parameter settings, parameters are often left at their de-
fault values. For example, Mende et al. [38] use the default
number of decision trees to train a random forest classifier
(provided by an R package). Weyuker et al. [60] also train
defect models using the default setting of C4.5 that is pro-
vided by Weka. Jiang et al. [21] and Bibi et al. [2] also use
the default value of the k-nearest neighbours classification
technique (k = 1).
In addition, the implementations of classification tech-

niques that are provided by different research toolkits often
use different default settings. For example, for the number
of decision trees of the random forest technique, the default
settings vary from 10 for the bigrf R package [34], 50 for
MATLAB [35], 100 for Weka [14], to 500 for the random-

Forest R package [33]. Moreover, for the number of hidden
layers of the neuron networks techniques, the default set-
tings vary from 1 for the neuralnet R package [11], 2 for the
nnet R package [48] and Weka [14], to 10 for MATLAB [35].
Such a variation of default settings that are provided by dif-
ferent research toolkits may influence conclusions of defect
prediction studies [53].

There are many empirical studies in the area of Search-
Based Software Engineering (SBSE) [16] that aim to opti-
mize software engineering tasks (e.g., software testing [20]).
However, little SBSE research has been applied to optimize
the parameters of classification techniques for defect pre-
diction models. Although prior studies have explored the
impact of parameter settings, they have only explored a few
parameter settings. To more rigorously explore the param-
eter space of classification techniques for defect prediction
models, we formulate the following research question:

(RQ1) How much does the performance of defect prediction
models improve when automated parameter optimization is
applied?

Recent research voices concerns about the stability of per-
formance estimates that are obtained from classification tech-
niques when applied to defect prediction models. For ex-
ample, Menzies et al. [40] and Mittas et al. [41] argue that
unstable classification techniques can make replication of de-
fect prediction studies more difficult. Shepperd et al. [49],
and Jorgensen et al. [23] also point out that the unstable
performance estimates that are produced by classification
techniques may introduce bias, which can mislead different
research groups to draw erroneous conclusions. Myrtveit et
al. [42] show that high variance in performance estimates
from classification techniques is a critical problem in com-
parative studies of prediction models. Song et al. [51] also
show that applying different settings to instable classifica-
tion techniques will provide different results.

Like any form of classifier optimization, automated pa-
rameter optimization may increase the risk of overfitting,
i.e., producing a classifier that is too specialized for the data
from which it was trained to apply to other datasets. To in-
vestigate whether parameter optimization is impacting the
stability of defect prediction models, we formulate the fol-
lowing research questions:

(RQ2) How stable is the performance of defect prediction
models when automated parameter optimization is applied?



4. CASE STUDY APPROACH
In this section, we discuss our selection criteria for the

studied systems and then describe the design of our case
study experiment that we perform in order to address our
research questions.

4.1 Studied Datasets
In selecting the studied datasets, we identified three im-

portant criteria that needed to be satisfied:

– Criterion 1 — Publicly-available defect datasets
from different corpora: Our recent work shows that
researchers tend to reuse experimental components (e.g.,
datasets, metrics, and classifiers) [56]. Song et al. [52]
and Ghotra et al. [12] also show that the performance
of defect prediction models can be impacted by the
dataset from which they are trained. To combat po-
tential bias in our conclusions and to foster replica-
tion of our experiments, we choose to train our defect
prediction models using datasets from different cor-
pora and domains that are hosted in publicly-available
data repositories.

– Criterion 2 — Dataset robustness: Mende et al. [36]
show that models that are trained using small datasets
may produce unstable performance estimates. An in-
fluential characteristic in the performance of a classifi-
cation technique is the number of Events Per Variable
(EPV) [45, 55], i.e., the ratio of the number of oc-
currences of the least frequently occurring class of the
dependent variable (i.e., the events) to the number of
independent variables that are used to train the model
(i.e., the variables). Our recent work shows that defect
prediction models that are trained using datasets with
a low EPV value are especially susceptible to unstable
results [55]. To mitigate this risk, we choose to study
datasets that have an EPV above 10, as suggested by
Peduzzi et al. [45].

