
Scaling Up Software Birthmarks
Using Fuzzy Hashing

Takehiro Tsuzaki

Graduate School of Kyoto Sangyo University, Japan

Teruaki Yamamoto, Haruaki Tamada, and
Kyoto Sangyo University, Japan

Akito Monden
Okayama University, Japan

ABSTRACT
To detect the software theft, software birthmarks have been proposed. Software birthmark
systems extract software birthmarks, which are native characteristics of software, from binary
programs, and compare them by computing the similarity between birthmarks. This paper
proposes a new procedure for scaling up the birthmark systems. While conventional birthmark
systems are composed of the birthmark extraction phase and the birthmark comparison phase, the
proposed method adds two new phases between extraction and comparison, namely,
compression phase, which employs fuzzy hashing, and pre-comparison phase, which aims to
increase distinction property of birthmarks. The proposed method enables us to reduce the
required time in the comparison phase, so that it can be applied to detect software theft among
many larger scale software products. From an experimental evaluation, we found that the
proposed method significantly reduces the comparison time, and keeps the distinction
performance, which is one of the important properties of the birthmark. Also, the preservation
performance is acceptable when the threshold value is properly set.

Keywords: Software Birthmark, Fuzzy Hashing, Preprocessing,

I. INTRODUCTION

Till today, software theft has been causing serious damage to software industry. From the BSA
global software survey 20161, 39% of software installed on computers in the world is not
properly licensed. Also, violation of open source software (OSS) licenses, such as GPL2, by
unexpected and unaware reuse of OSS source code3 has now become a serious problem for both
software companies and OSS developers [Monden et al., 2011]. Software birthmark methods
have been proposed against such software theft to enable us to detect the theft [Tamada et al.,
2004], [Tamada et al., 2005]. A software birthmark is a set of characteristics which a program
originally possesses. It is extracted from a binary code and used to evaluate the similarity
between one program and another (extraction and comparison phases). Various types of
birthmarks have been proposed, each focusing on different characteristics in a program. Different
extraction methods and comparison methods have also been defined for each type of birthmark
and have been evaluated according to those definitions.

1 http://globalstudy.bsa.org/2016/downloads/studies/BSA_GSS_US.pdf
2 http://www.gnu.org/licenses/licenses.en.html
3 http://www.itmedia.co.jp/news/0210/18/njbt_06.html

Software birthmarks are designed to search of large amounts of software to detect suspected
copies; hence, their use requires high-speed, large-volume software repository searches.
However, the software birthmark has the one essential problem in the practical use case. That is,
the scale of the target software was not assumed. Figure 1 illustrates the problem in use of the
software birthmarks. The developer can examine for detecting the copy of p0 from the target set
programs p1 to pn. However, the many unchecked programs are still existing in the Internet. The
most important issue of the software theft is to detect suspected copies. The programs pn+1 to
pn+m in the figure 1 are never investigated because memory constraints, vast amount of time
consumed for comparison, and the enormous computational complexity. However, almost
programs are innocent and quite different. Therefore, to detect the software theft requires more
simple and casual algorithm for huger target set.

Therefore, we proposed the method for the software birthmark procedure to narrow the
defendants with compressing birthmark information and simplifies comparison algorithms.
Figure 2 shows the difference of the conventional and the proposed birthmark procedures. Form
figure 2, we insert two phases, compression phase and pre-comparison phase, between the
conventional phases. The compression phase compresses the birthmark information for the next
phase. The pre-comparison phase compares compressed birthmarks by simple algorithm and
computes similarity. Then, remains of the pre-comparison are still defendants, then, the remains
are the inputs for the comparison phase.

This remainder of this paper is organized as following. Section II reviews the related works.
Section III describes the proposed method and illustrates the novel procedure of the birthmark
system. Section IV represents the empirical studies of our method. Section V shows conclusion
and some future works.

Internet

p0

p1 p2

pn-1 pn

… pn+1 pn+2

pn+m-1
pn+m

…

Developers’ Envorinent

Target set

Compare p0 with
programs in the
target set.

