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Abstract—Defect prediction models can help Software Quality
Assurance (SQA) teams understand their past pitfalls that lead to
defective modules. However, the conclusions that are derived from
defect prediction models without mitigating redundant metrics
issues may be misleading. In this paper, we set out to investigate
if redundant metrics issues are affecting defect prediction studies,
and its degree and causes of redundancy. Through a case study of
101 publicly-available defect datasets of systems that span both
proprietary and open source domains, we observe that (1) 10%-
67% of metrics of the studied defect datasets are redundant, and
(2) the redundancy of metrics has to do with the aggregation
functions of metrics. These findings suggest that researchers
should be aware of redundant metrics prior to constructing a
defect prediction model in order to maximize internal validity of
their studies.

Index Terms—Software quality assurance, defect prediction
models, redundant metrics.

I. INTRODUCTION

Defect prediction models can help Software Quality Assur-
ance (SQA) teams understand their past pitfalls that lead to
defective modules. For example, Hassan [2] studies the impact
of complexity of code changes on software quality. Shihab
et al. [7] investigate the impact of code and process metrics
on post-release defects. Such knowledge can help SQA teams
chart quality improvement plans to avoid such past pitfalls.

There have been a variety of techniques to study the impact
of software metrics (i.e., explanatory variables) and software
quality. For example, Tantithamthavorn et al. [9] use Breiman’s
score of importance metrics of random forest models to
analyze the impact of various software metrics on defect-
proneness. Thongtanunam et al. [11] use an ANOVA analysis
of regression models to study the impact of code ownership
and review-aware ownership metrics on software quality.

Interpreting defect prediction models without mitigating
redundant metrics issues (i.e., a phenomenon that one metric
is highly correlated with one another) may be misleading or
produce spurious relationship, which likely lead to missteps in
practice. For example, Mason et al. [1] show that redundant
metrics can inflate or deflate the variance of coefficients of
regression models. Tantithamthavorn et al. [10] show that
redundant metrics introduce interference to impact analyses,
such as ANOVA, leading to misleading conclusions.

While redundant metrics issue may impact the interpretation
of defect prediction models, a literature survey by Shihab [6]
shows that as few as 37% of defect prediction studies that
published during 2000-2011 mitigate redundant metrics prior
to constructing a defect prediction model.

In this paper, we set out to investigate if redundant metrics
issues are affecting defect prediction studies, and its degree
and causes of redundancy. We apply three detection techniques
(i.e., variance inflation factors, variable clustering, and redun-
dancy analysis) to detect redundant metrics on 101 publicly-
available datasets of systems that span both proprietary and
open source domains.

II. CASE STUDY DESIGN

In this section, we divide our study design into two parts:
data collection and data analysis.

A. Data Collection

In order to combat any potential bias and better generalize
our conclusions, we select to study 101 publicly-available
defect datasets that are gathered by our recent work [8]. The
101 defect datasets are gathered from systems that span both
proprietary and open source domains, which vary in size,
metrics, defective ratio, and research groups.

B. Data Analysis

To detect redundant metrics, we apply three commonly-used
detection techniques, i.e., variance inflation factors, variable
clustering, and redundancy analysis. We apply these tech-
niques to each of our studied datasets. We describe each
technique below.

Variance Inflation Factors (VIF) computes the variance
inflation factor for each metric. A VIF score for a single metric
is calculated from the R-squared value of regression models of
that metric against all other metrics. A VIF score of 1 indicates
that there is no correlation between the studied metric and
the remaining metrics. However, when the score exceeds the
threshold of 5, the metric is considered likely redundant [5],
and the mitigation is required. We use the implementation
of variance inflation factors using the vif function that is
provided by the rms R package.

Variable Clustering (Varclus) is a hierarchical clustering to
determine the correlation between metrics. Highly correlated
metrics are grouped together. In our study, we select Spearman
rank correlation as our measure as it is resilient to data that
is not normally distributed. As suggested by prior work [3, 4,
11], we use the threshold of 0.7 to identify highly redundant
groups when their values are higher than the threshold. We use
the implementation of variable clustering using the varclus
function that is provided by the Hmisc R package.



Redundancy Analysis (Redun) determines how well each
metric can be predicted using the remaining metrics. Metrics
are dropped in stepwise fashion, removing the most predictable
metric at each step. The process will be stopped by two
conditions. The first condition is when the leftover metrics
have no metrics that can be predicted with an adjusted R-
squared that is greater than a threshold. The second condition
is when removing a metric would cause a previously dropped
metric no longer be predicted at the threshold. In this study,
we use the default threshold of adjusted R-squared value of
0.9. We use the implementation of redundancy analysis using
the redun function that is provided by the Hmisc R package.

III. CASE STUDY RESULTS

10%-67% of metrics of the 101 public defect datasets
are redundant. We find that the results of variable clustering
analyses produce 1-8 groups of redundant metrics (i.e., a group
of metrics which are highly correlated with each other).

On the other hand, we observe that the results of the
VIF analysis of three defect datasets (i.e., ar3, ar4,
and ar5 of NASA datasets) cannot be produced. After
we manually investigate the three problematic datasets,
we find that one metric is linearly proportional to another
metric — i.e., the branch_count metric is two times
of the decision_count metric. Additionally, we also
observe that the results of the redundancy analysis of
eight defect datasets (i.e., ckjm, forrest-0.6,
nieruchomosci, skarbonka, systemdata,
szybkafucha, tomcat, and zuzel) cannot be
produced. We observe that some metrics (e.g., noc and ce)
of the eight defect datasets are constant at zero.

Our deeper investigation shows that the redundancy
of metrics has to do with the aggregation functions of
metrics. In eclipse-2.0, 2.1, and 3.0 datasets, some
metrics that are calculated at the class- or method-level (e.g.,
method lines of code (MLOC)) are often aggregated to file-
level using the maximum, summation, or average functions.
Thus, the aggregated metrics (i.e., MLOC_max, MLOC_sum,
and MLOC_avg) are redundant — i.e., these three aggre-
gated metrics are derived from the same source of metric
(i.e., MLOC). Additional results are publicly-available online,
https://github.com/jirayusjiar/ISSRE2016 Result.

IV. CONCLUSIONS

Defect prediction models can help SQA teams understand
their past pitfalls that lead to defective modules. However, the
conclusions that are derived from defect prediction models
without mitigating redundant metrics may be misleading. Yet,
little is known if redundant metrics issues are affecting defect
prediction studies.

In this paper, we set out to investigate if redundant metrics
issues are affecting defect prediction studies, and its degree
and causes of redundancy. Through a case study of 101
publicly-available defect datasets of systems that span both
proprietary and open source domains, we made the following
observations:

– 10%-67% of metrics of the 101 public defect datasets are
redundant.

– Our deeper investigation shows that the redundancy of
software metrics has to do with the aggregation functions
of metrics.

These findings lead us to conclude that software metrics of
the 101 public defect datasets are redundant — which may
produce misleading conclusions, suggesting that researchers
should be aware of redundant metrics prior to constructing a
defect prediction model in order to maximize internal validity
of their studies.
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