EyeNav: Gaze-Based Code

Navigation

Stevche Radevski

Nara Institute of Science and
Technology

Nara, Japan
stevche.radevski.s|1@is.naist.jp

Hideaki Hata

Nara Institute of Science and
Technology

Nara, Japan

hata@is.naist.jp

Kenichi Matsumoto

Nara Institute of Science and
Technology

Nara, Japan
matumoto@is.naist.jp

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

NordiCHI '16, October 23-27, 2016, Gothenburg, Sweden

ACM 978-1-4503-4763-1/16/10.

http://dx.doi.org/10.1145/2971485.2996724

Abstract

Navigating source code is at the core of software
development, consuming a significant amount of time and
effort. Navigation is typically done using the mouse,
which in many cases may not be efficient and usable, as it
causes context switching and interruptions.

EyeNav brings eye tracking to code editors. It allows for a
more natural source code navigation, controlled by the
developer's gaze and keyboard shortcuts. It aims to
improve usability and efficiency over the mouse on code
navigation tasks. EyeNav provides a smoother user
experience by letting developers keep their hands on the
keyboard at all times. It is a production-ready Brackets.io
plugin that allows anyone with an eye tracker to start
using it immediately.

Demo video: https://youtu.be/AkDyx21-YGk
Source code: https://github.com/sradevski/eyenav

Author Keywords
Eye tracking; Gaze tracking; Source code navigation;
Code editors; IDE

ACM Classification Keywords
H.5.2 [Information interfaces and presentation (e.g.,
HCI)]: Input devices and strategies

https://youtu.be/AkDyx2l-YGk
https://github.com/sradevski/eyenav

Benefits and Drawbacks
of Eye Tracking

Benefits: Eye tracking is a
natural interface that does
not require any additional ef-
fort by the user in order to
point. Moreover, the gaze is
faster than the mouse. Dur-
ing web searching tasks the
gaze is ahead of the mouse
by 700ms on average [5].

Drawbacks: The main
drawback is accuracy. Be-
cause of the physiology of
the eye, even in ideal condi-
tions, the error is £0.5° [3].
That in turn means an error
of around 6mm on a 21-inch
display from 70cm viewing
distance.

The second drawback is the
need to calibrate as move-
ments happen. As most de-
vices available on the mar-
ket nowadays compensate for
head movements, the need to
calibrate and its impact on
usability have dropped to vir-
tually none.

Introduction

Navigating source code is at the core of software
development. In fact, developers spend around 35% of the
time navigating within and between source code files, and
another 20% on reading code during maintenance tasks.
Reading code is identified by text caret movement, mouse
cursor hovering, text selection, and scroll bars

hovering [7]. This signifies the importance of the
efficiency and usability of code navigation.

Many existing approaches to improve navigation focus on
coarse-grained navigation [2,11], such as moving across
files and locating artifact definitions. Although this is one
approach to navigation, fine-grained navigation, also
referred to as reading code in [7], should not be neglected,
as shown earlier. Since our research focuses on
fine-grained navigation activities, this paper will refer to
fine-grained navigation as navigation.

While coding, the typical resting place for the palms is on
the keyboard. Therefore, the movement required in order
to use the mouse, as well as the mouse being an abstract
interface, can hurt usability and efficiency. Consequently,
there have been several attempts to bring natural
interfaces to software development, such as

touchscreens [1] and hand gestures [12].

As an attempt to improve usability and efficiency of code
navigation, we propose EyeNav. EyeNav uses eye (gaze)
tracking as coordinate input in combination with keyboard
shortcuts to execute commands. Since navigation is done
while keeping the hands on the keyboard, EyeNav requires
no additional movements. EyeNav is an open-source
project and it is delivered as a Brackets.io! editor plugin.

http://brackets.io/ (accessed on 22 June, 2016)

Event Listener 1

Event Emitter

JSONI JSONI JSON I
EyeTribe Tobii EyeX
WebSocket Server WebSocket Server
" “Event Listener " | |- Event Lisfensr ~~ 2R MEE Ty
Simulator
Event Emitter Event Emitter ooo | WebSocket
"""""""""""""" Server
EyeTribe SDK Tobii EyeX SDK
I ® | | (O |
EyeTribe Tobii EyeX

Figure 1: EyeNav's Architecture

EyeNav

In this section, the functionalities and architecture of
EyeNav will be described. The eye trackers used for this
research were EyeTribe Tracker (first version)? and Tobii
EyeX3. EyeNav has full support for both devices.

