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A B S T R A C T

Context: Refactoring is recognized as an effective practice to maintain evolving software systems. For software
libraries, we study how library developers refactor their Application Programming Interfaces (APIs), especially
when it impacts client users by breaking an API of the library.
Objective: Our work aims to understand how clients that use a library API are affected by refactoring activities.
We target popular libraries that potentially impact more library client users.
Method: We distinguish between library APIs based on their client-usage (referred to as client-used APIs) in order
to understand the extent to which API breakages relate to refactorings. Our tool-based approach allows for a
large-scale study across eight libraries (i.e., totaling 183 consecutive versions) with around 900 clients projects.
Results: We find that library maintainers are less likely to break client-used API classes. Quantitatively, we find
that refactoring activities break less than 37% of all client-used APIs. In a more qualitative analysis, we show two
documented cases of where non-refactoring API breaking changes are motivated other maintenance issues (i.e.,
bug fix and new features) and involve more complex refactoring operations.
Conclusion: Using our automated approach, we find that library developers are less likely to break APIs and tend
to break client-used APIs when performing maintenance issues.

1. Introduction

Software libraries are constantly evolving, either responding to
client needs, patching bug fixes or addressing other maintainability
concerns. Refactoring is a controlled and widely-used technique for
improving the design of an existing software, especially with modern
and large-scale software systems that depend on a large number of
third-party libraries. Fowler recommends refactoring to improve soft-
ware readability and reusability, while increasing the speed at which
developers can write and maintain their code base [1,2].

The Application Programming Interface (API) are specifications that
govern interoperability between a client application and a library.
External APIs refer to the APIs available for client usage. Since clients
solely rely on APIs for ‘blackbox’ access to the library’s functionality,
API backward compatibility is an important consideration for both client
and library developers. Clients migrating to a newer library version
would be particularly concerned with whether previously invoked ex-
ternal APIs in an older version will continue to be invoked without

error. This is known as preserving API compatibility.1 Hence, any API
change between two library versions that violates this linkage is known
as an API breakage. From a library viewpoint, a developer refactoring an
external APIs may not consider the effect it has in affecting a client’s
chances of adopting the latest version. Conversely, negligence to re-
factor the code base may increase the complexity and maintainability
efforts (Lehman’s 2nd law), leading up to an eventual degradation in
software quality (Lehman’s 7th law) [3].

In this work, we conduct an empirical study to explore the re-
lationship between API refactorings and breakages based on actual API
usage by clients. We distinguish between library APIs based on their
client-usage (referred to as client-used APIs) in order to get a deeper
understanding on the extent to which API breakages can be related to
refactoring activities. Our investigation covers over 9700 breaking
classes and around 12,900 refactoring operations from eight popular
Java libraries, with each library having around 10∼ 38 consecutive
releases. We observe the following: (i) library maintainers are less likely
to break client-used APIs compared to other classes of the library, (ii)

http://dx.doi.org/10.1016/j.infsof.2017.09.007
Received 7 July 2016; Received in revised form 13 September 2017; Accepted 15 September 2017

⁎ Corresponding author.
E-mail addresses: raula-k@is.naist.jp, raula-k@ist.osaka-u.ac.jp (R.G. Kula), ali@ist.osaka-u.ac.jp (A. Ouni), dmg@uvic.ca (D.M. German), inoue@ist.osaka-u.ac.jp (K. Inoue).

1 Java standards documentation at http://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html.

Information and Software Technology 93 (2018) 186–199

Available online 18 September 2017
0950-5849/ © 2017 Elsevier B.V. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
http://dx.doi.org/10.1016/j.infsof.2017.09.007
http://dx.doi.org/10.1016/j.infsof.2017.09.007
mailto:raula-k@is.naist.jp
mailto:raula-k@ist.osaka-u.ac.jp
mailto:ali@ist.osaka-u.ac.jp
mailto:dmg@uvic.ca
mailto:inoue@ist.osaka-u.ac.jp
http://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html
http://dx.doi.org/10.1016/j.infsof.2017.09.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.09.007&domain=pdf


detected refactoring operations only breaking less than 37% of client-
used APIs, qualitatively finding that the (iii) rest (63%) API breakages
are motivated by maintenance issues that are likely to involve more
complex refactorings. Finally, we find that (iv) simple refactorings
(i.e., move_method, rename_method, move_field) were less fre-
quently applied to client-used API classes compared to other classes.