– Criterion 3 — Sane defect data: Since it is un-
likely that more software modules have defects than
are free of defects, we choose to study datasets that
have a rate of defective modules below 50%.

To satisfy criterion 1, we began our study using 101 publicly-
available defect datasets. 76 datasets are downloaded from
the Tera-PROMISE Repository,1 12 clean NASA datasets
are provided by Shepperd et al. [50], 5 are provided by
Kim et al. [26, 61], 5 are provided by D’Ambros et al. [6, 7],
and 3 are provided by Zimmermann et al. [64]. To satisfy
criterion 2, we exclude the 78 datasets that we found to
have EPV values below 10. To satisfy criterion 3, we ex-
clude an additional 5 datasets because they have a defective
rate above 50%.

Table 2 provides an overview of the 18 datasets that satisfy
our criteria for analysis. To strengthen the generalizability
of our results, the studied datasets include proprietary and
open source systems of varying size and domain.

Figure 1 provides an overview of the approach that we
apply to each studied system. We describe each step in the
approach below.

1http://openscience.us/repo/

Table 2: An overview of the studied systems.
Domain System Defective #Files #Metrics EPV

Rate

NASA JM11 21% 7,782 21 80
PC51 28% 1,711 38 12

Proprietary Prop-12 15% 18,471 20 137
Prop-22 11% 23,014 20 122
Prop-32 11% 10,274 20 59
Prop-42 10% 8,718 20 42
Prop-52 15% 8,516 20 65

Apache Camel 1.22 36% 608 20 11
Xalan 2.52 48% 803 20 19
Xalan 2.62 46% 885 20 21

Eclipse Platform 2.03 14% 6,729 32 30
Platform 2.13 11% 7,888 32 27
Platform 3.03 15% 10,593 32 49
Debug 3.44 25% 1,065 17 15
SWT 3.44 44% 1,485 17 38
JDT5 21% 997 15 14
Mylyn5 13% 1,862 15 16
PDE5 14% 1,497 15 14

1Provided by Shepperd et al. [50]. 4Provided by Kim et al. [26, 61].
2Provided by Jureczko et al. [24]. 5Provided by Ambros et al. [6].
3Provided by Zimmermann et al. [62].

4.2 Generate Bootstrap Sample
In order to ensure that the conclusions that we draw about

our models are robust, we use the out-of-sample bootstrap
validation technique [8, 55], which leverages aspects of sta-
tistical inference [9]. The out-of-sample bootstrap is made
up of two steps:

(Step 1) A bootstrap sample of size N is randomly drawn
with replacement from an original dataset, which
is also of size N .

(Step 2) A model is trained using the bootstrap sample
and tested using the rows that do not appear
in the bootstrap sample. On average, 36.8% of
the rows will not appear in the bootstrap sample,
since it is drawn with replacement [8].

The out-of-sample bootstrap process is repeated 100 times,
and the average out-of-sample performance is reported as
the performance estimate.

Unlike the ordinary bootstrap, the out-of-sample boot-
strap technique fits models using the bootstrap samples, but
rather than testing the model on the original sample, the
model is instead tested using the rows that do not appear
in the bootstrap sample [55]. Thus, the training and testing
corpus do not share overlapping observations.

Unlike k-fold cross-validation, the out-of-sample bootstrap
technique fits models using a dataset that is of equal length
to the original dataset. Cross-validation splits the data into
k equal parts, using k - 1 parts for fitting the model, setting
aside 1 fold for testing. The process is repeated k times, us-
ing a different part for testing each time. However, Mende et
al. [36] point out that the scarcity of defective modules in the
small testing corpora of 10-fold cross validation may produce
biased and unstable results. Prior studies have also shown
that 10-fold cross validation can produce unstable results
for small samples [3]. On the other hand, our recent re-
search demonstrates that the out-of-sample bootstrap tends
to produce the least biased and most stable performance es-
timates [55]. Moreover, the use of out-of-sample bootstrap
is recommended for high-skewed datasets [17], as is the case
in our defect prediction datasets.

http://openscience.us/repo/
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Figure 1: An overview of our case study approach.

