
How is IF Statement Fixed Through Code Review?
-A case study of Qt project-

Yuki Ueda∗, Akinori Ihara∗, Toshiki Hirao ∗, Takashi Ishio∗, and Kenichi Matsumoto∗
∗ Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Japan

Email: {ueda.yuki.un7, akinori-i, hirao.toshiki.ho7, ishio, matumoto}@is.naist.jp

Abstract—Peer code review is key work to ensure the absence
of software defects. To improve the review process, many code
review tools provide OSS projects CI tests that automatically
verify the code quality issues such as a code convention issue
and a syntax issue. However, it does not cover every issues
such as project policy issue and a code readability issue. In this
study, our main goal is to understand how a code owner fixes
conditional statement issues based on reviewers feedback. As a
first step to achieve this goal, we conduct an empirical study to
understand if statement changes after reviewing. Using 69,325
review requests in the Qt project, we analyze changes of the if
conditional statement (1) that are requested to review, and (2)
that are implemented after reviewing. As a result, we find that
most common symbolic changes are “(” and “)” (35%) , “!”
operator (20%) and “->” operator (12%). Also, “!” operator is
frequently replaced with “(” and “)”.

I. INTRODUCTION

Peer code review, a manual inspection of code changes
by developers who do not create them, is a well-established
practice to ensure the absence of software defects. Nowaday,
many open source software (OSS) and commercial projects
have adapted the peer code review. While code review plays
an important work in software development processes, it is
expensive and time consuming [1]. For example, Alberts [2]
describes how code review spends around 50% of the software
development resources. One of the reasons is because patch
authors spend much time to revising their own patches due
to various issues (e.g., technical, feature, scope and process
issues) [1].

What cases patch authors to fix their patches several times?
Pan et al. [3] and Martinez et al. [4] conducted an empirical
study to understand what code changes a patch author commit.
They found that if statement change is the most frequent
than any other changes. Also, Tan et al. [5] found that binary
operators in conditional expression are more frequent changes
in a programming contest. Why do developers often change
if statement? In our best knowledge, little is known how the
code owner fixes if statement. if statement changes would
include various issues such as bug fix and reliability.

In this study, our main goal is to understand how patch
author fixes conditional statement issues based on reviewers
feedback. As a first step to achieve this goal, we conduct
an empirical study to analyze if statement changes after
reviewing because the conditional statement issues are likely
to be changed more frequently than any other ones [3]. As a
case study using 69,325 patches in the Qt project, we analyze

Fig. 1. The overview of the code review processes in Gerrit Code Review

the changes of the conditional statements (1) that are requested
to review (Section IV), and (2) that are implemented after the
review completion (Section V).

The contribution of this study is to find out frequent patterns
to fix if statement through code review. We conjecture that
it may help to design an issue detection approach.

This paper is structured as follows. Section II describes the
background of our study. Section III introduce our target if
statement changes. Section IV describes an empirical study to
analyze the changes in code review requests, and Section V
describes to analyze the changes after reviewing. Section VI
describes the validity of our empirical study. Section VII
introduce the related works. Finally, section VIII concludes
our study and discuss future works.

II. BACKGROUND

Nowadays, we have various dedicated tools for managing
the peer code review processes. For example, Gerrit 1 and
ReviewBoard 2 are commonly used by OSS practitioners to
receive the lightweight reviews. Technically, the code review
tools are used for patch submission trigger, an automatic test
and manual reviewing to decide whether or not a patch should
be integrated into a version control system.

For automatic test, OSS projects often use CI (Continuous
Integration) tests that automatically verify the fundamental

1Gerrit Code Review: https://code.google.com/p/gerrit/
2ReviewBoard: https://www.reviewboard.org/

flaws by such as Jenkins 3, Travis CI 4. However, it is not
able to cover high level (e.g., requirement) issues such as
performance and security issues [6]. To detect these issues,
reviewers may need to conduct manual review with their eyes.

