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Abstract—Software ecosystems have had a tremendous impact
on computing and society, capturing the attention of businesses,
researchers, and policy makers alike. Massive ecosystems like
the JavaScript node package manager (npm) is evidence of
how packages are readily available for use by software projects.
Due to its high-dimension and complex properties, software
ecosystem analysis has been limited. In this paper, we leverage
topological methods in visualize the high-dimensional datasets
from a software ecosystem. Topological Data Analysis (TDA)
is an emerging technique to analyze high-dimensional datasets,
which enables us to study the shape of data. We generate the
npm software ecosystem topology to uncover insights and extract
patterns of existing libraries by studying its localities. Our real-
world example reveals many interesting insights and patterns
that describes the shape of a software ecosystem.

I. INTRODUCTION

Software ecosystems have a tremendous impact on contem-
porary software development. Software developers are more
likely to rely on third-party libraries from the ecosystem, to
gain the benefits of quality, speed to market and ease of use.
One such example of a emerging software ecosystem is the
JavaScript Package ecosystem. Since inception, the ecosystem
has exploded its growth to over half a million1 packages
available for its users, making it the biggest and popular Open
Source Software ecosystems in recent times. A ecosystem
itself is comprised of many social and technical aspects that
can be represented as high-dimensional data.

The datasets gathered from software ecosystems are vastly
high-dimensional, noisy and are generally challenging when
attempting to identify patterns or insights at a higher level. A
recent study by Wittern et al. [1] investigated some of the dy-
namics in the study. They studied the ecosystem from several
perspectives of evolution, popularity and adoption, however,
patterns between the different features analyzed separately.
Other related work [2], [3] focus on the dependencies between
the different packages within the npm ecosystem while others
have studied from certain social-technical aspects [4].

In this paper, we apply topological methods to study com-
plex high-dimensional data sets by extracting shapes (patterns)
and obtaining insights about them. Leveraging concepts and
algorithms from the mathematics field of Topological Data
Analysis (TDA), we provide a geometric representation of

1as of July, 2017 the size of the npm repository reached 475,000 packages.

complex datasets. TDA permits the analysis of relationships
between related dataset features. We illustrate our approach
by applying it to a representative sample of packages and
six key features that describe the ecosystem topology. We are
able to extract the following insights from our generated npm
ecosystem topology:

• The topological shape becomes more refined as more data
is added.

• The number of dependencies for a package is a strong
feature in the topology.

• Packages that are more likely to be used within ecosystem
are located separately from packages meant for applica-
tion usage outside the ecosystem.

• Top authors of packages tend to release packages in-
tended for usage within the ecosystem itself.

• Packages are not likely to be affiliated to an organiza-
tional domain.

• Packages are licensed by a dominant software license
(i.e., MIT).

• Popular tagged keywords are common with packages
across the topology.

Furthermore, we show how the topology is more insightful
than standard alternative methods such as archetypal analysis.
We envision that the study of topology and investigation of
additional key features may lead to better understanding of
software ecosystems.

II. BACKGROUND

Lum et al. [5] showed how the shape of the topology can
be leveraged to extract useful insights. Lum and colleagues
demonstrate how TDA allows exploration of the data, without
first having to formulate a query or hypothesis, demonstrating
the importance of understanding the “shape” of data in order
to extract meaningful insights.

Topology is the field within mathematics that deals with the
study of shapes. It has its origins in the 18th century, with the
work of the Swiss mathematician Leonhard Euler. TDA is the
result of a concerted effort to adapt topological methods to
various applied problems, one of which is the study of large
and high dimensional data sets. In Lum’s study, they applied
topology to three very different kinds of data, namely gene
expression from breast tumors, voting data from the United



Figure 1: Taken from [5], A 3D object (hand) represented as a
point cloud. B) A filter value is applied to the point cloud and
the object is now colored by the values of the filter function.
C) The data set is binned into overlapping groups. D) Each
bin is clustered and a network is built. In this work, each filter
is represented by the extracted features of the npm ecosystem.

States House of Representatives and player performance data
from the NBA, in each case finding stratifications of the
data which are more refined than those that are produced by
standard methods.