While building EyeNav we aimed at making it as flexible
and extensible to different eye trackers as possible. In
order to achieve flexible and loosely coupled architecture,
we based our architecture on WebSockets, separating
device-specific logic to a thin server wrapping over the
provided SDK, while keeping all the logic as an editor
plugin, as described in Figure 1. This means EyeNav can
be extended so it works with essentially any eye tracker on
the market with minimal effort.

’https://theeyetribe.com (accessed on 22 June, 2016)
Shttp://www.tobii.com (accessed on 22 June, 2016)

http://brackets.io/
https://theeyetribe.com
http://www.tobii.com

goalCharPosition = normal'izedGazeDaqa.x

rowOffset = 1, 1

yAdjustment = 0; —®>—
|

Figure 2: (The eye target
represents the center of the gaze)
When clicking, if the
x-coordinate value is far from any
code, EyeNav places the caret at
the nearest code.

return { 1 Lo-
x: gazeData.x, v
y: gafeData.y + yAdjjustment
}s 4

P

|
S
I

Figure 3: Horizontal code
scrolling ensures that the caret

stays on the same line by
ignoring the y-coordinate.

Speed

Figure 4: Page scrolling speed
distribution.

Functionalities
As of now, EyeNav supports the following functionalities:

e Clicking: By pressing the designated shortcut, the
caret moves where the gaze is centered, synonymous
to a mouse click at a certain location.

e Code Scrolling: Code scrolling is moving the
caret along only one axis - horizontally along a line,
or vertically along a column. This functionality
eliminates the error along one of the axes, resulting
in a more precise caret movement.

e Page Scrolling: Wihile the shortcut is held down
the page is scrolled in the direction of the gaze. The
speed varies with the change in distance between
the center of the editor and the gaze location.
Scrolling is a good candidate to be extended by
automatic scrolling and haptic feedback [6].

e Single Character Movement: This functionality
represents a 1 to 1 mapping between the arrow keys
and WASD keys for easier access while coding. The
user can also do one character manual calibration
while making a single character movement by
holding the designated shortcut.

e Code Selection: Selecting code is possible with
any of the commands (except for page scrolling) just
by holding an additional key before executing them.

Each functionality is triggered by a dedicated keyboard
shortcut. There are three types of keys based on the
function they do. The first one is the trigger key, the main
key that toggles all functionalities of EyeNav when pressed
and held down. The second type is command keys, keys
that execute a functionality bound to a certain key. The
third type is modifier keys, keys that apply some
additional functionality to the command keys, and have
no functionality on their own.

Related Work

Eye tracking has been used in software engineering in
ways that bring a better understanding of software
engineering in various areas, but almost not at all in a
manner that utilizes eye tracking as an input device [10],
with the exceptions of EyeDE.

EyeDE, which is closely related to EyeNav, is another
research that tries to apply eye tracking to code editing in
order to aid with navigation [4]. EyeDE focuses on
hands-free navigation for reading and understanding code.
EyeDE has a completely distinct set of functionalities,
usage, and deployment model, making it difficult to
compare it to EyeNav. That being said, some of the
capabilities of EyeDE are well designed and could be
merged into future versions of EyeNav.

iTrace is an eclipse plugin, implemented with the purpose
of collecting gaze data for further analysis [9]. Although
the aim of EyeNav and iTrace are different, there are
some similarities in terms of deployment and capabilities.