Original
program

Figure 1. The problem of the current birthmark system

The conventional
method

The proposed
method

p0

p1

B1(p0)

B1(p1)

extract

extract compress

B’1(p0)

B’1(p1)

B1(p1)

B1(p0)

B1(p1)

B1(p0)

compare compare

Extraction
phase

Compression
phase

Pre-
comparison

phase

Comparison
phase

compress

Figure 2. The difference between the conventional method and the proposed method

II. RELATED WORKS

Birthmarks are a concept that was proposed by Tamada et al. as a method for detecting software
theft [Tamada et al., 2004], [Tamada et al., 2005]. Characteristics unique to a program that are
contained in the program's binary code are extracted as birthmark information and used to
measure similarity. Unlike software watermarks, there is no need for prior information
embedding; characteristics unique to the program are taken from the compiled binary and
defined as the birthmark. Several different types of birthmark that focus on a different program
characteristics have been proposed [Chan et al., 2012], [Choi et al., 2009], [Jhi et al., 2011],
[McMillan et al., 2012], [Schuler et al., 2007], [Park. et al., 2008].

Birthmarks ordinarily extract elements by examining characteristics in the program. The
extracted elements are maintained in a structure such as a set, sequence or graph, and the
similarity computation method is defined in accordance with the structure used. For example, the
Jaccard index [Schuler et al., 2007], Dice's coefficient [Choi et al., 2009] or cosine similarity
[McMillan et al., 2012] are often used for sets, and the longest common subsequence [Jhi et al.,
2011], [Park. et al., 2008] is used for sequences. Methods for graphs are more complex; however,
methods using graph isomorphism have been proposed [Chan et al., 2012], [il Lim et al., 2008].

 The number of birthmark elements can become massive, depending on the birthmark type
and program length. An increasingly large number of birthmark elements leads to a
corresponding increase in the cost of birthmark comparison and time needed for the similarity
computation. Accordingly, the complexity of the similarity computation method and a number of
birthmark elements affects the search time.

However, although many different definitions have been proposed for birthmark methods,
these birthmark methods do not compete with each other. The greater the number of birthmarks
that are defined, the greater the number of clues enabling theft detection. Longer check times
resulting from the greater number of birthmarks used can be reduced by the proposed method.

III. THE PROPOSED METHOD
A. The Definition of Birthmarks

Before describing the proposed method, we review the definition of birthmarks by Tamada et al.
Birthmarks are defined as follows [Tamada et al., 2004], [Tamada et al., 2005].

Definition 1 (Birthmark): Let p and q be given programs. Further, let f(p) be a set of
characteristics extracted from p by a given method f. If the conditions below are met, f(p) is
said to be a birthmark of p.

Condition 1: Set f(p) can only be obtained from program p.
Condition 2: If q is a copy of p, then f(p) = f(q)

Condition 1 implies that a birthmark is information necessary for running p, rather than
supplementary program information. In other words, a birthmark does not require supplementary
information in the manner of a software watermark. Condition 2 indicates that the same
birthmark can be obtained from a copied program. The contrapositive of this condition is that if
birthmarks f(p) and f(q) are different, q is not a copy of p.

Two properties known as preservation and distinction should also ideally be satisfied.

Property 1 (Preservation): For a p’ obtained by an arbitrary equivalent transformation of p, f(p)
= f(p’) is satisfied.

Property 2 (Distinction): When programs p and q that develop independently, f(p)≠f(q) is
satisfied.

Preservation indicates a birthmark’s resistance to various types of attacks. Distinction
indicates that programs created completely independently can be differentiated even if their
specifications are the same. Because birthmarks that completely satisfy both these properties are
difficult to create, in practice, birthmark strength must be set appropriately at the user’s
discretion.

B. Overview of the Proposed Method

The ultimate aim of a birthmark is to enable theft detection, not to prove cases of theft.
Birthmarks therefore need to be able to detect programs that resemble the comparison program
amid a large amount of software. Hence, a costly birthmark similarity computation that increases
the search time itself is undesirable. False negatives (undetected copies) are much more of a
problem than false positives (incorrectly detected innocent programs) because false positives
need to be proven as cases of theft by other subsequent methods, and the error will be uncovered
during that process.