4.3 Caret Parameter Optimization
Since it is impractical to assess all of the possible param-

eter settings of the parameter spaces, we use the optimized
parameter settings suggested by the train function of the
caret R package [30]. Caret suggests candidate settings for
each of the studied classification techniques, which can be
checked using the getModelInfo function of the caret R
package [30]. The optimization process is made up of three
steps.

(Step 1) Generate candidate parameter settings: The
train function will generate candidate parameter
settings based on a given budget threshold (i.e.,
tune length) for evaluation. The budget thresh-
old indicates the number of different values to be
evaluated for each parameter. As suggested by
Kuhn [28], we use a budget threshold of 5. For
example, the number of boosting iterations of the
C5.0 classification technique is initialized to 1 and
is increased by 10 until the number of candidate
settings reaches the budget threshold (e.g., 1, 10,
20, 30, 40). Table 1 shows the candidate param-
eter settings for each of the studied parameters.
The default settings are shown in bold typeface.

(Step 2) Evaluate candidate parameter settings: Caret
evaluates all of the potential combinations of the
candidate parameter settings. For example, if a
classification technique accepts 2 parameters with
5 candidate parameter settings for each, Caret
will explore all 25 potential combinations of pa-
rameter settings (unless the budget is exceeded).
We use 100 repetitions of the out-of-sample boot-
strap to estimate the performance of classifiers
that are trained using each of the candidate pa-
rameter settings. For each candidate parameter
setting, a classifier is fit to a subsample of the
training corpus and we estimate the performance
of a model using those rows in the training cor-
pus that do not appear in the subsample that was
used to trained the classifier.

(Step 3) Identify the Caret-optimized setting: Fi-
nally, the performance estimates are used to iden-
tify which parameter settings are the most opti-
mal. The Caret-optimized setting is the one that
achieves the highest performance estimate.

4.4 Construct Defect Models
In order to measure the impact that automated parame-

ter optimization has on defect prediction models, we train
defect models using the Caret-optimized settings and the
default settings. To ensure that the training and testing
corpora have similar characteristics, we do not re-balance or
re-sample the training data, as suggested by Turhan [59].
Normality Adjustment. Analysis of the distributions of
our independent variables reveals that they are right-skewed.
As suggested by previous research [22], we mitigate this skew
by log-transforming each independent variable (ln(x + 1))
prior to using them to train our models.

4.5 Calculate Performance
Prior studies have argued that threshold-dependent per-

formance metrics (i.e., precision and recall) are problematic
because they: (1) depend on an arbitrarily-selected thresh-
old [32, 47] and (2) are sensitive to imbalanced data [18].
Instead, we use the Area Under the receiver operator char-
acteristic Curve (AUC) to measure the discrimination power
of our models as suggested by recent research [32].

The AUC is a threshold-independent performance metric
that measures a classifier’s ability to discriminate between
defective and clean modules (i.e., do the defective modules
tend to have higher predicted probabilities than clean mod-
ules?). AUC is computed by measuring the area under the
curve that plots the true positive rate against the false pos-
itive rate, while varying the threshold that is used to deter-
mine whether a file is classified as defective or not. Values
of AUC range between 0 (worst performance), 0.5 (random
guessing performance), and 1 (best performance).

5. CASE STUDY RESULTS
In this section, we present the results of our case study

with respect to our two research questions.

(RQ1) How much does the performance of de-
fect prediction models improve when automated
parameter optimization is applied?

