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ABSTRACT
Analogy-based effort estimation (ABE) is a commonly used
software development effort estimation method. The pro-
cesses of ABE are based on a reuse of effort values from
similar past projects, where the appropriate numbers of past
projects (k values) to be reused is one of the long-standing
debates in ABE research studies. To date, many approaches
to find this k value have been continually proposed. One
important reason for this inconclusive debate is that differ-
ent studies appear to produce different conclusions of the
k value to be appropriate. Therefore, in this study, we re-
visit 8 common approaches to the k value being most ap-
propriate in general situations. With a more robust and
comprehensive evaluation methodology using 5 robust er-
ror measures subject to the Wilcoxon rank-sum statistical
test, we found that conflicting results in the previous stud-
ies were not mainly due to the use of different methodologies
nor different datasets, but the performance of the different
approaches are actually varied widely.
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1. INTRODUCTION
Accurate software effort estimation is essential for software
development projects because it is one of the important fac-
tors that will lead the project to its successful completion.
The process of software effort estimation is commonly car-
ried out in an early phase of software development where
relatively few support information is available for the esti-
mates. Thus, it has become an important and challenging
topic in the research communities [5].

In this study, we focus on a commonly used estimation
method named analogy-based effort estimation (ABE) [1,
9, 10], a widely accepted method in terms of robustness,
accuracy, and reliability [2, 7, 11, 12, 17]. Shepperd and
Schofield [16] introduced the principle of ABE: Projects that
are similar with respect to a set of project features will also
be similar with respect to the effort. Derived by this princi-
ple, the processes of ABE mainly comprise a search for the
most similar past projects, and a reuse of the effort of the
past projects. Commonly, similar past projects are identi-
fied by calculating and sorting the level of similarity across
the dataset. The k most similar past projects will then be
the cases whose effort values are reused for the new case
estimate. Hence, this can be seen as a form of k-nearest
neighbor (kNN ) algorithm.

According to our survey, there are many approaches to de-
termine the k value for a local dataset, [1, 2, 9, 10, 7, 11, 12,
17]. Despite being greatly diversified, these approaches are
commonly categorized into two groups: (1) statically assign
a single k value to the entire local dataset commonly referred
to as fixed-k, and (2) dynamically learn the k value that fits
with the given training/test instance commonly referred to
as dynamic-k. In this study, we selected 8 common methods,
of which 5 are fixed-k and the other 3 are dynamic-k. The re-
sults from many empirical studies [1, 2, 9, 10] endorsed the
effectiveness of dynamic-k over fixed-k methods, but some
of which produced conflicting results [10]. This therefore in-
troduces the unstable conclusion, an issue widely recognized
in software effort estimation where different studies in the
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same area provide greatly diversified conclusions [6, 13].

As suggested by Keung et al. [6], a replicated study with
a larger set of data, a more number of more stable per-
formance measures, and a well-controlled sampling method
is required to draw a stable conclusion. Therefore, we re-
visit this question of determining the appropriate number
of analogues (k) using 9 standard benchmark datasets. Our
performance measures consist only robust error measures
suggested by Foss et al. [4] (MAR, MdAR, SD, RSD and
LSD), and these measure are ensured its statistical signifi-
cance using the Wilcoxon rank-sum test [3]. The Wilcoxon
test is commonly used in many studies such as in [1, 9, 10].
Our replicated experiments aim at finding a more desirable
method to determine the k value for different situations.

The following of this paper is structured to answer this re-
search question:
RQ: What is the more desirable method for deter-
mining the best k value currently and at the time of
writing?

2. RELATED WORKS

2.1 Analogy-Based Effort Estimation (ABE)
The process of effort estimation based on ABE method be-
gins with a retrieval of the past similar cases. This case
retrieval process is to find the level of similarity between
the new case and all previous ones. The formulas commonly
used to calculate the level of similarity are depicted in Eq.(1)
and Eq.(2), where ci and cj are two project cases i and j
respectively. F is a set of project features of dataset. Af-
ter retrieval of similar past project cases, an identification
of an appropriate number of analogues (k value) is the next
imperative process. The important part to find the k value
that should produce the most accurate effort estimate for a
given dataset. Finally, the averaged value of efforts of the k
analogues is the final estimated effort [5].

distance(ci, cj , F ) =
√∑

f∈F Feature dissimilarity(cif , cjf ) (1)

Feature dissimilarity(cif , cjf ) =


(cif − cjf )

2 if f is numeric

0 if f is categorical and cif = cjf

1 if f is categorical and cif 6= cjf

(2)

2.2 Determining the Number of Analogues
More recently, research studies have been focusing more on
the dynamic selection of the k value. For example, the Best-
k method proposed by Baker [2] fit a given training dataset
to find the appropriate k value in a brute force manner from
k = 1 to n− 1, where n is the total number of project cases
in the given training dataset. The common criteria to select
if a value k is better than all others is estimation error. In
this study we used MAR in our experiments.