Given these considerations, we looked at transforming birthmarks into short data sequences,
and then using the data obtained to compute similarity from a simple algorithm. Because we
replaced the conventional algorithm with a simple method, a rise in the false positive rate is
expected. However, because the method can check for suspected copies over a much larger
amount of software than previously possible, this makes it easier to narrow down searches for
suspected copies. This paper focuses on the hash function for the compression method, since the
hash function dramatically reduce the data length.

Although birthmark extraction is another time-intensive process, this paper does not cover the
topic of extraction time reduction, as birthmark extraction can be executed in advance and the
extraction results stored in a database.

C. The Key Idea

The key idea of the proposed method is to convert a birthmark obtained by a conventional
method to a hash function and to then use the obtained hash values to compute similarity.
Cryptographic hash functions such as MD5 or SHA2 cannot be used to compute similarity for
this process, as the output values will be completely different if the input values are even slightly
different. Cryptographic hash functions can be used for identification, but not for similarity
computation. Hence, to compute similarity, we use fuzzy hashing, also known as context-
triggered piecewise hashing (CTPH), which was developed as a method for identifying fairly
different data strings [Kornblum, 2006].

Although birthmarks are never deleted, they can sometimes be attacked in order to transform
them into different birthmarks. Because trivial differences in birthmarks could lead to large
differences in the proposed method, we defined two preprocessing steps before compression
phase to enable resistance to attacks —sort and memoization.

The sort preprocessing step sorts the birthmark elements before hash calculation. For example,
when the birthmark is handled as a sequence, large changes can result from reordering that
sequence. For birthmarks extracted from individual Java methods such as k-gram birthmarks
[Myles and Collberg, 2005], reordering the sequence of Java methods greatly changes the
birthmark. While there are conventional methods that define the comparison method in a way
that can handle Java method reordering, the simple comparison method used by the proposed
method is not resistant to such reordering. We therefore sorted birthmark elements in advance
before hash calculation.

The memoization preprocessing step encodes birthmark elements as numerical values instead
of character strings before applying fuzzy hashing. This preprocessing step is required to satisfy
the distinction property of birthmarks, because similar strings yield similar fuzzy hash values but
in general similar strings does not indicate (functionally) similar programs. For example, the
Used Class (UC) birthmark [Tamada et al., 2004], [Tamada et al., 2005] denotes a series of
classes used by the target program (class).

Supposing that the target program uses “String” and “System” classes, then
“java.lang.String” and “java.lang.System” are included in the UC birthmark.
Although “java.lang.String” and “java.lang.System” are functionally different,
their strings are similar because both contain “java.lang” portion. To make these classes
dissimilar, the memoization preprocess maps these strings to different numerical values.

D. Comparison Method of the Proposed Method

This section describes the method used to compute the similarity of two compressed data
obtained by the proposed method. Because we need to use a simple algorithm for comparing the
compressed data to keep the computational complexity low, we use edit distance. Edit distance is
a metric that defines the distance between two data strings and is defined as the number of
addition, deletion, or replacement operations needed to transform one string into another. The
similarity of two compressed data is hence defined as follows:

Definition 2 (Edit distance-based similarity): Let d represent a data stream and l(d) represent its
length. Let ed(d1 , d2) represent the edit distance between d1 and d2. The similarity between d1

and d2 is: .

As in conventional birthmark methods, we express similarity as a number between 0 and 1,
with similarity increasing as the value approaches 1 and decreasing as it approaches 0.

E. The Framework of the Proposed Method

 Figure 3 shows the proposed framework alongside the framework used by the conventional
method. The conventional method starts by extracting birthmarks from both the software to be
checked and the software to be searched. The similarity of these birthmarks is then calculated.
The proposed framework also compresses obtained birthmarks to hashes. The hashes are

a

x

Software

Software
to be checked

Conventional techniques

Birthmarks

Birthmarks

f1(a) abcdef
f2(a) ghijkl
f1(b) mnopqr
f2(b) stuvwx

Extract
birthmarks

Extract
birthmarks

Compare
birthmarks

Create hashes
from birthmarks

f2(a)

f1(a)

f2(b)

f1(b)

…

f2(x)f1(x)

Create hashes
from birthmarks

f1(x) ACEGIK
f2(x) BDFHJL

Compare
hashes

Proposed technique

Figure 3. Overview of the conventional and proposed method

compared by comparing their edit distance [Levenshtein, 1966].
This framework is designed to enable faster checking while preserving the features of

previously proposed birthmarks. Conventional birthmark comparison processes are often
complex; using edit distance to compare hash data simplifies the process. The use of hash data
should result in shorter data lengths than in existing birthmarks. A single element in a birthmark
can be complex and require a long time for element comparison, even though its data length is
short, resulting in a long total comparison time. Creating hashes can eliminate the complexity of
birthmark elements.