Our main contributions of this paper are three-fold and can be
summarized as follows: (1) our study involves the investigation of APIs
that are used by actual client, (2) using automated tooling, we con-
ducted a large scale empirical study to investigate API breakages and
refactorings and (3) we present a large dataset of API breakages and
refactorings which is publicly available as a replication package at:
http://sel.ist.osaka-u.ac.jp/people/raula-k/APIBreakage/.

The rest of the paper is organized as follows. Section 2 describes the
background and definitions. Section 3 presents our approach we use in
the empirical study. Section 4 details the research questions and what
method is used in the study. We then show our results in Section 5, with
discussion of implications and threats of the study in Section 6.
Section 7 surveys related work. Finally, Section 8 concludes the paper
and presents future research directions.

2. Basic concepts & definitions

This section provides the necessary background and concepts that
are prerequisites to understand the conducted study.

2.1. Backward compatibility of APIs

The precise definition of backward compatibility depends in part on
the Java language’s notion of binary compatibility2:

“binary compatible with (equivalently, does not break binary compat-
ibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.”

Importantly, a class or interface should treat its accessible members
(method and fields) and constructors, their existence and behavior, as a
contract with its users.

In this paper, we define that any changes violating this contract are
said to cause an API breakage between the library and its client user.
We show two examples of API breakages. The first example of an API
breakage is when a method name is modified (i.e., renamed or deleted
method). For instance, the removal of the method in a class could break
the API linkage, resulting in a NoClassDefFound exception error to
the client application. Conversely, adding parameters (i.e., adding new
fields, methods, or constructors) to an existing class or interface usually
does not break an API.

The second example of an API breakage is when third-parties cause
an API breakage to the library, which then indirectly breaks the client.
In many cases, a library is also a client user of other libraries within
their environment. For instance, any changes to the library’s environ-
ment such as an update to the Java Development Kit (JDK) may break a
method in the library, and therefore ripples its effect to any client user
of this library API.

2.2. Refactoring activities and API breakages

Refactoring is a disciplined engineering practice that restructures an
existing code by altering its internal structure without changing its
external behavior [1]. Fowler discusses around seventy various re-
factorings, which can be either simple or become quite complex. In this
paper, we determine if any of the API breakages is related to a re-
factoring activity. Formally, we define a Refactoring Operation (Ropt) as
an atomic refactoring change applied between two library versions.

2.3. API categorization based on client usage

In this paper, we are interested in the APIs actually used by a client
application, assuming that a code change between a client-used API will
cause a breakage to that contract between library and client user. To
investigate the extent of which developers are breaking their APIs, we
must first define the usage dimension of an API. In reality, not all public
entities (APIs) are intended for client usage. Based on a developer’s
intended use, an API of a library can either be external or internal.

• External APIs - are APIs designed by library maintainers for usage
by clients.

• Internal APIs - are APIs intended only for internal usage by the
library code itself.

An internal API may exist for several reasons. For instance, the
Finalizer class within base.internal package of the google-
guava17.0 documented [4]:

While this class is public, we consider it to be *internal* and not part of
our published API. It is public so we can access it reflectively across class
loaders in secure environments.

In an ideal world, internal APIs are never used by any client.
However, in reality internal APIs may be subjected to client usage. For
instance, Businge et al. found that a large proportion of plugins used the
Eclipse framework internal APIs [5]. Moreover, concepts such as the
Application Binary Interfaces (ABIs) [6] and the OSGi framework [7]
have been proposed to differentiate between the two API types. How-
ever, unless explicitly documented, it is extremely difficult to distin-
guish between external or internal APIs.