The only other work in which TDA was applied in a
software setting was by Costa et al. [6]. Using a more
complex range of techniques, they concluded that topological
analysis might be useful for characterizing software system
behavior early enough and for early characterization of system
reliability, that may contribute to software reliability modeling.
In this work, we only focus on the topology mapper algorithm
[7] to generate a topological map of the software ecosystem.

III. A SOFTWARE ECOSYSTEM TOPOLOGY

In this section, we discuss the method by which the topology
of an ecosystem is mapped. We use the definition of software
ecosystem as “a collection of software systems, which are
developed and co-evolve in the same environment” [8].

A. Topological Mapper Method

The mapper algorithm [7] is a method for constructing
useful combinatorial representations of geometric information
about high-dimensional point cloud data. It can be used to
reduce high dimensional data sets into some mathematical
objects, namely simplicial complexes, with far fewer points
that can capture topological and geometric information at a
specified resolution. As shown in Figure 1, instead of acting
directly on the data set, it assumes a choice of a filter or
combination of filters, which can be viewed as a map to a
metric space, and builds an informative representation based
on clustering the various subsets of the data set associated the
choices of filter values.

B. JavaScript Package Ecosystem Features

In order to create a point cloud for the ecosystem topology,
we first identify six filters (i.e., referred to as features in
this paper), which will be indicative of our dataset. Mainly
based on the work of Wittern [1] and other work that studied
the software ecosystems [2], [3], [9], we identify similar six
features that can be used as geometric features of a package.
Similar to Wittern, these six features are present in the meta-
file package.json, and are shown in Listing 1:

• f1- Author: Name of person who build this package. This
indicator should be able to group packages built by the
same author. For example from Listing 1, in line 11, an
author of this package is “James Halliday”.

• f2- Author Domain: Email domain of person who build
this package. This indicator should show packages built
by authors from the same organization or company. For
example from Listing 1, in line 12, an author domain of
this package is “substack.net”.

• f3- License: License tell people know what organization
that publish the package how they are permitted to use
it. For example from Listing 1, in line 5, a license of this
package is “MIT”.

• f4- Tagged Keywords: An array of strings that helps peo-
ple discover your package as it’s listed in npm search.
For example from Listing 1, in line 16, keywords of this
package are “browswer”, “requir”, ... , “javascript”.

• f5- Version Released: Version form an identifier that is
assumed to be completely unique. Changes to the package
should come along with changes to the version. For
example from Listing 1, in line 3, a version of this
package is “14.4.0”.

• f6- Number of Dependencies: The number of mapped
package dependencies to a version range. For example
from Listing 1, in line 22, dependencies of this package
are “JSONStream”, “assert”, and “through”.



1 {
2 ”name” : ” b r o w s e r i f y ” ,
3 ” v e r s i o n ” : ” 1 4 . 4 . 0 ” ,
4 ” d e s c r i p t i o n ” : ” browser−s i d e r e q u i r e ( ) t h e node

way” ,
5 ” l i c e n s e ” : ”MIT” ,
6 ” r e p o s i t o r y ” : {
7 ” t y p e ” : ” g i t ” ,
8 ” u r l ” : ” h t t p : / / g i t h u b . com / s u b s t a c k / node−

b r o w s e r i f y . g i t ”
9 } ,

10 ” a u t h o r ” : {
11 ”name” : ” James H a l l i d a y ” ,
12 ” e m a i l ” : ” mai l@subs tack . n e t ” ,
13 ” u r l ” : ” h t t p : / / s u b s t a c k . n e t ”
14 } ,
15 . . . .
16 ” keywords ” : [
17 ” b rowse r ” ,
18 ” r e q u i r e ” ,
19 . . . .
20 ” j a v a s c r i p t ”
21 ] ,
22 ” d e p e n d e n c i e s ” : {
23 ” JSONStream ” : ” ˆ 1 . 0 . 3 ” ,
24 ” a s s e r t ” : ” ˆ 1 . 4 . 0 ” ,
25 ” t h r o u g h ” : ” ˆ 2 . 3 . 4 ”
26 } ,
27 . . . .
28 }

Listing 1: Snippet from the package.json of the browserify
package. Some fields are omitted for brevity.

C. Feature Vector Calculation

One of the complexities of the data is the dimensions within
each feature. To cope with the complexity, we adopt a Vector
Space Model (VSM) from the Information Retrieval (IR) field
to represent the high-dimension of each feature. For a vector
space, we first need a corpus of each of the features. Suppose
we have three packages P1, P2, P3. For instance, for the
license features f3, our corpus will be constructed as follows:

z P1 P2 P3 ...
MIT 0 1 0 ...
ISC 1 0 1 ...

