
58 IT Pro March/April 2017 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/17/$33.00 © 2017 IEEE

Software engineering

Akito Monden, Okayama University, Japan

Masateru Tsunoda, Kindai University, Japan

Mike Barker and Kenichi Matsumoto, Nara Institute of Science and Technology, Japan

S
ystem testing followed by a product re-
lease decision are the last guards in as-
suring software quality—insufficient
testing or the wrong release decision can

lead directly to the delivery of low-quality software
to users. At the same time, relying too much on
system testing to guarantee quality is dangerous
because it occurs too late to correct poor-quality
software. Moreover, previous studies have shown
that bug fixing is much costlier during system
testing than in earlier phases.1 Therefore, we must
not only be aware of factors that increase defects
but also seek possible process improvements to re-
duce defects before system testing.

To identify and justify process improvements in
individual organizations, where processes, data,

and context are varied and unique, we explored us-
ing a multivariate modeling technique to analyze
past development data collected in organizations.
However, unlike some academic approaches, we
employed a basic linear regression approach with
a limited number of independent variables, each
associated with what we call software engineering
(SE) beliefs. These are short statements that are
attention-getting, understandable, and obviously
practically useful, such as “about 80 percent of the
defects come from 20 percent of the modules,” or
“peer reviews catch 60 percent of the defects.”2

SE beliefs are a kind of practical hypothesis that

•	 are related to early problem detection or pos-
sible quality assurance actions;

Software engineering beliefs—short, attention-getting, practically
useful statements—can help to justify process improvements. The
authors empirically validate four selected beliefs in relation to the
increase or decrease of defects in system testing.

Examining
Software
Engineering Beliefs
about System
Testing Defects

	 computer.org/ITPro 	 5 9

•	have been told elsewhere;
•	match IT professionals’ intuition in a target or-

ganization; and
•	 can be empirically validated using commonly

collected metrics in the target organization.

In particular, we explored four basic SE beliefs
related to system testing defects, which we dis-
cussed with IT professionals in the target organi-
zations to ensure that they matched professionals’
intuition. We focused on system testing defects
rather than post-release ones because prerelease
information is commonly measured and eas-
ily collectable, even in small and medium-sized
enterprises (SMEs). In future research, we want
to investigate the use of post-release defects for
improving post-release software quality even for
SMEs.

SE Beliefs
We explore four basic SE beliefs that must be
empirically confirmed in the individual context
in which process improvement takes place. We
started by validating the beliefs in each of two
software organizations in a midsize Japanese em-
bedded software company. We then did further
analysis to clarify why each SE belief is supported
or not supported and identified possible actions
for process improvement. Although these four SE
beliefs are by no means complete—many other
factors are involved with system testing defects—
we believe these beliefs are still worth validating
in a specific organization where review, test, and
reuse processes are relatively stable.

SE Belief 1
Spending more effort on design and code reviews can
lower the defect density in system testing. For an in-
dividual organization, this SE belief is worth
confirming to justify increasing review efforts
or conducting additional reviews during a trou-
blesome project. It has been pointed out that
the most basic target for process improvement
is a software review (or inspection) in the early
development phases.3 We adapted the results
of a past study, which showed that higher re-
view efforts increased field software quality, to
system testing.4 Indeed, many software compa-
nies focus on early defect detection via design
or code reviews for long-term software process
improvements.5,6

SE Belief 2
Low software quality revealed in design and code reviews
will result in high defect density in system testing. This SE
belief is worth confirming to discover a troublesome
project in an early development phase. It is often
the case that a troublesome project yields defects
throughout a development lifecycle.7 Research-
ers have revealed that in many systems, more de-
fects will be found in modules (or subsystems) that
yielded more defects in the past.8 Thus, very low
quality revealed in early development phases could
imply high defect density in later phases, including
system testing. Note that this belief is a little tricky
because you will not find many defects unless you
spend enough review effort. Also, if this SE belief is
not empirically supported in a target organization, it
could imply that the organization is already taking
proper quality improvement actions (such as addi-
tional design or code reviews) before system testing.

SE Belief 3
Larger quantities of reused code from past projects in-
crease the risk of higher defect density in system testing.
Although reusing code from past projects can
save coding time and resources, it can also raise
the cost and quality risks unless the reused code is
well designed, documented, tested, and intended
for reuse.9 Even with systematic reuse, which can
increase both productivity and software quality,10
reused code must be properly tested to decrease
quality risks because it is not defect-free in gen-
eral.11 However, due to the limitations of testing
resources and schedules, companies often spend
much less effort on reused code than on devel-
oped code, which can increase quality risks from
reused code. This SE belief is worth confirming to
justify adding more testing efforts for reused code.