Kosti et al. [10] proposed DD-EbA, a similar algorithm to
Best-k with a main different that DD-EbA fit only the first
nearest neighbour of the new cases rather than the entire
training set.

Azzeh and Nassif [1] adopted a hierarchical clustering tech-
nique based on k-medoid clustering algorithm [14] to learn

the best k value from data distribution. First, the entire
dataset is treated as a one single large cluster. Then, this
cluster is recursively bisected until the termination criteria
is met. Finally, the smallest cluster where the 1NN of the
new case is located become its analogues, the k value is the
size of this cluster. The termination criterion [1] is based on
cluster compactness (see Eq.3). Compactness is a measure
that indicate the degree of similarity within clusters. If the
level of Compactness of the parents is lower than that of any
subtree, the algorithm is terminated.

Compactness =
1

n

k∑
i=1

n∑
j=1

‖xj − vi‖2 (3)

From the result of the studies [1, 2, 10], conflicting results
may hinder practitioners to conclude the best algorithm to
select the k value without performing a replication. The fol-
lowings are the possible reasons: (1) from the study [6], dif-
ferent experimental environments and conditions may pro-
duce unstable conclusion. Second, the study of [4] showed
that some measures were deprecated and untrustworthy such
as MMRE, MMER, in which many proposed studies still
use these measures as evaluation criteria.

3. METHODOLOGY

3.1 Performance Measures
As suggested by Keung et al. [6], we used multiple stable
performance measures that proven by Foss et al. [4] to pro-
duce a more stable and more robust result. The followings
are performance measures used in this study. Let x̂i, and xi

are actual effort and estimated effort of case i:

Absolute Residual (AR):

ARi = |x̂i − xi| (4)

To summarize the AR, we aggregate it using mean and me-
dian. The products are defined as Mean Absolute Residual
(MAR) and Median Absolute Residual (MdAR):

MAR = mean(all AR) (5) MdAR = median(all AR) (6)

Alternative to AR, we use standard deviation (SD), Rel-
ative standard deviation (RSD) and Logarithmic standard
deviation (LSD) as measure of residual error:

SD =

√∑n
i=1(x̂i − xi)2

n− 1
(7) RSD =

√√√√∑n
i=1(

x̂i−xi
fi

)2

n− 1
(8)

LSD =

√∑n
i=1(ei − (− s2

2
))2

n− 1
(9)

where n is a number of case in dataset, fi is a Function
point of case i. For LSD, we describe ei = ln x̂i − lnxi and
s2 = variance(all ei).

3.2 Datasets
We use the well-known datasets concluded in Table 1. Each
dataset contains numeric and categorical features, we can
find distance for each type of feature by using Eq.(2).
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Note that we normalized all the continuous variables of all
the 9 datasets using Eq.(10). This normalization is per-
formed to ensure equal influence across all the computations:

normalizedV alueij =
(valueij−min(valuei))

(max(valuei)−min(valuei)
(10)

where i is a feature number and j is a case number.

Table 1: Dataset properties

Dataset
#
of

project

#
of

feature

Effort
min

Effort
max

Effort
mean

Effort
median

Albrecht 24 8 0.50 105.20 21.88 11.45
Kemerer 15 6 23.20 1107.31 219.25 130.30
Miyazaki94 48 8 5.60 1586.00 87.47 38.10
Finnish 38 5 460.00 26670.00 7678.29 5430.00
Desharnais 77 9 546.00 23940.00 4833.91 3542.00
Cocomo 63 18 5.90 11400.00 683.53 98.00
SDR 12 24 1.00 22.00 5.73 3.50
Nasa93 93 22 8.40 8211.00 624.41 252.00
Maxwell 62 25 583.00 63694.00 8223.21 5189.50

3.3 Evaluation Procedures
In this study, we replicate the algorithm for determining
number of analogues (k) including fixed-k (k = 1 to 5), Best-
k [2, 9], DD-EbA [10], and BK algorithm [1]. Hence there
are 8 approaches in total being reviewed and evaluated in
this study.

For each dataset, first, we applied leave-one-out cross valida-
tion test to generate training and test sets. Given n project
cases in a dataset, we selected one case as a test set trained
by the remaining n − 1 cases. Then we applied the 8 ap-
proaches to determine the values of k. The result from each
method was evaluated by the 5 robust performance mea-
sures described earlier in this section. To compare the per-
formance of each approaches, we used the non-parametric
statistical named Wilcoxon rank-sum test at 95% confidence
interval. The Wilcoxon test was used for ensuring if the esti-
mation performance were significantly different. The overall
performance is assessed using the wins-ties-losses statistic
[3]. This statistic is an aggregation of the results across
all pairs of method combined in manners of pair-wise com-
parisons. Algorithm 1 shows the pseudocode to calculate
this statistic. Based on this statistic the total sum of wins,
losses and wins-losses are the commonly used indicators to
compare the overall performance across all approaches being
evaluated in software effort estimation research studies such
as in [9].