Apache 0 0 0 ...
... ... ... ... ...

In this example, we find that in the license feature, we use the
two terms MIT (z1) and ISC (z2). Thus, we can represent the
feature vector for a license as follows:

~P1
f3

=
z1 z2 z3 ...
0 1 0 ...

Note that the corpus m × n matrix whose ith, jth, is rep-
resented by binary 0 or 1 to indicate whether this feature is
used by a package or not. In this example, we can see that the
MIT license is used by only P2. This kind of binary function
weighting is used to construct the ~Px

f1
, ~Px

f2
, ~Px

f3
vectors.

For the tagged keywords f4, we use the word2vec tech-
nique as a weighting function instead of the binary function
as proposed by Mikolov et al. [10]. The model is used for
learning vector representations of words, such that words that

Table I: Summary of Data Collected

Dataset Statistics
Snapshot Date July-1st-2016 ∼ July-15th-2016
# Collected Packages (after filtering) 72,650
# sample packages (generate topology) 10,000

share common contexts in the corpus are located in close
proximity to one another (i.e., generated by a similarity score)
in that space. We use the word2vec function from the gensim
python library2 to calculate a similarity score between words.
Below, we construct f4 for packages P1, P2, P3.

k P1 P2 P3 ...
Web 1 0.733261108 0 ...
Http 0.925269127 0.686954796 0 ...

Console 0 0.889973283 0.476446807 ...
Server 0 0.76110518 1 ...

... ... ... ... ...

In this example, we can visually observer by the similarity
scores, that package P2 has a much closer similarity to all
of the four keywords Web (k1), Http (k2), Console (k3) and
Server (k4) than P1 and P3.

The remaining features (i.e., f5 and f6) use a more simplified
set of metrics. For the version released f5, we use the release
versioning to estimate the current maturity and release of
the package. In our example ‘browserify’ (i.e., P1) is at
current version 14.4.0. Therefore, we represent this package as
P1

f5 = 14.4. Similarly, we use a count of the dependencies as
a measure of how dependent a package is on the ecosystem.
In this example, we find that browserify lists 3 dependencies
(JSONStream, assert and through), hence P1

f6 = 3. Finally,
we combine all the feature vectors to end with a single vector
for each package. For instance:

~Px = ~Px
f1
∧ ~Px

f2
∧ ~Px

f3
∧ ~Px

f4
∧ Px

f5 ∧ Px
f6

Since each vector is a matrix, it is important to note that
size of the dimension for each feature is dependent on the size
of the terms (z1, ..., zx) in each feature. The key advantage of
our TDA approach is the ability to process and visualize these
types of high-dimensional datasets.

D. Data Collection and Topology Representation

To evaluate our topology methodology, we used a sample
of the npm ecosystem. In this section, we will describe the
data collection and visualization analysis.

1) Data Extraction and Preprocessing: As shown in Listing
1, we are able to extract all our metrics by mining the
package.json from each package. Using the same method
from prior work, we randomly selected and mined 151,100
JavaScript npm packages. To improve our data collection, we
only select packages that include all the features needed.

2gemsim is a topic modelling library for python. Available at https:
//radimrehurek.com/gensim/index.html



Table II: Size of dimension for each granularity of ~Px. Note
the Top features are related to f1,f2,f3 and f4 features.

Degree # Dimensions Data Size Topology Generation Time
Top 20 82 x 10,000 1.9 MB 10.53 minutes
Top 50 202 x 10,000 4.7 MB 18.47 minutes
Top 100 402 x 10,000 9.4 MB 39.42 minutes
Top 1000 3,380 x 10,000 86.8 MB 52.16 minutes

Table III: ‘GitHub strong’ vs. ‘Npm strong’ tagged keywords
(f3) as discussed by Wittern et. al [1].

‘GitHub strong’ ‘npm strong’
gruntplugin util
gulpplugin array

express buffer
react string

authenticate file

To extract each dimension, we used python scripts with the
following libraries. For the word2vec analysis, we used a
standard threshold (i.e., 500 words) as a base for the algorithm.