 Note that the proposed method creates hashes from any birthmark information, and hence can
be used with any previously proposed birthmark method.

IV. EXPERIMENTAL EVALUATION

A. The Overview of the Evaluations

The proposed method was evaluated from the following four perspectives:

1) Change in number of elements,
2) Comparison time,
3) Distinction performance, and
4) Preservation performance.

 Because the proposed method finds programs similar to a comparison program amid a large
amount of software, it needs to perform that comparison faster than the conventional method. We
therefore measured the reduction in the number of elements affecting comparison time. To
evaluate performance, we also measured the reduction in comparison time. In addition, we
measured distinction and preservation, two properties that birthmarks should satisfy.

We selected three types of birthmark for testing: k-grams of opcode sequences [Myles and
Collberg, 2005] (set-based), UCs [Tamada et al., 2004], [Tamada et al., 2005] (used classes;
sequence-based), and WSPs [Lim et al., 2008] (weighted stack patterns; graph-based). We used
ssdeep4 for fuzzy hashing, Stigmata5 for birthmark extraction, and Python to implement the
proposed method.

As described in Section III-C, the proposed method has two preprocessing steps. We tested
the proposed method for all combinations of steps (a total of four different test patterns), to
compute four sets of hash values.

B. Change in number of elements

Birthmarks generally consist of multiple elements. Because birthmark comparison requires
element-to-element comparison, comparison time increases as the number of elements increases.
The proposed method transforms the birthmarks into data strings. Although the data strings also
need to be compared, they should be shorter than the original birthmarks. This test determined
how much shorter they became.

As test data, we collected the latest products from the repository of the Apache Software
Foundation6, and used the 3,786 JAR files we obtained as the programs to be checked. They
contained a total of 567,691 classes.

4 http://ssdeep.sourceforge.net/
5 http://github.com/tamada/stigmata/
6 http://www.apache.org/

Table 1 shows the minima, maxima, and averages for both the element counts (conventional
method) and hash lengths (proposed method) obtained for each of the birthmark methods tested.
The first column shows the results of extracting birth- marks from individual classes using the
conventional method. The next four columns show results obtained using each of the four test
patterns of the proposed method — “Neither” indicates that neither of the two preprocessing
steps were performed, “Memoization only” that only memoization was performed, “Sort only”
that only sort was performed, and “Both” that both of the preprocessing steps were performed.

Figure 4 shows the distribution of birthmark element counts obtained by the conventional
method. Figure 5 shows the data string length distribution obtained by the proposed method. In
each graph, the horizontal axis represents the range of element counts (data string lengths), and
the vertical axis represents the corresponding frequency (number of instances) on a log scale.

Table 1. Minimum, maximum, and average element count/hash lengths

Conventional
method

The proposed method

Neither
Memoization

 only
Sort only Both

2-gram
Min. 0.00 4.00 4.00 4.00 4.00
Max. 1,140.00 101.00 101.00 101.00 101.00
Ave. 47.26 54.37 49.32 58.90 50.48

3-gram

Min. 0.00 4.00 4.00 4.00 4.00
Max. 3,669.00 102.00 101.00 102.00 102.00
Ave. 76.56 64.84 52.79 65.46 53.05

4-gram

Min. 0.00 4.00 4.00 4.00 4.00
Max. 8,178.00 102.00 102.00 102.00 102.00
Ave. 99.36 67.22 53.38 66.71 47.48

5-gram

Min. 0.00 4.00 4.00 4.00 4.00
Max. 16,949.00 102.00 102.00 102.00 102.00
Ave. 114.58 67.53 53.15 67.32 53.18