Fig. 1 shows an overview of the code review process in
Gerrit Code Review which our target Qt project is using as a
code review management tool.

1. A patch author submit a patch to Gerrit Code Review.
We define the submitted patch is Patch1.

2. The reviewer(s) evaluate the Patch1, and provide feed-
back to the patch author. If the Patch1 has any issues,
the reviewer(s) require to revise the patch.

3. The patch author then revises the Patch1, then submit
the revised patch as a Patch2. If the patch is revised n
times, we define the patch as Patchn.

4. Once the patch author complete to address concerns of
reviewers, the patch will be integrated into the repository.

Raymond et al. [7] mentioned that code review is able
to detect crucial issues a large-scale code before releasing.
Indeed, the validity of code review has been demonstrated by
many prior studies [8], [9], [10], [11], [12]. The prior studies
show the relationship of software defects after release, anti-
patterns in software design and security vulnerability issues.

While code review is effective to improve the quality of
software artifacts, it spend a large amount of time and request
many human resources [2]. Indeed, Rigby et al. [13] found that
six large-scale OSS projects spend approximately 1 month for
code review. There are mainly two reasons why code review
spends a large amount of time and human resources. The
first factor is a process to identify the appropriate reviewer(s)
before the code review starts. Previous research proposes a
method of selecting an appropriate reviewer based on past
reviewer’s experience [14], [15], [16], [17], [18]. The second
factor is the process of reviewing source codes. The code
changes suggested by developers has some problems and need
to be fixed multiple times [1]. Sometimes, when reviewers
disagree with one another, the review time is likely to be
longer [19].

Most published code review studies focused on review
process or reviewers communication. In this paper, we fo-
cused source code changes, especially if changes, to reveal
why submitted code were changed. We believe if statement
causes many source code changes in software development [3],
[4]. Especially, Tan et al. [5] discussed logical operators in
conditional expression are frequently fixed in programming
contests. We believe that if statement changes are one of
the most difficult works. However, how if statement was not
clear in previous studies.

In this paper, we conduct two analyses. The first one is to
analyze what kinds of symbols in Patch1 are likely to be fixed
in a code review request. The second one is to analyze what
kinds of symbol changes are likely to be fixed after reviewing.
In second analysis, we investigate changes between Patch1

3Jenkins: https://jenkins.io/index.html
4Travis CI: https://travis-ci.org/

Listing 1. IF-CC pattern Example
− i f (getView () . c o u n t S e l e c t e d () == 0) {
+ i f (getView () . c o u n t S e l e c t e d () <= 1) {

Listing 2. Example 1
− i f (n >= 1 && p a t h . a t (0) == QLat in1Char

(’ / ’))
+ i f (n == 0)
+ re turn f a l s e ;
+ c o n s t QChar a t 0 = p a t h . a t (0) ;
+ i f (a t 0 == QLat in1Char (’ / ’))

re turn true ;

and Patchn in Fig. 1. The second one is to analyze what
kinds of symbol changes between Patch1 and Patchn after
reviewing.

III. CONDITIONAL STATEMENT IN CODE REVIEW

IF-CC pattern is changing the condition expression of an if
condition like Listing 1. Pan et al. [3] found that conditional
statements are most likely to be fixed than another syntax
issues and the common pattern of conditional statement that
are changed by developers (defined as IF-CC pattern)

In the Listing 1, although the IF-CC pattern is able to detect
the condition change, it does not detect what string developer
change in if statement (e.g., the change from “==” operator
to “<=” operator). we focus how the conditional statements
are changed in code reviews.

To investigate the possible patterns of conditional state-
ments, we conduct the empirical study on the Qt project. The
Qt project is a cross-platform application framework using
C++ language that is supported by the Digia corporation 5.
In our study, we target 69,325 review requests in Qt project.
We sample 380 patches from the original review dataset (a
sample selected to obtain proportion estimates that are within
5% bounds of the proportion with 95% confidential level).
Listings 2 through 4 show the example patterns that we
manually extracted.