2) Using the Mapper algorithm in TDA: We use the Knotter
tool3, which is an implementation of mapper algorithm for
TDA [7]. The method provides a common framework which
includes the notions of density clustering trees, disconnectivity
graphs, and Reeb graphs, but which substantially generalizes
all three. We use the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) [11], a technique for dimensionality reduction
and clustering, and our defined features as the filters for the
visualization construction.

We use different layers of granularity of the features. Table
II shows the scale of the high-dimensional features (i.e.,
f1, f2, f3, f4) at the three levels of Top 20, Top 50, Top
100 and Top 1,000. This intention is to understand whether
the key features can be seen at the high-dimensions of the
data analysis. Due to the limitations of the tool, we were only
able to load up to 10,000 packages (i.e., with loading times of
over 50 minutes) into the topology. Table II details the data
size and topology generation loading times.

E. Analysis and Interpretation of the Topology

Our analysis is by a visual analysis and identification of
important features on the shape of the topology. We interpret
the results of the topology using two levels of analysis:

1) Topology Overview and Shape Analysis: We analyze the
topology of the ecosystem, analyzing the shape of the data over
the different granularities (i.e., Top 20, Top 50, Top 100, Top
1,000). Furthermore, we then investigate the dominant features
that outline the shape of the topology.

One particular analysis is the categorization of tagged
keywords. Shown in Table III, Wittern et al. [1] found a
set of keywords that were likely to be related to either
applications (i.e., GitHub strong) or the npm package
ecosystem (i.e., npm strong). As part of our analysis, we
would like to identify the locations of libraries that use these
sets of keywords.

3https://github.com/rosinality/knotter

Table IV: Top 5 ranking (highest frequency) for each Feature

Frequency Versions (f5) # Dependencies (f6)
1 0.0 (2,214) cordova-plugin-require-bluetoothle (112)
2 1.0 (2,202) npm (85)
3 0.1 (1,682) gtb (62)
4 0.2 (675) mikser (61)
5 1.1 (579) react-setup (61)
... 42.2 (1) ...

2) Deeper Topology Feature Analysis: We analyze each
feature to identify some interesting observations and their
relationships to the other features. Our method is to identify
the locations of the most frequent occurring terms (i.e., top 5
zx) of each feature. For instance, in reference to the authors
(f1), we will map the libraries that belong to top 5 authors of
npm packages. In the case study, we specifically look at the
Author (f1), Author Domain (f2), License (f3) and Tagged
Keywords (f4) features of the topology.

IV. RESULTS

In this section, we discuss our results in terms of (1)
the topology overview and (2) topology features for our
constructed npm ecosystem topology.

A. JavaScript Package Ecosystem Topology

“The topological shape becomes more refined as
more data is added”

Figure 2 depicts the shape of the data at the different
granuality of dimension levels (i.e., Top 20, Top 50, Top
100 and Top 1,000). We can see for the figures that each
shape is geometrically different, however, the key points of
the shape are still the same. This result indicates that libraries
with these high features are apparent in the Top 20. However,
an argument could be said that the shape is more refined as
more data is added. By refined, we mean that the extremely
points of the data (i.e., represented by the edges of the shape)
become more apparent. It is because of this reason, that we
decided to perform the rest of our analysis at the Top 1,000.

Figure 3 depicts a detailed analysis of important points in
the topology mapped to some of the feature attributes. From
this figure, we are able to extract the following insights.

“The number of package dependencies is a strong
feature in the topology”

We find that the shape of the topology is influenced by the
number of dependencies adopted by a package (f6). This is
clearly highlighted by the top-right in the shape. Actually, such
high dependency packages may risk becoming blacklisted4 due
to the debate of whether or not it is simply hoarding other
packages. Conversely, the other two points show a lower set
of dependencies.

“Packages that are more likely to be used within
ecosystem are located separately from packages
meant for application usage outside the ecosystem”

4a blog on these types of packages and their impact to the ecosystem is at
https://github.com/jfhbrook/hoarders/issues/2



(a) Top 20 (b) Top 50 (c) Top 100 (d) Top 1000

Figure 2: Summary view of the JavaScript Package topology at different granularities. We find that the shape evolves, yet is
able to maintain its key points.

Figure 3: The npm Ecosystem Topology. Color is related to the f6 feature.