6-gram

Min. 0.00 4.00 4.00 4.00 4.00
Max. 32,111.00 102.00 102.00 102.00 102.00
Ave. 124.83 67.17 52.56 67.46 52.73

UC

Min. 0.00 4.00 4.00 4.00 4.00
Max. 407.00 102.00 101.00 102.00 101.00
Ave. 7.86 55.34 17.18 55.34 17.18

WSP

Min. 1.00 4.00 4.00 4.00 4.00
Max. 364,007.00 102.00 102.00 102.00 102.00
Ave. 53.10 67.39 40.34 67.31 39.85

1

10

100

1000

10000

100000

1000000

0-
10

21
-3

0

41
-5

0

61
-7

0

81
-9

0

10
1-

15
0

20
1-

25
0

30
1-

35
0

40
1-

45
0

50
1-

60
0

70
1-

80
0

90
1-

10
00

15
01

-2
00

0

25
01

-3
00

0

40
01

-5
00

0

80
01

-1
10

00

14
00

1-
20

00
0

10
00

01
-…

30
00

01
-…E
le

m
en

t
co

un
t

fr
eq

ue
nc

y
(n

um
be

r
of

 i
ns

ta
nc

es
)

Element count

2-gram 3-gram 4-gram
5-gram 6-gram UC
WSP

 Figure 4. Distribution of birthmark element counts
obtained by the conventional method

1

10

100

1000

10000

100000

1000000

D
at

a
st

ri
ng

 l
en

gt
h

fr
eq

ue
nc

y
(n

um
be

r
of

 i
ns

ta
nc

e)

Data string length

2gram 3gram
4gram 5gram
6gram uc
wsp

Figure 5. Distribution of data string lengths
obtained by the proposed method (with sort and
memoization preprocessing)

Because of space constraints, the only graph shown for the proposed method is the result
obtained when both the sort and memoization preprocesses were performed. As shown, the
conventional method generated many birthmarks with small numbers of elements, but also some
with extremely large numbers of elements. The proposed method generated data string lengths of
a nearly uniform distribution and a maximum length of just over 100. Its top data string length
range was 100 to 110, but the occurrence frequency for this range was low, possibly because the
maximum data string length was 102, making this range smaller than the others.

C. Comparison Time

The proposed method should also reduce comparison time. This section describes the testing we
performed to determine how much comparison time was reduced. Conventional method
comparison times were measured using the method set for each of the evaluated birthmark
methods. We used three libraries for comparison: Groovy 2.4.0 Beta 27, H2 1.4.1828, and
Velocity 1.79. Proposed method comparison times were measured using the four test patterns
previously described, taking the average of the results obtained. This is because the four test
patterns only resulted in marginally different hash lengths and did not generate major differences
in comparison time. The execution environment was a MacBook Air PC running on the OS X
Yosemite operating system, with a 1.7 GHz Intel Core i7 CPU and 8 GB of memory.

The result is shown in Table 2. The comparison time for the conventional method using WSP
birthmarks and the Groovy library has been omitted because the comparison did not complete in
a realistic amount of time (6 h).

The Velocity library has the smallest number of classes. For the UC birthmarks, there was
nearly no difference between the comparison times of the proposed and conventional methods.
UC birthmarks are a very simple type of birthmark that use the Jaccard index as the comparison
method. Because they have a small number of elements (as indicated in Section IV-B), they gain
little advantage from the size reduction provided by the proposed method.

7 http://www.groovy-lang.org/
8 http://www.h2database.com/
9 http://velocity.apache.org/

Table 2. Time required for comparison (s)
 Groovy H2 Velocity

Number of classes 3,086 627 270
Number of comparison 4,763,241 196,878 36,585

Conventional
method

2-gram 104.10 2.71 0.74
3-gram 136.30 6.31 0.85
4-gram 177.06 10.97 1.18
5-gram 186.03 13.51 1.49
6-gram 209.17 15.22 1.37

UC 72.35 1.17 0.50
WSP N/A 1,936.67 70.78

Proposed
method

2-gram 57.17 3.18 0.51
3-gram 64.90 3.25 0.54
4-gram 69.07 3.31 0.56
5-gram 66.77 3.28 0.56
6-gram 67.38 3.32 0.59

UC 32.43 1.64 0.44
WSP 57.26 3.02 0.50

In contrast, the proposed method’s comparison time for WSP birthmarks was about 141 times
faster than the conventional method, even for the Velocity library, which had the shortest
comparison times. Because WSP birthmarks are represented by graphs and use a complex
comparison method, we found the proposed method provides a major reduction in comparison
time.