Approach. To address RQ1, we start with the AUC per-
formance distribution of the 26 classification techniques that
require at least one parameter setting (see Section 2). For
each classification technique, we compute the difference in
the performance of classifiers that are trained using default
and Caret-optimized parameter settings. We then use box-
plots to present the distribution of the performance differ-
ence for each of the 18 studied datasets. To quantify the
magnitude of the performance improvement, we use Co-
hen’s d effect size [4], which is the difference between the
two means divided by the standard deviation of the data
(d = x̄1−x̄2

s.d.
). The magnitude is assessed using the thresh-

olds provided by Cohen [5]:

effect size =















negligible if Cohen’s d ≤ 0.2
small if 0.2 < Cohen’s d ≤ 0.5
medium if 0.5 < Cohen’s d ≤ 0.8
large if 0.8 < Cohen’s d

Furthermore, understanding the most influential parame-
ters would allow researchers to focus their optimization ef-
fort. To this end, we investigate the performance difference
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Figure 2: The performance improvement and its Co-
hen’s d effect size for each of the studied classifica-
tion techniques.

for each of the studied parameters. To quantify the indi-
vidual impact of each parameter, we train a classifier with
all of the studied parameters set to their default settings,
except for the parameter whose impact we want to measure,
which is set to its Caret-optimized setting. We estimate the
impact of each parameter using the difference of its perfor-
mance with respect to a classifier that is trained entirely
using default parameter settings.
Results. Caret improves the AUC performance by
up to 40 percentage points. Figure 2 shows the perfor-
mance improvement for each of the 18 studied datasets and
for each of the classification techniques. The boxplots show
that Caret can improve the AUC performance by up to 40
percentage points. Moreover, the performance improvement
provided by applying Caret is non-negligible (i.e., d > 0.2)
for 16 of the 26 studied classification techniques (62%). This
indicates that parameter settings can substantially influence
the performance of defect prediction models.

C5.0 boosting yields the largest performance im-
provement when Caret is applied. According to Co-
hen’s d, the performance improvement provided by applying
Caret is large for 9 of the 26 studied classification techniques
(35%). On average, Figure 2 shows that the C5.0 boost-
ing classification technique benefits most by applying Caret,
with a median performance improvement of 27 percentage
points. Indeed, the C5.0 boosting classification technique
improves from 6 to 40 percentage points.

Moreover, Figure 3 shows that the #boosting iterations

parameter of the C5.0 classification technique is the most
influential parameter, while the winnow and model type pa-
rameters tend to have less of an impact. Indeed, the default
#boosting iterations setting that is provided by the C5.0
R package [29] is 1, indicating that only one C5.0 tree model
is used for prediction. Moreover, we find that, when large
datasets of more than 1,000 modules are analyzed, the per-
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Figure 3: The AUC performance difference of the
top-20 most sensitive parameters.

formance of C5.0 boosting with the default setting tends
to underperform. Nevertheless, we find that the optimal
#boosting iterations parameter is 40, suggesting that the
default parameter settings of the research toolkits are sub-
optimal for defect prediction datasets, which agrees with the
suspicion of prior studies [15, 22, 51, 58].

In addition to C5.0 boosting, other classifiers also yield a
considerably large benefit. Figure 2 shows that the perfor-
mance of the adaptive boosting (i.e., AdaBoost), advanced
neural networks (i.e., AVNNet, PCANNet, NNet, MLP, and
MLPWeightDecay), CART, and flexible discriminant anal-
ysis (FDA) classification techniques also have a large effect
size with a median performance improvement from 13-24
percentage points. Indeed, Figure 3 shows that the fluctua-
tion of the performance of the advanced neural network tech-
niques is largely caused by changing the weight decay, but
not the #hidden units or bagging parameters. Moreover,
the complexity parameter of CART and max tree depth of
adaptive boosting classification techniques are also sensitive
to parameter optimization.

Caret improves the AUC performance of defect prediction
models by up to 40 percentage points. Moreover, the per-
formance improvement provided by Caret is non-negligible
for 16 of the 26 studied classification techniques (62%).

(RQ2) How stable is the performance of defect
prediction models when automated parameter
optimization is applied?