SE Belief 4
Higher test case density in unit and integration testing
can lower the defect density in system testing. Although
it is rather obvious that defects overlooked in unit
and integration testing will increase defect den-
sity in system testing—a problem that is often
referred to as defect slippage12—this SE belief
explicitly focuses on increasing test case density
in unit and integration testing. We believe this
belief is worth confirming to show that adding
more effort to unit and integration testing will
actually help improve the low software quality
found in design phases (SE belief 2).

60	 IT Pro March/April 2017

Software Engineering

Target Organizations and Projects
We obtained a dataset consisting of data from
107 waterfall-style software development proj-
ects (52 in organization A and 55 in organization
B) undertaken at a midsize software development
company from 2009 to 2012. The main business
domain of both organizations is embedded soft-
ware development for wired and wireless com-
munication systems, image processing systems,
and public transportation systems. However, the

two organizations are separate from each other
and have different customers. Most projects are
contract-based development to produce software
based on requirements given by other compa-
nies. Hence, most projects consisted of develop-
ment phases after requirements analysis—that
is, architectural design, module design, imple-
mentation, unit testing, integration testing, and
system testing. Here, system testing does not in-
clude hardware testing.

Table 1. Statistics for organizations A and B.

Metrics

Organization A Organization B

Average Median
Standard
deviation Average Median

Standard
deviation

Development
size

A: number of pages of
architecture design document
(new or modified pages)

295 193 246 220 90 331

B: number of pages of module
design document (new or
modified pages)

397 312 351 255 82 442

C: developed thousand lines of
code (lines of new or modified
functions)

35.7 32.9 20.4 20.4 11.7 26.7

D: reused thousand lines of
code (lines of unmodified
functions)

36.0 19.6 45.8 43.0 19.5 50.5

Review effort E: architecture design review
effort (person hours per page
reviewed)

0.25 0.22 0.14 0.48 0.39 0.44

F: module design review
effort (person hours per page
reviewed)

0.26 0.22 0.16 0.26 0.22 0.18

G: code review effort (person
hours per developed thousand
lines of code)

3.89 3.21 2.63 2.70 2.13 2.35

Test case
density

H: unit test case density (defects
per thousand lines of code)

99.31 86.00 41.93 60.65 48.17 43.24

I: integration test case density
(defects per thousand lines of
code)

39.71 30.34 43.80 39.25 42.40 23.04

J: system test case density (defects
per thousand lines of code)

29.80 20.80 18.09 19.53 16.48 14.35

Defect
density

K: defect density in
architecture design

0.53 0.51 0.21 0.69 0.40 1.01

L: defect density in module
design

0.48 0.49 0.19 0.40 0.33 0.39

M: defect density in code review 15.79 11.95 14.23 4.43 3.54 2.81

N: defect density in unit testing 3.94 3.72 1.63 1.96 1.53 1.63

O: defect density in
integration testing

1.97 1.63 1.65 1.06 1.07 0.68

P: defect density in system
testing

1.71 1.52 1.34 0.73 0.54 0.56

	 computer.org/ITPro 	 6 1

After basic cleaning of the dataset,
such as deleting tiny projects or those
with missing values, 34 projects (18
in organization A and 16 in organiza-
tion B) remained available. As Table 1
shows, statistics for these projects were
measured in terms of development
size (document pages or noncomment
lines of C/C++ source code), review ef-
forts (person hours), test case density,
and defect density in various stages of
development. Based on these statis-
tics, we could identify several differ-
ences between the two organizations.

Regarding development size, proj-
ects in organization A were about 2 to 4 times
larger than those in organization B in terms of the
median values of document pages and developed
lines of code, whereas the reused size was almost
the same. Regarding the quality assurance effort
(that is, review effort and test case density), proj-
ects in A had relatively smaller values in architec-
ture design, whereas they had larger values in later
phases (code review, unit testing, integration, and
system testing). Regarding defect density, projects
in A yielded more defects than those in B. This
implies that organization A is struggling more
with quality assurance than B. Figure 1 shows
histograms of the defect density in acceptance
testing. Obviously, organization A has higher de-
fect density projects than organization B, which
implies that there is more room for process im-
provement in A.