Listings 2 is an example devide if statement that using “&”
symbol 6. Listings 3 is an example remove "(", ")" with De
Morgan’s laws7. Listings 4 is an example replace “(” and “)”
to function 8

Listings 2 through 4 describe symbol changes, In Listings 2,
“&” operator disappear. In Listings 3, “&” operator symbol is
replaced with “|” operator symbol, and “!” operator increase.
In Listings 4, “!=” operator and “==” operator are replaced
with function. Then, “(” and “)” arise.

5http://qt.digia.com/
6https://codereview.qt-project.org/#/c/16570/1..2/src/lib/tools/fileinfo.cpp
7https://codereview.qt-project.org/#/c/53881/1..3/src/libs/utils/

consoleprocess.cpp
8https://codereview.qt-project.org/#/c/6041/1..6/src/plugins/geoservices/

nokia/places/qplacesuppliersrepository.cpp

Listing 3. Example 2
− i f (! (nonEmpty && v a l u e . i sEmpty ()))
+ i f (! nonEmpty | | ! v a l u e . i sEmpty ())

Listing 4. Example 3
− i f (t a r g e t . i c o n () == QPlace Icon () &&

s r c . i c o n () != QPlace Icon ())
+ i f (t a r g e t . i c o n () . i sEmpty () && ! s r c .

i c o n () . i sEmpty ())

We conduct two quantitative analysis on Qt project.
In our first analysis, we analyze what kinds of code changes

of conditional statements are added in a first submitted patch.
In our second analysis, we analyze what kinds of code changes
of conditional statements are fixed after reviewing.

IV. ANALYSIS 1: SOURCE CODE CHANGES IN REVIEW
REQUEST

A. Approach

For analysis 1, this study analyze if statement changes
included in the diff file which is generated by the review
management system for reviewing. Indeed, we would like to
analyze the changes based on the diff file and the original
source code to identify a spot with if statement. However, it
takes time to collect the original source code. When we use
only diff file to analyze if statement changes, there is one
limitation which is not able to get all if changed contents
across multiple lines. However, we believe that problem will
not affect to our results since the number of if statement
changes across multiple lines is 425 patches of our target
69,325 patches (0.006%).

For this analysis, we identify the number of each symbols
in the condition of if statement changes in Patch1 by
syntax analysis. Then, we use ANTLR 9 for parsing syntax
and count changed symbols for each changed block. Fig.2
described overview to get symbol changes. Table I shows
common symbol, the description, and example in conditional
expression.

To analyze frequent of changed symbols in the same change,
we use closed frequent itemset mining which is one of the
well-known and popular data mining methods. The frequent
itemset mining is to identify a frequent item sets that is both
closed and its support is greater than the any other item sets.
For frequent itemset mining, we use arules package of R.
Since the frequent itemset mining suggest much item sets, we
target item sets with less than 7 items and the support values
are 0.001 or more to filter out some item sets. When we find
the item sets have inclusion relation (e.g., {“(”} and {“(”,
“)”}) with same support values, the set with fewer items will
be filtered out.

9http://www.antlr.org/

TABLE I
SYMBOL LIST.

symbols purpose example
= assignment if((a = b))
== compare same or not if(a == b)
!= compare not same or same if(a != b)
! switch logical result if(!a)
& and condition if(a & b)
| or condition if(a | b)
(surround condition or call function if((a | b) & c())
) surround condition or call function if((a | b) & c())
-> call member from pointer if(a->b())
+ plus operator if((a + b) == 0)
- minus operator if((a - b) == 0)
* multiple operator if((a * b) == 0)
/ devide operator if((a / b) == 0)
% ramaind operator if((a % b) == 0)
< compare(greater than) if(a < b)
> compare(less than) if(a > b)
<= compare(greater than or equal) if(a <= b)
>= 比較 (less than or equal) if(a >= b)

Fig. 2. Approach to extract changed symbols in if statement from diff file.