Approach. To address RQ2, we start with the AUC per-
formance distribution of the 26 studied classification tech-
niques on each of the 18 studied datasets. The stability of
a classification technique is measured in terms of the vari-
ability of the performance estimates that are produced by
the 100 iterations of the out-of-sample bootstrap. For each
classification technique, we compute the standard deviation
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Figure 4: The stability ratio of the classifiers that
are trained using Caret-optimized settings com-
pared to the classifiers that are trained using de-
fault settings for each of the studied classification
techniques.

(S.D.) of the bootstrap performance estimates of the classi-
fiers where Caret-optimized settings have been used and the
S.D. of the bootstrap performance estimates of the classifiers
where the default settings have been used. To analyze the
difference of the stability between two classifiers, we present
distribution of the stability ratio (i.e., S.D. of the optimized
classifier divided by the S.D. of the default classifier) of the
two classifiers when apply to 18 studied datasets.

Similar to RQ1, we analyze the parameters that have the
largest impact on the stability of the performance estimates.
To this end, we investigate the stability ratio for each of the
studied parameters. To quantify the individual impact of
each parameter, we train a classifier with all of the studied
parameters set to their default settings, except for the pa-
rameter whose impact we want to measure, which is set to
its Caret-optimized setting. We estimate the impact of each
parameter using the stability ratio of its S.D. of performance
estimates with respect to a classifier that is trained entirely
using default settings.
Results. Caret-optimized classifiers are at least as
stable as classifiers that are trained using the de-
fault settings. Figure 4 shows that there is a median sta-
bility ratio of at least one for all of the studied classification
techniques. Indeed, we find that the median ratio of one
tends to appear for the classification techniques that yield
negligible performance improvements in RQ1. These tight
stability ratio ranges that are centered at one indicate that
the stability of classifiers is not typically impacted by Caret-
optimized settings.

Moreover, the Caret-optimized classifiers of 9 of
the 26 studied classification techniques (35%) are
more stable than classifiers that are trained using
the default values. Indeed, Figure 4 shows that there
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Figure 5: The stability ratio of the top-20 most sen-
sitive parameters.

is a median stability ratio of 0.11 (NNet) to 0.61 (MLP)
among the 9 classification techniques where the stability has
improved. This equates to a 39%-89% stability improvement
for these Caret-optimized classifiers. Indeed, Figure 5 shows
that the stability of the performance of the advanced neural
network techniques is largely caused by changing the weight
decay, but not the #hidden units or bagging parameters,
which consistent with our findings in RQ1.

Caret-optimized classifiers are at least as stable as classi-
fiers that are trained using the default settings. Moreover,
the Caret-optimized classifiers of 9 of the 26 studied clas-
sification techniques (35%) are more stable than classifiers
that are trained using the default values.

6. REVISITING THE RANKING OF CLAS-

SIFICATION TECHNIQUES FOR DEFECT

PREDICTION MODELS
Prior studies have ranked classification techniques accord-

ing to their performance on defect prediction datasets. For
example, Lessmann et al. [32] demonstrate that 17 of 22
studied classification techniques are statistically indistinguish-
able. On the other hand, Ghotra et al. [12] argue that clas-
sification techniques can have a large impact on the perfor-
mance of defect prediction models.

However, these studies have not taken parameter opti-
mization into account. Since we find that parameter settings
can improve the performance of the classifiers that are pro-
duced (see RQ1), we set out to revisit the findings of prior
studies when Caret-optimized settings have been applied.

6.1 Approach
As Keung et al. [25] point out, dataset selection can be a

source of bias in an analysis of top-performing classification
techniques. To combat the bias that may be introduced by
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Figure 7: The likelihood of each technique appearing in the top Scott-Knott ESD rank. Circle dots and
triangle dots indicate the median likelihood, while the error bars indicate the 95% confidence interval of the
likelihood of the bootstrap analysis. A likelihood of 80% indicates that a classification technique appears at
the top-rank for 80% of the studied datasets.