Initial Validation of SE Beliefs
Table 2 shows the four metrics M1 to M4 used
for validating the four SE beliefs. As shown in the
table, each metric is associated with the hypoth-
esis for an SE belief. For example, SE belief 1 hy-
pothesizes that projects having a higher M1 value
(total review effort per thousand lines of code)
will have a lower defect density in system testing.
Note that M1 does not include reused code—that
is, the denominator is not (C + D)—because the
design and code reviews have been done on the
new or modified pages or code only (not on the
unmodified pages or code).

To validate the four SE beliefs, we employed all
four metrics M1 to M4 as independent variables
with the defect density as a dependent variable in
a multivariate linear regression analysis (Equa-

tion 1). Because the metrics are expected to inde-
pendently increase or decrease the defect density,
it is convenient to use linear regression analysis
for the validation. By identifying variables sig-
nificantly related to the defect density of system
testing based on the t-test of the coefficients’ sig-
nificance, we can statistically validate SE beliefs:

Ŷ = k1M1 + k2M2 + k3M3 + k4M4 + C,� (1)

where Ŷ is the estimated defect density, Mi is an
independent variable, ki is the regression coeffi-
cient, and C is a constant.

Table 3 shows the results of the regression
analysis for organizations A and B. For each in-
dependent variable, Table 3 shows the regression
coefficient and the p-value of its t-test, which is
the estimated probability of rejecting the null hy-
pothesis “a coefficient is zero.” The bold, italic
p-values indicate that the coefficient is statisti-
cally significant (p < 0.05), which supports the
validity of its associated SE belief.

Analysis beyond the SE Beliefs
As shown in Table 3, M1 was not significant in
either organization, whereas M2 was statistically
significant only in organization A. This indicates
that coping with high defect density in design
and code reviews is crucial for organization A,
because it currently has a high level of system
testing defects in such cases. On the other hand,
for organization B, the results suggest that even
if a high defect density was found in design and
code review, it has a low level of system testing
defects. For further analysis, we analyzed the
relationship between M2 (early phase defect

Figure 1. Histograms of defect density in system testing. (a)
Organization A has higher defect density projects than (b)
organization b, implying that there is more room for process
improvement in A.

R 2 = 0.0017

R 2 = 0.7727

0

10

20

30

40

50

60

0 20 40 60 80
0

10

20

30

40

50

60

Early phase defect density (M2)
0 20 40 60 80
Early phase defect density (M2)

To
ta

l r
ev

ie
w

 e
ffo

rt
pe

r d
ev

el
op

ed
th

ou
sa

nd
 li

ne
s

of
 c

od
e

(M
1)

To
ta

l r
ev

ie
w

 e
ffo

rt
pe

r d
ev

el
op

ed
th

ou
sa

nd
 lin

es
 o

f c
od

e
(M

1)

(a) (b)

62	 IT Pro March/April 2017

Software Engineering

density) and M1 (total review effort per developed
thousand lines of code), shown in Figure 2. Ob-
viously, organization B spent more review effort
(indicated by M1) on high defect density projects
(indicated by M2), which demonstrates why or-
ganization B has a lower level of system testing
defects for such troublesome projects. On the
other hand, even if organization A found a high
defect density in early phases, it did not spend
additional review effort, which demonstrates that
this is a necessary target for process improvement

in organization A. This result also
demonstrates that using the same
baseline of review effort per size for
all projects is a bad habit in quality
assurance.

Regarding M3, in organization B,
it was statistically significant, which
means that SE belief 3—that is,
more reused code has a higher level
of defect density—was confirmed in
organization B. In further analysis,
to estimate how many defects are
introduced by 1,000 lines of reused
code, we conducted an additional re-
gression analysis using the number
of defects found in system testing as
a dependent variable, and obtained a
model Ŷ = 0.233 ⋅ (developed thou-
sand lines of code) + 0.085 ⋅ (reused

thousand lines of code). Note that Ŷ is the num-
ber of defects, not the density, and that we con-
firmed beforehand that these two variables were
really independent. The correlation coefficient
between developed thousand lines of code and re-
used thousand lines of code was –0.004. Based on
this analysis, it can be estimated that 1,000 lines
of reused code introduces 0.085 defects in system
testing, whereas 1,000 lines of developed code in-
troduces 0.233 defects. This indicates that about
27 percent of the total defects came from reused

Figure 2. Review effort analysis for (a) organization A and (b)
organization B. We analyzed the relationship between M2 (early
phase defect density) and M1 (total review effort per developed
thousand lines of code).