B. Result

In our target 69,325 review requests, we found that there
were 6,956 requests (10%) including the change of if state-
ment. Fig.3 shows the frequent of symbols changed in if
statements of the submitted patch. And, the Table II shows
the top 50 item sets with higher support value of 477 item
sets analyzed by frequent itemset mining. For example, id3 in
table II shows “(” ∧ “)” that means “(” and “)” was changed
in the same time of if statement changes.

fr
e
q
u
e
n
c
y

0
5
0
0

1
0
0
0

1
5
0
0

2
0
0
0

2
5
0
0

3
0
0
0

3
5
0
0

= == != ! & | ()
−> + − * / % < > <= >=

Fig. 3. Symbol change frequency with if statement changes.

Listing 5. Example include “(” and “(”
+ i f (! Q F i l e I n f o (sys temRoot () + ” / epoc32

/ r e l e a s e / udeb / epoc . exe ”) . e x i s t s ())
+ re turn f a l s e ;

Observation 1: Parentheses(e.g., “(” and “)”) is the
most frequent changed symbol with “if” statement
changes. Fig. 3 shows that parentheses are likely to be fixed
with if statement. Also, Table II shows 55% of the “if”
statement changes including “(” and “)” changes (id1). This
target parentheses don’t include begin or end parenthesis for
if statement. Although parentheses are often used for define
priority in statement, we interestingly found that Qt project
often uses parentheses to call a function in the statement like
Listing 5 10.

Observation 2: “Arrow” operator and “not” symbol
are likely to be added with parentheses frequency. Fig. 3
shows that “Arrow” and “not” are likely to be fixed with if
statement. In Table II, 55% of if statement changes is with
the adding parentheses. The 44.7% of them (24.6% of if
statement changes) were changed with the adding the arrow
operator (id12 to id19) since the arrow operator often call a
function like Listing 6 11.

Also, 34.7% of them (19.1% of if statement changes) were
changed with the adding the not “!” operator (id8 to id10)
since the not operator is often used to detect the fail of function

10https://codereview.qt-project.org/#/c/1368/1/src/plugins/
qt4projectmanager/qt-s60/symbianqtversion.cpp

11https://codereview.qt-project.org/#/c/32/1/src/plugins/texteditor/
plaintexteditorfactory.cpp

Listing 6. Example include “->”
+ i f (e d i t o r −> f i l e ()−>h a s H i g h l i g h t W a r n i n g

())
re turn ;

Listing 7. Example include “!”
+ i f (! i sComponentComple te () | | ! d−>model

| | ! d−>model−>i s V a l i d ())
re turn ;

execution like Listing 5 or to use the output of a function like
Listing 712.

V. ANALYSIS 2: SOURCE CODE CHANGES AFTER
REVIEWING

A. Approach

For analysis 2, we analyze how code owner fixed if state-
ments after reviewing. As Fig. 4 shows, we count the number
of symbol which the code owner changes from Patch1 to
Patchmerged. For example, in Fig. 4, we find one & and two
in Patch1. After reviewing the Patch1, we can find that the
patch owner added “|”, “(” and “)” as , and deleted “&”
and “!”. Then, we count the difference number of symbols
between Patch1 and Patchmerged like “&_delete: 1”. Using
this dataset, this analysis conducts an empirical study to
understand the updates after reviewing using the same frequent
itemset mining as Analysis 1.

B. Result

Table III shows top 50 rules with the highest support score
in 364 rules which were detected by frequent itemset mining.

Observation 3: 35% of code fixes after reviewing in-
cludes the adding or deleting parentheses. 23% of all
fixes with if statements includes the adding parentheses
(id1 in Table III). On the other hand, 12% of all fixes with
if statements includes the deleting parentheses (id5-id9 in
Table III). Totally, 35% of all fixes with if statements includes
the parentheses fixes because of too many function calls or
lacking function calls like the following examples 13,14.