D. Distinction performance evaluation

This section describes the test to determine how much the birthmarks transformed by the
proposed method possessed the property of distinction. Because similar classes will usually not
exist in a single product, we checked the class data used in Section IV-C to determine whether
similar items were found. If similar classes exist, they are integrated by refactoring, but small
classes can sometimes be coincidentally similar, often preventing checks using birthmarks. Even
for the proposed method, short hash lengths are not likely to produce correct results, so we
excluded hash lengths of five or less from the comparison.

Table 3 lists the distinction rates we obtained. Using a past standard as our reference [Schuler
et al., 2007], we set a similarity threshold of 0.75, and evaluated results higher than this value as
distinction failures. The rates of successfully distinguished pairs are shown as percentages of the

whole for each library and birthmark type. The results show that the proposed method had
distinction rates that were above 90% in every category, higher than the rates obtained by the
conventional method in every category except for the UC birthmarks with the Velocity library.
For the H2 and Velocity libraries, there was almost no difference in the distinction rates of the
proposed method, regardless of whether preprocessing was performed. For the Groovy library,
we found that performing preprocessing produced better results.

 We show the results of our distinction rate evaluation graphically by graphing similarity
frequencies instead of the distinction rates themselves. Figure 6 shows the results for 2-gram

Table 3. Distinction rate list

Conventional
method

The proposed method

Neither
Memoization

only
Sort only Both

G
ro

ov
y

2-gram 65.86% 91.10% 93.04% 04.04% 95.69%
3-gram 89.63% 91.96% 96.92% 96.61% 97.01%
4-gram 93.52% 94.41% 96.80% 96.90% 97.46%
5-gram 94.06% 95.75% 97.13% 96.59% 97.43%
6-gram 95.54% 96.89% 97.40% 97.38% 97.41%
UC 92.45% 93.88% 98.30% 93.88% 98.30%
WSP N/A 94.65% 97.48% 95.96% 97.51%

H
2

2-gram 57.89% 99.96% 99.97% 99.96% 99.96%
3-gram 99.40% 99.96% 99.99% 99.97% 99.97%
4-gram 99.31% 99.98% 99.99% 99.99% 99.99%
5-gram 99.30% 99.98% 99.99% 99.99% 99.99%
6-gram 99.28% 99.98% 99.99% 99.99% 99.99%
UC 96.82% 96.19% 99.20% 96.19% 99.20%
WSP 91.72% 99.96% 99.97% 99.96% 99.97%

V
el

oc
it

y

2-gram 69.04% 99.82% 99.80% 99.79% 99.84%
3-gram 96.81% 99.79% 99.80% 99.83% 99.85%
4-gram 96.56% 99.80% 99.78% 99.84% 99.87%
5-gram 96.31% 99.75% 99.78% 99.86% 99.86%
6-gram 96.31% 99.75% 99.82% 99.86% 99.85%
UC 99.17% 99.12% 99.49% 99.12% 99.49%
WSP 91.43% 99.72% 97.03% 99.78% 97.01%

birthmarks with the Groovy library (which had the lowest average distinction rate), while Figure
7 shows the results for UC birthmarks with the Velocity library (which had the highest average

distinction rate). In each graph, the horizontal axis represents similarity and the vertical axis
represents the corresponding similarity frequency. The lines in each graph show the frequencies
for the conventional method and for each of the four test patterns of the proposed method. Figure
6 shows that relative to the conventional method, the proposed method had lower numbers of
results with high levels of similarity.

E. Preservation performance evaluation

We also evaluated the proposed method’s preservation property using ProGuard10 to obfuscate
files from the H2 library and comparing their classes before and after obfuscation. The default
ProGuard obfuscation process consists of name obfuscation, deletion of unneeded Java method
calls, and optimization.