0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6
0
1
2
3
4
5
6
7
8
9

0 1 2 3 4 5 6
Defect densityDefect density

N
o.

 o
f p

ro
je

ct
s

N
o.

 o
f p

ro
je

ct
s

(a) (b)

Table 3. Results of regression analysis.

Independent variable

Organization A Organization B

Regression coefficient p-value Regression coefficient p-value

M1 0.0226 0.768 –0.0217 0.355

M2 0.0394 0.029 0.0031 0.885

M3 2.0649 0.086 1.0512 0.006

M4 –0.0037 0.647 –0.0006 0.893

(Constant) 0.0906 0.914 0.3450 0.309

Table 2. Metrics related to software engineering (SE) beliefs.

SE belief Metrics Definition Hypothesis in system testing

1 M1: total review effort per
developed thousand lines of code

Total review
effort/C

Higher M1 has a lower defect density

2 M2: early phase defect density K + L + M Higher M2 has a higher defect density

3 M3: reuse ratio D/(C + D) Higher M3 has a higher defect density

4 M4: average test case density of
unit testing and integration testing

(H + I)/2 Higher M4 has a lower defect density

	 computer.org/ITPro 	 6 3

code. This number, 27 percent, is
larger than the 16 percent in system
and acceptance testing found in a
previous study.11 This indicates that
reducing reuse-related defects is a
crucial task for process improvement
in organization B.

Looking back at Table 3, we see
that M4 was not significant in orga-
nization B, which implies that unit
and integration testing are currently
not enough to eliminate the risk of
reused code. To understand the cur-
rent integration testing strategy of
organization B, we analyzed the relationship be-
tween the number of test cases and developed or
reused code sizes (Figure 3). Obviously, the num-
ber of test cases is proportional to the developed
thousand lines of code, and not at all related to
the reused thousand lines of code. This demon-
strates the need for additional test cases on reused
code in integration testing in organization B.

O ur study confirmed that focusing on a
small number of SE beliefs that match
IT professionals’ intuition in a target

organization is a good starting point for such an
analysis. Regardless of whether the SE beliefs
are confirmed, we can then proceed to a further
analysis on why they were confirmed or not, and
identify possible process improvements.

This approach provides a bridge between SE
beliefs and the practical need of development
organizations to identify targets for process im-
provements that are suited to the individual orga-
nization. Based on our study, even SMEs can use
this approach to improve their processes, which
will result in better products. By using available
metrics and linear regression analysis to confirm
whether these SE beliefs apply in an individual
organization, then further analyzing data related
to SE beliefs with statistically significant results,
we can provide recommendations for tailored
process improvements that are attention-getting,
easily understandable, and practically useful.

The main limitation of this approach is that it
cannot improve system testing itself, given that
we lack defect information after system testing
(that is, the post-release defects). We recommend
using post-release defects and related SE beliefs

in cases where an organization has enough data
on post-release defects. Also, a larger dataset is
obviously preferable to provide more confidence
in and better drive process improvements.

What does this mean for IT professionals?
Instead of just claiming that SE beliefs seem
reasonable, using this basic set of metrics and
analysis allows IT professionals to check wheth-
er these beliefs really work for them in their or-
ganizations. From those results, IT professionals
can then develop their own set of recommenda-
tions tailored to their organization. These aren’t
just SE beliefs that are generally true—they are
ones that have been tested and proven in your
organization.�

References
	 1.	 T. Matsumura et al., “Analyzing Factors of Defect

Correction Effort in a Multi-Vendor Information
System Development,” J. Computer Information Systems,
vol. XLIX, no. 1, 2008, pp. 73–80.

	 2.	 B. Boehm and V. Basili, “Software Defect Reduction
Top 10 List,” Computer, Jan. 2001, pp. 135–137.

	 3.	 L. Harjumaa, I. Tervonen, and P. Vuorio, “Using
Software Inspection as a Catalyst for SPI in a Small
Company,” Proc. 5th Int’l Conf. Product Focused Software
Process Improvement, LNCS 3009, 2004, pp. 62–75.

	 4.	 Y. Takagi et al., “Analysis of Review’s Effectiveness
Based on Software Metrics,” Proc. 6th Int’l Symp. Soft-
ware Reliability Eng. (ISSRE), 1995, pp. 34–39.

	 5.	 O. Mizuno and T. Kikuno, “Empirical Evaluation of
Review Process Improvement Activities with Respect
to Post-Release Failure,” Proc. Empirical Studies on Soft-
ware Development Eng., 1999, pp. 50–53.