Observation 4: Patch owner is likely to add “->”, “&”
after reviewing. 8% of all fixes with if statements includes
the adding “->” (id15 in Table III). The number of the adding
“->” is more than the deleting one (id27 in Table III). Same as
“->”, 7% of all fixes with if statements includes the adding
“&” (id22 in Table III) like the Listing 8.

Observation 5: Patch owner is likely to delete “!” after
reviewing. 13% of all fixes with if statements includes the

12https://codereview.qt-project.org/#/c/2481/1/src/declarative/items/
qsggridview.cpp

13https://codereview.qt-project.org/#/c/1843/1..2/src/plugins/
qt4projectmanager/qt-desktop/simulatorqtversion.cpp

14https://codereview.qt-project.org/#/c/1779/1..2/src/plugins/
qmlprojectmanager/qmlprojectruncontrol.cpp

TABLE II
FREQUENT OF CHANGED SYMBOL SETS WITH IF CHANGES.

id symbols support * 100
1 “(” 56.7
2 “)” 55.1
3 “(” ∧ “)” 55.1
4 “!” 31.4
5 “->” 24.6
6 “==” 22.5
7 “(” ∧ “->” 19.4
8 “!” ∧ “(” 19.4
9 “!” ∧ “)” 19.1
10 “!” ∧ “(” ∧ “)” 19.1
11 “)” ∧ “->” 19.1
12 “(” ∧ “)” ∧ “->” 19.0
13 “&” 15.1
14 “==” ∧ “(” 12.5
15 “&” ∧ “(” 12.1
16 “==” ∧ “(” ∧ “)” 11.8
17 “&” ∧ “)” 11.7
18 “&” ∧ “(” ∧ “)” 11.7
19 “!=” 10.8
20 “!” ∧ “->” 8.8
21 “|” 7.9
22 “!” ∧ “(” ∧ “->” 7.5
23 “!” ∧ “)” ∧ “->” 7.4
24 “!” ∧ “(” ∧ “)” ∧ “->” 7.4
25 “!=” ∧ “(” 7.2
26 “!=” ∧ “(” ∧ “)” 7.1
27 “<” 7.0
28 “|” ∧ “(” 6.5
29 “|” ∧ “(” ∧ “)” 6.4
30 “==” ∧ “->” 6.1
31 “&” ∧ “->” 6.0
32 “>” 5.7
33 “!” ∧ “&” 5.6
34 “&” ∧ “(” ∧ “->” 5.5
35 “&” ∧ “(” ∧ “)” ∧ “->” 5.4
36 “(” ∧ “<” 5.2
37 “(” ∧ “)” ∧ “<” 5.2
38 “==” ∧ “&” 5.2
39 “!” ∧ “&” ∧ “(” 5.1
40 “!” ∧ “&” ∧ “)” 5.0
41 “!” ∧ “&” ∧ “(” ∧ “)” 5.0
42 “==” ∧ “(” ∧ “->” 4.7
43 “=” 4.7
44 “==” ∧ “(” ∧ “)” ∧ “->” 4.7
45 “−” 4.6
46 “*” 4.5
47 “==” ∧ “&” ∧ “(” 4.3
48 “(” ∧ “>” 4.3
49 “)” ∧ “>” 4.2
50 “(” ∧ “)” ∧ “>” 4.2

deleting “!” (id4 in Table III). The number of the deleting
“!” is more than the adding one (id16 in Table III). Same as
“->”, 7% of all fixes with if statements includes the adding
“&” (id22 in Table III) like the Listing 8. Especially, 69% of
the deleting “!” (9% of all fixes with if statements) is fixed
with the adding “(”, “)” because the patch owner often use
any functions instead of “!” like Listing1015. The other case,
“==” is also likely to delete after reviewing because “==” also
replace to function(e.g., isEmpty()).