It is important to mention that research concerned with
the application of eye tracking for typing and computer
operation for people with disabilities is very important as
a lot of ideas and knowledge can be drawn from it and
applied to EyeNav.

Challenges and Future Work

Before we expect a wider adoption by software developers,
it is important to show the benefits of EyeNav as a novel
tool with no previous usage history. This is why our next
goal is to do an empirical evaluation of the tool with
software developers.

Furthermore, the inherent accuracy problems may be a
challenge in convincing developers to adopt EyeNav. In

order to mitigate them to some extent, one of our goals is
to do data smoothing [8] and to implement movement
prediction and approximation, where applicable.

Another goal is to separate the dependency of EyeNav
from Brackets.io, and have an implementation for both
Atom.io and Visual Studio Code. We hope this will
increase the availability and utilization of EyeNav.

Conclusion

In this paper we introduced EyeNav, a novel approach to
navigating source code by using an eye tracker. Its flexible
architecture makes it very easy to extend it to work with
any eye tracker. It is a production-ready Brackets.io editor
plugin that allows anyone with an eye tracker to utilize it
as part of their software development workflow.

Acknowledgment

This work has been supported by JSPS KAKENHI Grant
Number 16H05857 and JSPS Program for Advancing
Strategic International Networks to Accelerate the
Circulation of Talented Researchers: Interdisciplinary
Global Networks for Accelerating Theory and Practice in
Software Ecosystem (G2603).

References

[1] Baéikovd, M., Mari¢dk, M., and Vanéik, M. Usability
of a domain-specific language for a gesture-driven
ide. In In FedCSIS 2015, |IEEE (2015), 909-914.

[2] Bradley, D. R., and Hayes, |. J. Visuocode: A
software development environment that supports
spatial navigation and composition. Proceedings of
Ist VISSOFT 2013 (2013).

[3] Dewes, H. Eye Gaze Tracking for Human Computer
Interaction. Thesis 2058 (2010), 5-8.

[4] Gliicker, H., Raab, F., Echtler, F., and Wolff, C.

Eyede: gaze-enhanced software development
environments. In Proceedings of the extended
abstracts of the 32nd CHI, ACM (2014), 1555-1560.

[5] Huang, J., and White, R. User See, User Point: Gaze
and Cursor Alignment in Web Search. Proceedings of
the SIGCH! Conference (2012), 1341-1350.

[6] Kaki, K., Majaranta, P., §pakov, 0., and Kangas, J.
Effects of haptic feedback on gaze based auto
scrolling. In Proceedings of the 8th NordiCHI, ACM
(2014), 947-950.

[7] Ko, A. J., Myers, B. A., Coblenz, M. J., and Aung,
H. H. An exploratory study of how developers seek,
relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on
Software Engineering 32, 12 (2006), 971-987.

[8] Kumar, M., Klingner, J., and Puranik, R. Improving
the accuracy of gaze input for interaction.
Proceedings of the ETRA 2008 1, 212 (2008), 65-68.

[9] Shaffer, T. R., Wise, J. L., Walters, B. M., Miiller,
S. C., Falcone, M., and Sharif, B. iTrace: enabling
eye tracking on software artifacts within the IDE to
support software engineering tasks. Proceedings of
the ESEC/FSE 2015 (2015), 954-957.

[10] Sharafi, Z., Soh, Z., and Gueheneuc, Y. G. A
systematic literature review on the usage of
eye-tracking in software engineering. Information and
Software Technology 67, July (2015), 79-107.

[11] Singer, J., Elves, R., and Storey, M. A. NavTracks:
Supporting navigation in software maintenance.
ICSM 2005 (2005), 325-336.

[12] Yongpisanpop, P., Hata, H., and Matsumoto, K.
Bugarium: 3d interaction for supporting large-scale
bug repositories analysis. In Companion Proceedings
of the 36th ICSE, ACM (2014), 500-503.

	Introduction
	EyeNav
	Functionalities

	Related Work
	Challenges and Future Work
	Conclusion
	Acknowledgment
	References