	 6.	 N. Honda and S. Yamada, “Empirical Analysis for
High Quality Software Development,” Am. J. Opera-
tions Research, vol. 2, no. 1, 2012, pp. 36–42.

Figure 3. Analysis of integration testing for organization B. We
analyzed the relationship between the number of test cases and (a)
developed or (b) reused code sizes.

0

5,000

4,000

3,000

2,000

1,000

0 50 100 150
Developed thousand lines of code

0 50 100 150 200
Reused thousand lines of code

N
o.

 o
f t

es
t c

as
es

0

5,000

4,000

3,000

2,000

1,000

N
o.

 o
f t

es
t c

as
es

(a) (b)

R 2 = 0.9312

R 2 = 0.002

64	 IT Pro March/April 2017

Software Engineering

	 7.	 E. Yourdon, Death March, 2nd ed., Prentice Hall,
2003.

	 8.	 M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating
Defect Prediction Approaches: A Benchmark and an
Extensive Comparison,” Empirical Software Eng., vol. 17,
nos. 4–5, 2012, pp. 531–577.

	 9.	 W. Tracz, “Software Reuse: Motivators and Inhibi-
tors,” Proc. 32nd IEEE CS Int’l Conf. (COMPCON),
1987, pp. 358–363.

	10.	 P. Mohagheghi and R. Conradi, “Quality, Produc-
tivity and Economic Benefits of Software Reuse: A
Review of Industrial Studies,” Empirical Software Eng.,
vol. 12, no. 5, 2007, pp. 471–516.

	11.	 W.M. Thomas, A. Delis and V.R. Basili, “An Analy-
sis of Errors in a Reuse-Oriented Development En-
vironment,” J. Systems and Software, vol. 38, 1997,
pp. 211–224.

	12.	 V. Basili et al., “Bridging the Gap between Business
Strategy and Software Development,” Proc. Int’l Conf.
Information Systems (ICIS), 2007, article no. 25.

Akito Monden is a professor in the Graduate School of
Natural Science and Technology at Okayama University,
Japan. His research interests include software measure-
ment and analytics, and software security and protection.
Monden received a Doctor of Engineering in information
science from Nara Institute of Science and Technology. He
is a member of IEEE, ACM, the Institute of Electronics,
Information, and Communication Engineers,
the Information Processing Society of Japan,
and the Japan Society for Software Science
and Technology. Contact him at monden
@okayama-u.ac.jp.

Masateru Tsunoda is a lecturer in the De-
partment of Informatics at Kindai University,
Japan. His research interests include software
measurement and human factors in software
development. Tsunoda received a Doctor of En-
gineering in information science from the Nara
Institute of Science and Technology. He is a
member of IEEE, the Institute of Electronics,
Information, and Communication Engineers,
the Information Processing Society of Japan, the
Japan Society for Software Science and Tech-
nology, and the Japan Society for Information
and Systems in Education. Contact him at tsu-
noda@info.kindai.ac.jp.

Mike Barker is a professor in the Graduate
School of Information Science at Nara Insti-

tute of Science and Technology, Japan. His research interests
include software measurement, research methods, and the
software development process. Barker has almost 40 years of
software engineering experience in both industry—with com-
panies such as RCA and BBN—and academia, at MIT. He
has been the steering committee chair for the Conference on
Software Engineering Education and Training since 2012,
is a long-time member of ACM and IEEE, and is a PMP-
certified member of the Project Management Institute. Contact
him at mbarker@mit.edu.

Kenichi Matsumoto is a professor in the Graduate School
of Information Science at Nara Institute of Science and
Technology, Japan. His research interests include software
measurement and software process. Matsumoto received
a PhD in information and computer sciences from Osaka
University, Japan. He is a fellow of the Institute of Elec-
tronics, Information, and Communication Engineers and
the Information Processing Society of Japan, a senior mem-
ber of IEEE, and a member of ACM and the Japan Soci-
ety for Software Science and Technology. Contact him at
matumoto@is.naist.jp.

Read your subscriptions through the
myCS publications portal at http://
mycs.computer.org.

IEEE Software seeks practical,

readable articles that will appeal to

experts and nonexperts alike. The

magazine aims to deliver reliable

information to software developers

and managers to help them stay on

top of rapid technology change.

Articles

Author guidelines:
www.computer.org/software/author
Further details: software@computer.org

www.computer.org/software

Call
for