15https://codereview.qt-project.org/#/c/2422/1..8/src/declarative/items/
qsgcanvas.cpp

Fig. 4. Approach to extract changed symbols after reviewing.

Listing 8. Example add “(” and “)”
− i f (qmlviewerCommand () . i sEmpty ())
+ i f (q t V e r s i o n () >= QtSuppor t : :

QtVersionNumber (4 , 7 , 0) &&
qmlviewerCommand () . i sEmpty ())

VI. THREATS TO VALIDITY

Internal validity. To analyze code changes before and after
reviewing, we extracted symbol changes in textttif statement
changes by syntax analysis.Indeed, we would like to analyze
the changes based on the diff file and the original source code
to identify a spot with if statement. However, since it takes
time to collect the original source code, we simply focus on
only diff files. we believe that any problems will not affect to
our results since the number of if statement changes across
multiple lines is 425 patches of our target 69,325 patches
(0.006%).

External validity. We conduct the empirical study using
only Qt project code review dataset. When we target the other
projects, some findings of our study may be different. For
example, the other project may be often use “<”　 or “>=” in
Table 3 instead of “>” or “<=”. We believe that our approach
would be helpful to understand individual rules or trend fixes
in each project.

TABLE III
SAME TIME CHANGED ITEMS IN CODE REVIEW

id symbols support * 100
1 “(” add 23.32
2 “)” add 23.32
3 “(” add ∧ “)” add 23.09
4 “!” delete 13.27
5 “)” delete 12.46
6 “(” delete 12.20
7 “(” delete ∧ “)” delete 12.05
8 “(” ∧ “)” delete 12.00
9 “)” ∧ “(” delete 11.59
10 “!” ∧ “)” add 11.24
11 “!” ∧ “(” add 11.24
12 “!” ∧ “(” add ∧ “)” add 11.18
13 “(” add ∧ “!” delete 9.12
14 “(” add ∧ “)” add ∧ “!” delete 9.09
15 “->” add 8.02
16 “!” add 7.46
17 “(” ∧ “)” add 6.94
18 “(” ∧ “(” add 6.85
19 “(” ∧ “(” add ∧ “)” add 6.71
20 “(” ∧ “)” ∧ “(” add 6.65
21 “(” ∧ “)” ∧ “)” add 6.59
22 “&” add 6.59
23 “(” ∧ “)” ∧ “(” add ∧ “)” add 6.51
24 if. add 4.97
25 “(” add ∧ “->” add 4.82
26 “(” add ∧ “)” add ∧ “->” add 4.79
27 “->” delete 4.71
28 “==” delete 4.59
29 “(” ∧ “&” add 4.47
30 “(” ∧ “)” ∧ “&” add 4.39
31 “&” delete 4.36
32 “==” add 4.33
33 “!” ∧ “)” delete 4.24
34 “(” ∧ “->” delete 4.15
35 “!” ∧ “(” ∧ “)” delete 4.12
36 “(” ∧ “)” ∧ “->” delete 4.10
37 “(” ∧ “!” add 4.10
38 “(” ∧ “)” ∧ “!” add 4.04
39 “!” ∧ “(” delete 3.98
40 “->” ∧ “(” delete 3.95
41 “!” ∧ “(” delete ∧ “)” delete 3.92
42 “->” ∧ “)” delete 3.92
43 “->” ∧ “(” delete ∧ “)” delete 3.89
44 “)” ∧ “->” ∧ “(” delete 3.86
45 “!” ∧ “)” ∧ “(” delete 3.86
46 “(” ∧ “->” ∧ “)” delete 3.86
47 “(” ∧ “!” delete 3.80
48 “(” ∧ “)” ∧ “!” delete 3.78
49 “(” ∧ “->” add 3.60
50 “(” ∧ “)” ∧ “&” delete 3.60

VII. RELATED WORK

A. Code Review

Many studies have conducted an empirical studies to under-
stand code review works [8], [9], [10], [11], [12], [22], [23],
[24], [25]. Most published code review studies focused review
process or reviewers communication.