Table 4 shows the comparison results. The values labeled “Min.” and “Max.” are the
minimum and maximum similarity values generated by comparing results before and after
obfuscation. The “Avg.” values are the average similarity values obtained for all the comparisons
in each category. “Rate (0.75)” and “Rate (0.5)” show the frequency (percent) of pairs with
similarity values of over 0.75 and 0.5, respectively.

The “Rate (0.75)” values show that the proposed method does not possess the property of
preservation at the 0.75 similarity threshold. However, as shown by the “Rate (0.5)” values,
preservation can be assured if the threshold is lowered to 0.5. We found neither preprocessing
step contributed to preservation. When memoization was performed, the maxi- mum similarity
only exceeded 0.5 for UC birthmarks, likely because memoization reduced the differences
among the original birthmark elements, resulting in them being greatly affected by obfuscation.
Similarly, we found that performing sort also greatly reduced preservation for all birthmarks
except 2-gram, WSP, and UC. Because UC birthmarks are already defined as sorted, the sort
preprocessing had no effect on them. WSP birthmarks were also nearly unaffected by the sort
preprocessing, but the preservation of 2-gram birthmarks was improved by the sort preprocessing.

These findings indicate that the proposed method offers no benefit for some types of
birthmark. They also indicate that our preprocessing steps are unnecessary. However, we only
evaluated preservation in response to ProGuard obfuscation, and preservation in response to
other obfuscation processes needs to be evaluated.

V. CONCLUSION

10 http://proguard.sourceforge.net/

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

0-
9

11
 2

0

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
-6

9

70
-7

9

80
-8

9

90
-9

9

10
0

S
im

il
ar

it
y

fr
eq

ue
nc

y

Similarity

Groovy (2-gram birthmarks) Conventional technique
Memoization only
Neither
Borth
Sort only

Figure 6. Groovy comparison result for 2-
gram birthmarks

0.00%
5.00%

10.00%
15.00%
20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%

0-
9

11
 2

0

20
-2

9

30
-3

9

40
-4

9

50
-5

9

60
-6

9

70
-7

9

80
-8

9

90
-9

9

10
0

S
im

il
ar

it
y

fr
eq

ue
nc

y

Similarity

Velocity (UC birthmarks) Conventional technique
Memoization only
Neither
Borth
Sort only

Figure 7. Velocity comparison result for UC
birthmarks

This paper proposed two phases for the birthmark system that uses fuzzy hashing to enable faster
comparison and is designed for use with existing birthmark methods. The compression phase
defines two preprocessing steps, sort and memoization. We evaluated the proposed method on
three existing birthmark types. The results show that the proposed method can improve
comparison speed and preserve the property of distinction that birthmarks possess. However, we
found it greatly reduces preservation, so its use would require a lower similarity threshold or
similar adjustment.

The following areas need to be covered in future studies: refining the proposed method to
improve preservation, evaluating its preservation in response to other obfuscation methods, and
evaluating its use with other birthmark extraction methods.

REFERENCES

[Chan et al., 2012] Chan, P., Hui, L., and Yiu, S. (2012). Heap graph based software theft
detection. IEEE Transactions on Information Forensics and Security, 8:101–110.

Table 4. Preservation performance evaluation results

 Min Max Avg.
Rate

(0.75)
Rate
(0.5)

2-
gr

am
 Conventional 0.00 1.00 0.96 96.76% 98.92%

Neither 0.06 1.00 0.60 31.60% 62.62%
Memoization only 0.04 0.44 0.12 0.00% 0.00%
Sort only 0.08 1.00 0.63 33.33% 69.17%
Both 0.05 0.38 0.12 0.00% 0.00%

3-
gr

am
 Conventional 0.00 1.00 0.91 94.05% 98.38%

Neither 0.07 1.00 0.62 36.61% 66.67%
Memoization only 0.03 0.33 0.11 0.00% 0.00%
Sort only 0.05 1.00 0.54 24.47% 46.44%
Both 0.03 0.43 0.11 0.00% 0.00%

4-
gr

am
 Conventional 0.00 1.00 0.87 89.73% 97.12%

Neither 0.10 1.00 0.61 35.10% 64.90%
Memoization only 0.06 0.44 0.11 0.00% 0.00%
Sort only 0.07 1.00 0.50 20.59% 43.33%
Both 0.04 0.33 0.11 0.00% 0.00%