4. PRELIMINARY RESULT

4.1 RQ: What are better methods for deter-
mining the appropriate k value at the time
of writing?

Table 2 shows the results in terms of wins, losses and wins-
losses calculated across the 9 datasets using 5 error mea-
sures. From this table, we found that fixed-k perform clearly
better than dynamic-k. Out of the 8 approaches compared in
this study, k = 3 performed the best in terms of wins-losses.
Focusing on dynamic-k, Best-k performed as accurate as the
fixed-k approaches, while BK algorithm was consistently the
worst. Therefore these experiments show totally contradic-
tory results from those in the previous study of [1].

input : E → set of error each cases, K → set of measure
output: S → set of N clusters

for all combination case i, j do
for k in K do

if WILCOXON(Eik, Ejk) tells they are same then
tiei = tiei + 1
tiej = tiej + 1

else
if Eik < Ejk then

wini = wini + 1
lossj = lossj + 1

else
winj = winj + 1
lossi = lossi + 1

end

end

end

end

Algorithm 1: wins-ties-losses test

Table 3 shows that there are many cases of Nasa93 dataset
that have the same actual effort but the first four k val-
ues cannot produce accurate results. As a consequence, the
dynamic-k approaches such as DD-EbA and BK algorithm,
that build their learning process for the k value based on
1NN, cannot produce an accurate estimate for these cases.

Table 2: The results in terms of wins, losses, and
wins-losses generated across 9 datasets

Method wins losses wins-losses
k = 1 17 3 14
k = 2 16 2 14
k = 3 17 0 17
k = 4 16 0 16
k = 5 13 1 12
Best-k 16 2 14

DD-EbA 14 2 12
BK algorithm 6 105 -99

Table 3: Example of conflicting cases in the Nasa93
dataset

Case
number

Actual
effort

k = 1 k = 2 k = 3 k = 4

18 60.00 48.00 48.00 40.00 48.00
20 60.00 324.00 192.00 144.00 120.00
21 60.00 60.00 55.00 136.67 131.90
35 60.00 50.00 55.00 136.67 108.80
37 60.00 42.00 78.00 66.00 61.50

There is still no generally best single approach that would
performed best in all situations. If we have to suggest one
single approach, k = 3 would be the single approach of
choice.

5. DISCUSSIONS
Based on our experimental results, figures, and tables in this
paper, the followings are our findings:

1. All the fixed-k methods produced almost the same per-
formance.

2. Even if the DD-EbA and Best-k approaches are based
on a very similar procedure, DD-EbA often performs
worse. This finding points out that the first nearest
neighbor of many project cases may not be sufficiently
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similar to the new cases, because the procedure of DD-
EbA relies the estimation of the new case heavily on
its first neighbor. For this situation, data quality as-
sessment and improvement have a strong potential to
improve the performance of approaches that rely on
the first neighbor.

3. The result in Table 2 indicates that dynamic-k per-
forms worse than fixed-k. The cause of this result
is conflicting data in datasets as shown in Table 3.
As suggested by Kocaguneli [8], and Shepperd and
Schofield [16], a model built using a better quality data
generally provides a better estimation performance.
Hence, this finding also pointed out that data qual-
ity assessment and improvement has a strong poten-
tial to improve the performance of all the dynamic-k
approaches.

6. CONCLUSIONS
This study revisits the approaches that are being used to de-
termine the best number of analogues (k values), in analogy-
based software development effort estimation. Following the
suggestions by Shepperd and Kadoda [15], and Menzies et
al. [13], we use a large set of data (9 datasets) in our ex-
periment, and use more robust evaluation criteria (5 error
measures) [4] subject to Wilcoxon rank-sum statistical test.
This evaluation procedure is aimed at providing a stable
conclusion in this comparison-based study.

Based on our results and findings, we found that fixed-k
performed generally better than dynamic-k. This is contra-
dict to the previous study of [1]. In addition, our analy-
sis of dataset characteristics show that many project cases
with similar characteristics were not completed their de-
velopments with similar effort values. This finding indi-
cates that data consistency is the essences of dynamic-k
approaches. Unfortunately, no one to the best of our knowl-
edge has studies the influence of the underlying data quality
attribute with the approaches to identified the best number
of analogues, reviewed in this study.

Our future work will concentrate on investigating the influ-
ence of the two data quality attributes, data homogeneity
and data consistency. We strongly believe that the improve-
ment of these two attributes will significantly dynamic-k ap-
proaches. And since dynamic-k are more theoretically driven
and being more practical, we believe that research studies
in this direction will allow us to address the single best im-
proved method to determine the best number of analogues,
an important factor associate with the accuracy of analogy-
based software effort estimation.
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