For example, Tsay et al. found that patch authors and
reviewers often discuss and propose solutions to fix a patch
each other [22]. In particula, Czerwonka et al. [23] found that
15% of the discussion for a patch fix is about functional issues.
Also, Mäntylä et al. [24] and Beller et al. [25] found that 75%
of the discussion for a patch fix is about software maintenance

Listing 9. Example delete “(” and “)”
− i f (c o n f i g−>q t V e r s i o n () && QtSuppor t : :

QmlObserverTool : : c a n B u i l d (c o n f i g−>
q t V e r s i o n ()))

+ i f (Q tSuppor t : : QmlObserverTool : :
c a n B u i l d (c o n f i g−>q t V e r s i o n ()))

Listing 10. Example delete “!”
− i f (! h o v e r I t e m s)
+ i f (h o v e r I t e m s . i sEmpty ())

and 15% of the discussion is about functional issues. From
these studies, we could understand issues which we should
solve in code review process. Next, we should focus on how
we fix those issues. As the first step, we focused source code
changes through code review, especially if changes.

B. Coding Conventions

Appropriate coding conventions prevent software faults [?].
As a code fix study, refactoring study is the most popular
one in software engineering field [20]. Particularly, code
convention issue is much relate to our study. Smit et al. [20]
found that CheckStyle is useful to check whether or not a
source code follows their coding rule. Also, some convention
tool has released to check a format of coding convention such
as Pylint16. Furthermore, Allamanis et al. [21] developed a
tool to fix code convention. However, in our best knowledge,
little is known how a code owner fixes conditional statement
issues based on reviewers feedback.

VIII. CONCLUSION

In this paper, our empirical study discuss how a patch author
fix if statement based on reviewer feedback. According to
the results of our case study on Qt project, While 55% of the
“if” statement changes including “(” and “)” changes, 35%
of code fixes after reviewing includes the adding or deleting
parentheses. In the most of cases, a patch author often add
parentheses to call a function. In addition, we found “->” and
“&” are likely to be added, and “!” is likely to be deleted
after reviewing. These might be changed to fix a potential
bug. And, if patch authors check the possible to change these
before request code review, the reviewers could spend more
time for the other review requests. In the future, we would
like to propose a method to review and fix a symbol in if
statement automatically.

ACKNOWLEDGMENT

Support Center for Advanced Telecommunications (SCAT)
Technology Research, Foundation This work was supported by
Grant-in-Aid for JSPS Research Fellow Number 17J09333.

16https://www.pylint.org/

REFERENCES

[1] P. C. Rigby and M.-A. Storey, “Understanding broadcast based peer
review on open source software projects,” in Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 541–550.

[2] D. S. Alberts, “The economics of software quality assurance,” in
Proceedings of the June 7-10, 1976, National Computer Conference and
Exposition. New York, NY, USA: ACM, 1976, pp. 433–442.

[3] K. Pan, S. Kim, and E. J. Whitehead, “Toward an understanding of
bug fix patterns,” Empirical Software Engineering, vol. 14, no. 3, pp.
286–315, 2009.

[4] M. Martinez, L. Duchien, and M. Monperrus, “Automatically extracting
instances of code change patterns with AST analysis,” IEEE Interna-
tional Conference on Software Maintenance, ICSM, pp. 388–391, 2013.

[5] S. H. Tan, J. Yi, S. Mechtaev, A. Roychoudhury et al., “Codeflaws: a
programming competition benchmark for evaluating automated program
repair tools,” in Proceedings of the 39th International Conference on
Software Engineering Companion. IEEE Press, 2017, pp. 180–182.

[6] Y. Tao, D. Han, and S. Kim, “Writing acceptable patches: An empirical
study of open source project patches,” in Proceedings of the Interna-
tional Conference on Software Maintenance and Evolution, 2014, pp.
271–280.