5-
gr

am
 Conventional 0.00 1.00 0.82 80.36% 95.50%

Neither 0.06 1.00 0.61 32.68% 67.72%
Memoization only 0.03 0.38 0.11 0.00% 0.00%
Sort only 0.08 1.00 0.47 16.54% 37.60%
Both 0.04 0.39 0.11 0.00% 0.00%

6-
gr

am
 Conventional 0.00 1.00 0.79 71.71% 93.69%

Neither 0.06 1.00 0.61 33.20% 66.40%
Memoization only 0.04 0.50 0.11 0.00% 0.00%
Sort only 0.07 1.00 0.44 15.02% 34.39%
Both 0.03 0.44 0.11 0.00% 0.00%

U
C

Conventional 0.08 1.00 0.98 97.48% 98.74%
Neither 0.06 1.00 0.97 94.12% 97.61%
Memoization only 0.05 0.71 0.28 0.00% 1.85%
Sort only 0.06 1.00 0.97 94.12% 97.61%
Both 0.05 0.71 0.28 0.00% 0.00%

W
S

P

Conventional 0.00 1.00 0.96 96.76% 98.92%
Neither 0.03 1.00 0.61 38.73% 65.13%
Memoization only 0.03 0.50 0.14 0.00% 0.00%
Sort only 0.02 1.00 0.59 31.79% 64.74%
Both 0.01 0.44 0.14 0.00% 0.00%

[Choi et al., 2009] Choi, S., Park, H., il Lim, H., and Han, T. (2009). A static API birthmark for
windows binary executables. Journal of Systems and Software, 82(5):862–873.

[il Lim et al., 2008] il Lim, H., Park, H., Choi, S., and Han, T. (2008). Detecting theft of Java
applications via a static birthmark based on weighted stack patterns. IEICE Transactions on
Information and System, E91-D(9):2323–2332.

[Jhi et al., 2011] Jhi, Y.-C., Wang, X., Jia, X., Zhu, S., Liu, P., and Wu, D. (2011). Value-based
program characterization and its application to software plagiarism detection. In Proc. the
33rd International Conference on Software Engineering (ICSE 2011), pages 756–765.

 [Kornblum, 2006] Kornblum, J. (2006). Identifying almost identical files using context triggered
piecewise hashing. Journal Digital Investigation: The International Journal of Digital
Forensics & Incident Response, 3:91– 97.

[Levenshtein, 1966] Levenshtein, V. I. (1966). Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady, 10(8):707–710.

[McMillan et al., 2012] McMillan, C., Grechanik, M., and Poshyvanyk, D. (2012). Detecting
similar software applications. In Proc. the 34th International Conference on Software
Engineering (ICSE 2012), pages 364–374.

[Monden et al., 2011] Monden, A., Okahara, S., Manabe, Y., and Matsumoto, K. (2011). Guilty
or not guilty. Using cline metrics to determine open source licensing violations. IEEE
Software, 28(2), pages 42–47.

[Myles and Collberg, 2005] Myles, G. and Collberg, C. (2005). K-gram based software
birthmarks. In Proc. the 20th Annual ACM Symposium on Applied Computing, pages 314–
318.

[Park. et al., 2008] Park., H., il Lim, H., Choi, S., and Han, T. (2008). A static Java birthmark
based on operand stack behaviors. In International Conference on Information Security and
Assurance (ISA 2008), pages 133– 136.

[Schuler et al., 2007] Schuler, D., Dallmeier, V., and Lindig, C. (2007). A dynamic birthmark for
Java. In Proc. of the 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), pages 274– 283.

[Tamada et al., 2004] Tamada, H., Nakamura, M., Monden, A., and Matsumoto, K. (2004).
Design and evaluation of birthmarks for detecting theft of Java programs. In Proc. IASTED
International Conference on Software Engineering (IASTED SE 2004), pages 569–575.
(Innsbruck, Austria).

[Tamada et al., 2005] Tamada, H., Nakamura, M., Monden, A., and Matsumoto, K. (2005). Java
birthmarks —detecting the software theft —. IEICE Transactions on Information and
System, E88-D(9):2148–2158.