Figure 3 clearly shows that packages containing the ‘npm
strong’ (i.e., ecosystem-use) libraries are located apart from
libraries that are ‘GitHub strong’ (i.e., application-use).
We found that the released versions was not an important
feature in the topology. However, as shown in Figure 3, we can
identify that package that had the most releases is located near
the ‘npm strong’ libraries. In fact, we found this package
to be ydr-utils, which is indeed used specialized packages
within the npm ecosystem5.

B. Topology Features

Figures 4, 5, 6, 7 shows detailed feature information related
to authors (f1), author domains (f2), license (f3) and tagged
keywords (f4). Tables V and IV supplement these Figures
by showing the Top 5 most frequent terms for all features.
Drawing from all the presented information, we are able to
make the following observations:

“Top authors of packages tend to release packages
intended for usage within the ecosystem itself”

Figure 4 and Table V shows that the Top 3 authors (i.e., authors
1 with 437 packages, author 2 with 436 packages and author

5inspection of the readme.md file shows that it is used by a specialized set
of npm packages https://github.com/cloudcome/nodejs-ydr-utils



Figure 4: Author Top 1000 Figure 5: Author Domain Top 1000

Figure 6: License Top 1000 Figure 7: Tagged Keywords Top 1000



Table V: Top 5 ranking (most frequent terms (zx)) for each Feature

Frequency Rank Author (f1) Author Domain (f2) License (f3) Tagged Keywords (f4)
1 Author 1 (437) gmail.com (7,576) MIT (6,715) react (3,084)
2 Author 2 (436) substack.net (328) ISC (1,191) api (2,984)
3 Author 3 (328) outlook.com (173) APACHE-2.0 (950) yeoman-generator (2280)
4 Author 4 (275) gmx.de (134) BSD-2-CLAUSE (524) cli (2,210)
5 Author 5 (265) qq.com (97) BSD-3-CLAUSE (452) css (2,173)
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Figure 8: The figure shows parallel coordinate plot for the Top 20 npm dataset. The red line is archetype 1 (A1), the green
line is archetype 2 (A2) and the blue line is archetype 3 (A3).

Table VI: Packages that were identified as close to the extreme points of each archetype A1, A2 and A3.

Archetype Identified Packages
A1 tar-parse, turtle-run, marked-sanitized, haversort, bmxplayjs
A2 statsd-influxdb-backend, ardeidae, demo-blog-system, git-ssb-web, social-media-resolver
A3 stream-viz, programify, polyclay-couch, meshblu-core-task-check-update-device-is-valid, apidoc-almond

A1

A2

A3

Figure 9: A simplexplot that shows the a triangle plot that
represents a package in the ecosystem. Note the extreme points
represent each archetype.

3 with 328 packages) are located in the same location as the
‘npm strong’ libraries, thus providing evidence that the Top
3 authors were more likely to develop packages for the npm

ecosystem. However, the Top 4th (i.e., with 275 packages) and
5th (with 265 packages) authors develop packages aimed for
applications (i.e., ‘GitHub strong’).

“Packages are not likely to be affiliated to an orga-
nizational domain”

Figure 5 and Table V shows that the gmail domain is
significantly (i.e., showing 7,576 packages) used by authors
of npm packages. The second most used domain is for the
substack.com domain6, which belongs to the Author 3.
This evidence suggests that many of the packages are indeed
contributed by individuals and not by developers that are
represented by a single organization. Furthermore, packages
created by the authors with no affiliation are more likely to
contribute packages that will be used by the npm ecosystem.

“Packages are licensed by a dominant software
license (i.e., MIT)”

Figure 6 and Table V show the MIT license to be the most
widespread license (with 6,715) used for packages in the npm

6author GitHub profile at https://github.com/substack



ecosystem. The next closest popular licenses include the ISC
(i.e., with 1,191) and APACHE-2.0 (i.e., with 950).

“Popular tagged keywords are common with pack-
ages across the topology”

Figure 7 and Table V illustrates how the most frequent key-
words (i.e., react, api, yeoman-generator, cli and css) are used
across the topology of packages. This result provides evidence
that the individual tagged keywords are generic, therefore not
strong indicators for a software ecosystem topology.