[7] E. S. Raymond, “The cathedral and the bazaar,” Knowledge, Technology
& Policy, vol. 12, no. 3, pp. 23–49, 1999.

[8] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact of
code review coverage and code review participation on software quality:
A case study of the qt, vtk, and itk projects,” in Proceedings of the 11th
Working Conference on Mining Software Repositories, 2014, pp. 192–
201.

[9] A. Meneely, A. C. R. Tejeda, B. Spates, S. Trudeau, D. Neuberger,
K. Whitlock, C. Ketant, and K. Davis, “An empirical investigation
of socio-technical code review metrics and security vulnerabilities,”
in Proceedings of the 6th International Workshop on Social Software
Engineering, 2014, pp. 37–44.

[10] P. Thongtanunam, S. McIntosh, A. E. Hassan, and H. Iida, “Investigating
code review practices in defective files: An empirical study of the qt
system,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, 2015, pp. 168–179.

[11] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? a case study of the qt, vtk, and itk projects,” in
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering, 2015, pp. 171–180.

[12] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “An empirical
study of the impact of modern code review practices on software
quality,” Empirical Software Engineering, vol. 21, no. 5, pp. 2146–2189,
2016.

[13] P. C. Rigby and C. Bird, “Convergent contemporary software peer review
practices,” in Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering, 2013, pp. 202–212.

[14] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida,
and K. Matsumoto, “Who should review my code? a file location-based
code-reviewer recommendation approach for modern code review,” in
Proceedings of the 22nd International Conference on Software Analysis,
Evolution, and Reengineering, 2015, pp. 141–150.

[15] V. Balachandran, “Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommenda-
tion,” in Proceedings of the 35th International Conference on Software
Engineering, 2013, pp. 931–940.

[16] M. Zanjani, H. Kagdi, and C. Bird, “Automatically recommending peer
reviewers in modern code review.” Transactions on Software Engineer-
ing, vol. 42, no. 6, pp. 530–543, 2015.

[17] M. M. Rahman, C. K. Roy, and J. A. Collins, “Correct: Code reviewer
recommendation in github based on cross-project and technology expe-
rience,” in Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 222–231.

[18] X. Xia, D. Lo, X. Wang, and X. Yang, “Who should review this
change? putting text and file location analyses together for more accurate
recommendations.” in Proceedings of the 31st International Conference
on Software Maintenance and Evolution, 2015, pp. 261–270.

[19] T. Hirao, A. Ihara, Y. Ueda, P. Phannachitta, and K. Matsumoto, “The
impact of a low level of agreement among reviewers in a code review
process,” in The 12th International Conference on Open Source Systems,
2016, pp. 97–110.

[20] J. Tsay, L. Dabbish, and J. Herbsleb, “Let ’s talk about it: Evaluating
contributions through discussion in github.” in Proceedings of the 22nd
International Sym posium on Foundations of Software Engineering,
2014, pp. 144–154.

[21] J. Czerwonka, M. Greiler, and J. Tilford, “Code reviews do not find
bugs: How the current code review best practice slows us down,” in Pro-
ceedings of the 37th International Conference on Software Engineering,
2015, pp. 27–28.

[22] M. V. Mäntylä and C. Lassenius, “What types of defects are really dis-
covered in code reviews?” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 430–448, 2009.

[23] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens, “Modern code
reviews in open-source projects: Which problems do they fix?” in
Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 202–211.

[24] C. Boogerd and L. Moonen, “Assessing the value of coding standards:
An empirical study,” IEEE International Conference on Software Main-
tenance, ICSM, pp. 277–286, 2008.

[25] M. Smit, B. Gergel, H. J. Hoover, and E. Stroulia, “Code convention
adherence in evolving software,” in Software Maintenance (ICSM), 2011
27th IEEE International Conference on. IEEE, 2011, pp. 504–507.

[26] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Learning natural
coding conventions,” in Proceedings of the 22nd ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering. ACM,
2014, pp. 281–293.