dataset selection, we use a bootstrap-based Ranking Likeli-
hood Estimation (RLE) experiment. Figure 6 provides an
overview of our RLE experiment. The experiment uses a
statistical comparison approach over multiple datasets that
leverages both effect size differences and aspects of statisti-
cal inference [9]. The experiment is divided into two steps
that we describe below.
(Step 1) Ranking Generation. We first start with the
AUC performance distribution of the 26 studied classifica-
tion techniques with the Caret-optimized parameter settings
and the default settings. To find statistically distinct ranks
of classification techniques within each dataset, we provide
the AUC performance distribution of the 100 bootstrap iter-
ations of each classification technique with both parameter
settings to a Scott-Knott Effect Size Difference (ESD) test
(α = 0.05) [55]. The Scott-Knott ESD test is a variant of the
Scott-Knott test that is effect size aware. The Scott-Knott
ESD test uses hierarchical cluster analysis to partition the
set of treatment means into statistically distinct groups.

Unlike the traditional Scott-Knott test [19], the Scott-
Knott ESD test will merge any two statistically distinct

groups that have a negligible Cohen’s d effect size [4] into
one group. The Scott-Knott ESD test also overcomes the
confounding issue of overlapping groups that are produced
by several other post-hoc tests [12, 41], such as Nemenyi’s
test [43], which were used in prior studies [32]. We imple-
ment the Scott-Knott ESD test based on the implementation
of the Scott-Knott test provided by the ScottKnott R pack-
age [19] and the implementation of Cohen’s d provided by
the effsize R package [57].

We use the Scott-Knott ESD test in order to control for
dataset-specific model performance, since some datasets may
have a tendency to produce over- or under-performing clas-
sifiers. Finally, for each classification technique, we have 18
different Scott-Knott ranks (i.e., one from each dataset).
(Step 2) Bootstrap Analysis. We then perform a boot-
strap analysis to approximate the empirical distribution of
the likelihood that a technique will appear in the top Scott-
Knott ESD rank [8]. The key intuition is that the rela-
tionship between the likelihood that is derived from studied
datasets and the true likelihood that would be derived from
the population of defect datasets is asymptotically equiva-



lent to the relationship between the likelihood that is derived
from bootstrap samples and the likelihood that is derived
from studied datasets. We first input the ranking of the
studied classification techniques on 18 studied datasets to
the bootstrap analysis, which is comprised of two steps:

(Step 2-1) A bootstrap sample of 18 datasets is randomly
drawn with replacement from the ranking table,
which is also of comprised of size 18 studied
datasets.

(Step 2-2) For each classification technique, we compute
the likelihood that a technique appears in the
top Scott-Knott ESD rank in the bootstrap sam-
ple.

The bootstrap analysis is repeated 100 times. We then
present the results with its 95% confidence interval, which
is derived from the bootstrap analysis.

6.2 Results
C5.0 boosting tends to yield top-performing defect

prediction models more frequently than the other
studied classification techniques. Figure 7 shows the
likelihood of each technique appearing in the top Scott-
Knott ESD rank. We find that there is a 83% likelihood
of C5.0 appearing in the top Scott-Knott rank. Further-
more, the bootstrap-derived 95% confidence interval ranges
from 67% to 94%. On the other hand, when default settings
are applied, C5.0 boosting has a 0% likelihood of appearing
in the top rank. This echoes the findings of RQ1, where
C5.0 boosting was found to be the classification technique
that is most sensitive to parameter optimization.

Unlike prior work in the data mining domain, we find
that random forest is not the most frequent top performer
in our defect prediction datasets. Indeed, we find that there
is a 55% likelihood of random forest appearing in the top
Scott-Knott rank with a bootstrap-derived 95% confidence
interval that ranges from 33% to 72%. A one-tailed boot-
strap t-test reveals that the likelihood of C5.0 producing a
top performing classifier is significantly larger than the likeli-
hood of random forest producing a top-performing classifier
(α = 0.05). This contradicts the conclusions of Fernandez-
Delgado et al. [10], who found that random forest tends to
yield top-performing classifiers the most frequently. The
contradictory conclusions indicate that the domain-specifics
play an important role.