V. COMPARISON WITH ARCHETYPAL ANALYSIS

An archetypal analysis is a statistical method that syn-
thesizes a set of multivariate observations through a few
archetypes, which lie on the boundary of the data scatter and
represent pure individual types [12]. We use the archetypal
analysis to compare how useful the topology is for visualizing
and analyzing high-dimensional data. In detail, archetypal
analysis describes individual data points based on the dis-
tance from extreme points, archetypes. We used R package
archetypes [13] for the analysis of the Top 20 npm dataset
(See Figure 2 and Table II) used in the previous TDA analysis.
From the “elbow criterion” with the curve of the residual
sum of squares (RSS), k = 3 is determined as the number
of archetypes.

Figure 8 presents a parallel coordinate plot of all packages
and each line represents one package with all feature values.
The three colored lines are archetypes in this data (red is
Archetype 1, green is Archetype 2, and blue is Archetype 3).
We find that the keywords are the strongest feature indicators.
In addition, Table VI presents some of the actual packages
close to obtained three archetypes. From our analysis, we were
able to qualitatively summarize our findings related to tagged
keywords (f4):

• Archetype 1 (A1) has packages that contains keywords,
such as web, plugin, test, http, express, node, api and
server.

• Archetype 2 (A2) has packages that contains keywords
like html, gulpplugin, css, javascript and gulp.

• Archetype 3 (A3) has lower packages compared to the
other two archetypes.

Figure 9 shows triangular graph which is plotted result of
archetype analysis, we a dot representing a package in the
npm ecosystem. From the figure, we can observe that the
packages are widely distributed among three archetypes. This
provides us evidence to argue that the topology provides more
insights and patterns as compared to this archetypal analysis.
One of the explanations is due to the limited number of
archetypes. We observe that summarizing these small number
of representations is prone to loose some information, making
the raw data too complex for interpretation. With respect to
the topology, investigation of the topology shape provides use
with a more flexible analysis while reducing the dataset.

VI. DISCUSSION

In this section, we discuss the implications and then follow
up with the threats to our study. This includes the possible
applications of how developers can leverage the software
ecosystem topology.

A. Implications

We discuss two benefits where understanding the topology
is beneficial for both practitioners and researchers alike. The
first is for searching and selection of components (i.e., pack-
ages) within the ecosystem. This has been some work that
empirically the update and dependency relationships within
the ecosystem [2], [3], [14]–[16]. We envision that based on
a query of features, a developer should be able assess their
options from the topology and make a more informed decision
on similar or recommended libraries. The topology may also
be used as a guide for novice developers. For example, a
developer can use the topology as a guide to some of the
more common practices (i.e., licensing the package under
MIT). For future work, we would like to further explore
how an ecosystem topology can be leveraged to search and
recommend similar or useful packages for a developer.

The second benefit is related to the sustainability and
scalability of a software ecosystem. We believe that such
methods such as ecosystem topology provides us a more
empirical means to assess various inconspicuous patterns
within an ecosystem. For instance, the topology can reveal
the location of packages that are either made for the npm
ecosystem or for application usage. Such patterns may become
indicators of the ecosystem health. For future work, we would
like to explore additional features, especially the more social
(i.e., contributors and open source development organization
activities ) or technical aspects (i.e., source code evolution) of
packages within the ecosystem. Furthermore, we would like to
study the evolution of the ecosystem topology as an additional
future work.

There are many challenges related to software ecosystems.
Work by Serebrenik and Mens [17] grouped these challenges
as: Architecture and Design, Governance, Dynamics and Evo-
lution, Data Analytics, Domain-Specific Ecosystems Solutions,
and Ecosystems Analysis. We believe that topology analysis
may prove to be useful in addressing some of these issues
at the higher level. Other future avenues for research are
related to the extension of our method and techniques. We find
that the topology provides a holistic method to visualize and
compare these features at a higher-level. In this work we only
implement the topology method (i.e., TDA mapper) within the
TDA field. Future work may include a more in-depth analysis
using other TDA concepts such as persistence homology.

Our overall vision is towards a more concrete means of
automated library recommendations and categorizations. We
believe that this study a step in this direction. Hence, future
work will include a more deeper look at the TDA and provide
more realistic and useful library categorized that are actionable
for software developers.



B. Threats to Validity

1) Construct: This validity is concerned with threats to the
construction of the topology, which is the selection of the
features. We understand that there is a plethora of other much
more stronger indicators that could be used in the topology. In
this work, we use the six features that are popularly used in
prior works [1], [2], [3], [9]. As discussed in the prior section
(Section VI-A), we plan to expand our feature list in the future.

2) Internal: This validity is related to the accuracy of
the data collected and tools used in the experiments. For
the topology generation, we randomly selected 10,000 npm
projects (discarding any package that was missing any of the
features) to generate our topology. We understand that with
the rate by which an ecosystem changes, that the results may
quickly become outdated. However, based on the different
granularity (Top 20, Top 50, Top 100, Top 1,000) we believe
that the shape of the data may change but the structure may
still resemble our current topology. To validate this, we would
have to experiment with much more data.

A minor threat to our study is our vsm formulation for
each package. For instance, we use the word2vec technique
for the tagged keyword feature. Our main rational is that
the word2vec provides a more robust techniques compared
to the basic binary technique. Although this is not empirically
evaluated, we are confident that the results are representative.
The second threat to validity is the accuracy of the tool used to
generate the topology. Our initial experiments included other
topological mapper tools such as the Kepler Mapper7 and a R
TDA package8. However, we find that the knotter tool is the
more versatile tool with multi-function and is able to analyze
a large-scale data.

3) External: The external validity refers to the generaliza-
tion of our results. Currently, we agree that the results may
only be specific to the npm ecosystem. Therefore, as future
work, we would like to explore other software ecosystems,
thus comparing the relative similarities and differences be-
tween the ecosystem topology shape. We are, however, are
confident that our sample data is representative of the current
ecosystem topology of npm packages.

VII. RELATED WORK

In this section, we briefly present literature related to
analysis of (1) software ecosystems in terms of package
dependencies and (2) application of TDA to other domains.

A. Software Ecosystems

In literature, a software ecosystem can be defined from a
technical [8], business [18] viewpoints. Our work is mainly
from a technical viewpoint, with our features extracted from
the meta files of the package.json files. From a holistic
viewpoint work by German et al. [19] and Wittern et al.
[1] empirically studied the different dynamics for the R and
JavaScript npm package ecosystems.

7https://github.com/MLWave/kepler-mapper
8https://cran.r-project.org/web/packages/TDA/index.html

There has been many works that have studied relationships
among components within the ecosystem. The most common
is the evolution and update of dependency relationships within
the ecosystem [2], [3], [9], [14], [19], and the npm and other
software ecosystems such as R, Maven and Ruby [20]. Most
of these works focus on dependency relationships between the
software packages and their evolution. In particular, work by
Bavota [9] used more features in their analysis. In this work,
we combine all features to understand at a higher level how
packages in the ecosystem are related to each other.

There has been prior work on visualizations have attempted
to show relationships within the ecosystem [21], [22], but have
only focused on the dependency feature of the ecosystem.
For future work, we would like to expand these features to
cover the more social aspects of [4], [23], [24] of the project
contributors. Likewise, source code metrics such as the code
complexity and number of functions could be also added to
the topology.

B. Application of TDA topology in other fields

In addition to the insights from the study of Lum et al. [5],
TDA is extensively used in the medical field. The topology
has been used to identify patterns in medical information. For
example, Nicolau et al. used TDA to identify a subgroup of
breast cancers with a unique mutational profile [25]. Nielson
et al. used TDA to discover pre-clinical spinal cord injury and
traumatic brain injuries [26]. TDA has also been used to study
infectious disease, [27], the Escherichia coli O157:H7 [28] and
type 2 diabetes [29]. We believe our work will be the start of
such similar types of analysis to understand different aspects
of software ecosystems.

VIII. CONCLUSION

In this paper, we present a new approach to analyze and
explore high-dimensional and complexity of software ecosys-
tem using the topological data analysis approach. Applied to
real-world high-dimensional complex dataset of the JavaScript
Package ecosystem using six features of the ecosystem. Our
results show that the a software topology is possible and useful
to understand higher level relationships within the ecosystem.
The results also show that topology analysis is more insightful
that alternative traditional statistical methods, especially with
complex data.

For future work, we plan to expand the TDA topology
features and techniques. In addition, we would like to explore
the shape of other software ecosystems. We envision that the
study of topology and investigation of is beneficial for both
practitioners and researchers, providing a better understanding
of software ecosystems.
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