Automated parameter optimization increases the
likelihood of appearing in the top Scott-Knott ESD
rank by as much as 83%. Figure 7 shows that automated
parameter optimization increases the likelihood of 11 of the
studied 26 classification techniques by as much as 83% (i.e.,
C5.0 boosting). This suggests that automated parameter
optimization can substantially shift the ranking of classifi-
cation techniques.

C5.0 boosting tends to yield top-performing defect predic-
tion models more frequently than the other studied classifi-
cation techniques. This disagrees with prior studies in the
data mining domain, suggesting that domain-specifics play
a key role. Furthermore, automated parameter optimiza-
tion increases the likelihood of appearing in the top Scott-
Knott ESD rank by as much as 83%.

7. DISCUSSION

7.1 Cross-Context Defect Prediction
The performance improvement of defect prediction mod-

els is estimated using a bootstrap resampling approach (see
RQ1). While this bootstrap resampling approach is common
in other research areas [3, 8, 9], recent studies in software en-
gineering tend to estimate the performance of defect models
using data from different contexts [63]. Hence, we perform
an additional analysis in order to investigate whether Caret
still improves AUC performance in a cross-context setting.
We analyze the performance of defect prediction models that
are trained in one context, but tested in another context. We
then compute the performance improvement between the
models that are trained with Caret-optimal and default set-
tings.

Caret still improves the performance of cross-
context defect prediction models by up to 30 per-
centage points. Based on an analysis of 5 releases of pro-
prietary systems, 2 releases of Apache Xalan, and 3 releases
of Eclipse Platform, we find that the performance of cross-
context classifiers that are trained using Caret outperform
classifiers that are trained using default settings. For exam-
ple, we find that when neural network classifiers are trained
using Eclipse Platform 2.1 and tested using Eclipse Plat-
form 3.0, the AUC performance improves by 30 percentage
points when compared to classifiers that are trained using
default settings. This suggests that automated parameter
optimization also yields a large benefit in terms of cross-
context defect prediction.

7.2 Computational Cost
Our case study approach is computationally-intensive (i.e.,

450 parameter settings × 100 out-of-sample bootstrap rep-
etitions × 18 systems = 810,000 results). However, the re-
sults can be computed in parallel. Hence, we design our
experiment using a High Performance Computing (HPC)
environment. Our experiments are performed on 43 high
performance computing machines with 2x Intel Xeon 5675
@3.1 GHz (24 hyper-threads) and 64 GB memory (i.e., in to-
tal, 24 hyper-threads × 43 machines = 1,032 hyper-threads).
Each machine connects to a 2 petabyte shared storage array
via a dual 10-gigabit fibre-channel connection.

For each of the classification techniques, we compute the
average amount of execution time that was consumed by
Caret when producing suggested parameter settings for each
of the studied datasets.

Caret adds less than 30 minutes of additional com-
putation time to 65% of the studied classification
techniques. We find that the optimization cost of 17 of
the 26 studied classification techniques (65%) is less than 30
minutes. We find that the C5.0 and extreme gradient boost-
ing classification techniques, which yield top-performing clas-
sifiers more frequently than other classification techniques,
fall into this category. This indicates that applying Caret
tends to improve the performance of defect models while
incurring a manageable additional computational cost.

On the other hand, 12% of the studied classification tech-
niques require more than 3 additional hours of computation
time to apply Caret. Only AdaBoost, MLPWeightDecay,
and RBF incur this large overhead. Nonetheless, the com-
putation could still be completed if it was run overnight.
Since defect prediction models do not need to be built very
often in practice, this cost should still be manageable.



8. THREATS TO VALIDITY
We now discuss the threats to the validity of our study.

8.1 Construct Validity
The datasets that we analyze are part of several collections

(e.g., NASA and PROMISE), which each provide different
sets of metrics. Since the metrics vary, this is a point of
variation between the studied systems that could impact our
results. However, our within-family datasets analysis shows
that the number and type of predictors do not influence our
findings. Thus, we conclude that the variation of metrics
does not pose a threat to our study. On the other hand, the
variety of metrics also strengthens the generalization of our
results, i.e., our findings are not bound to one specific set
of metrics.

The Caret budget, which controls the number of settings
that we evaluate for each parameter, limits our exploration
of the parameter space. Although our budget setting is se-
lected based on the literature [30], selecting a different bud-
get may yield different results. However, the results of our
study show that a modest exploration of the parameter space
can already lead to a large change in the performance of de-
fect prediction models.

Our results from RQ1 show that Caret improves the per-
formance of defect prediction models. However, the perfor-
mance improvement may increase the complexity of defect
prediction models. Thus, we plan to investigate the rela-
tionship between model complexity and performance in fu-
ture work.

8.2 Internal Validity
We measure the performance of our classifiers using AUC.

Other performance measures may yield different results. We
plan to expand the set of measures that we adopt in our
future work.

The generalizability of the bootstrap-based Ranking Like-
lihood Estimation (RLE) is dependent on how representative
our sample is. To combat potential bias in our samples, we
analyze datasets of different sizes and domains. Nonetheless,
a larger sample may yield more robust results.

Prior work has shown that dirty data may influence con-
clusion that are drawn from defect prediction studies [12,
53, 54]. Hence, noisy data may be influencing our conclu-
sions. However, we conduct a highly-controlled experiment
where known-to-be noisy NASA data [50] has been cleaned.
Nonetheless, dataset cleanliness should be inspected in fu-
ture work.

8.3 External Validity
We study a limited number of systems in this paper. Thus,

our results may not generalize to all software systems. How-
ever, the goal of this paper is not to show a result that
generalizes to all datasets, but rather to show that there are
datasets where parameter optimization matters. Nonethe-
less, additional replication studies may prove fruitful.

9. CONCLUSIONS
Defect prediction models are classifiers that are trained to

identify defect-prone software modules. The characteristics
of the classifiers that are produced are controlled by config-
urable parameters. Recent studies point out that classifiers
may under-perform because they were trained using subop-
timal default parameter settings. However, it is impractical

to explore all of the possible settings in the parameter space
of a classification technique.

In this paper, we investigate the performance of defect
prediction models where Caret [30] — an automated param-
eter optimization technique — has been applied. Through a
case study of 18 datasets from systems that span both pro-
prietary and open source domains, we make the following
observations:

– Caret improves the AUC performance of defect pre-
diction models by up to 40 percentage points. More-
over, the performance improvement provided by Caret
is non-negligible for 16 of the 26 studied classification
techniques (62%).

– Caret-optimized classifiers are at least as stable as clas-
sifiers that are trained using the default settings. More-
over, the Caret-optimized classifiers of 9 of the 26 stud-
ied classification techniques (35%) are more stable than
classifiers that are trained using the default values.

– Caret increases the likelihood of producing a top-
performing classifier by as much as 83%, suggesting
that automated parameter optimization can substan-
tially shift the ranking of classification techniques.

Our results lead us to conclude that parameter settings
can indeed have a large impact on the performance of de-
fect prediction models, suggesting that researchers should
experiment with the parameters of the classification tech-
niques. Since automated parameter optimization techniques
like Caret yield substantial benefits in terms of performance
improvement and stability, while incurring a manageable ad-
ditional computational cost, they should be included in fu-
ture defect prediction studies.

Finally, we would like to emphasize that we do not seek to
claim the generalization of our results. Instead, the key mes-
sage of our study is that there are datasets where there are
statistically significant differences between the performance
of classification techniques that are trained using default and
Caret-optimized parameter settings. Hence, we recommend
that software engineering researchers experiment with auto-
mated parameter optimization (e.g., Caret) instead of rely-
ing on the default parameter setting of the research toolkits,
assuming that other parameter settings are not likely to lead
to significant improvements. Given the availability of auto-
mated parameter optimization in commonly-used research
toolkits (e.g., Caret for R [30], MultiSearch for Weka [14],
GridSearch for Scikit-learn [44]), we believe that our recom-
mendation is a rather simple and low-cost recommendation
to adopt.
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