As shown in Fig. 1, we describe the different class categories of a
library. To distinguish between external and internal APIs, we propose
a method to approximate external API classes by mining actual usage by
clients, defined as client-used API classes. Details of the method are ex-
plained in the subsequent methodology subsection. All library class
categories are defined as follows:

• API class - is a class that has at least one public entity (i.e., method
and field members) and accessible by any client user.

• non API class - is a class that contains no API entities, i.e., private or
protected.

• client-used API class (clientUse) - is an API class that is used by at
least one client. It is an approximation of the external APIs. The set
of client-used API classes should ideally cover all external APIs.
However, there exist cases when a client uses an internal API.
(i.e., client-used API classes≃external API classes)

• non client-used API class (non clientUse) - is an API class that is
not used by any client. The set of all non client-used API classes
should cover all internal APIs. (i.e., non client-used API
classes≃ internal API classes)

Henceforth, we classify our API breakages at the class-level. Classes
are then classified as either:

• breaking class - is a changed class that is breaking its API in either
class, method or field levels such as rename/move/delete changes.

• non breaking class - a changed class that does not affect API
compatibility.

We then explore the extent to which breaking changes to client-used
API are caused by refactoring activities. As defined in the Section 2, Ropt

is an atomic refactoring operation applied between two library ver-
sions. We now introduce the following terminologies related to Ropt:

• Ref class - is a changed API class where at least one Ropt has been
applied to any of its elements. (i.e., field, methods or class2 documentation at http://docs.oracle.com/javase/specs/jls/se8/html/jls-13.html.
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attributes).

• Ropt density - refers to the number of Ropt applied per class.

3. Approach

In this section, we first present our case study libraries and meth-
odology used in the empirical study. Our method includes (1) cate-
gorization of API based on client usage, (2) API breakage detection and
(3) API refactoring detection.

3.1. Subject libraries

We used a systematic method to select our subject libraries. Our
selection of these libraries is based on the following criteria: (1) have a
large enough client-user API usage and (2) have sufficient evolution
history. Additionally, we required diverse libraries that (3) are from
different application domains and (4) have been extensively studied in
related work. This criteria was used to select libraries from a set of 2500
client projects collected from GitHub.

Table 1 shows all 183 library versions from the eight selected li-
braries. For each library, we collected 10 to 38 different library ver-
sions. All libraries constitute a large client-base and are from different
application domains. Moreover, three out of the eight subject libraries
were used in prior work [8–10]. The chosen studied libraries range
from being testing, logging, utilities and web-based libraries. As shown
in the table, we selected GUAVA [11], HTTPCLIENT [12], JAVASSIST [13], JDOM

[14], JODA-TIME [15], LOG4J [16], SLF4J [17] and XERCES [18] For all li-
braries, we only selected consecutive version releases, ignoring release
candidates. Only the official binaries and available source code for each
library were used in this study.

3.2. Client-used API extraction method

Actual client usage is needed to distinguish between external or in-
ternal APIs. Specifically, we would need to compile each individual
client system to know what APIs are used by clients. To enable a large

scale analysis, we use the jcabi-aether [19] library and Java-
Compiler (ver.1.6) Eclipse compiler [20] to dynamically compile and
log all client-loaded classes. As a result, we are able to extract the fully
qualified library class name of all external APIs for many clients.

One of the main challenges to determine client-used API collection
is the coverage of all external APIs. Hence, our technique consists of
continuously collecting client systems until full coverage is reached
(i.e., no more APIs are used). We coin this coverage as the saturation
point reached for a library version. So instead of trying to compile as
many clients are possible, we use the saturation point as a heuristic to
show that enough clients have been collected. Fig. 2 and Table 2 shows
the saturation point for our case studies. The saturation point is re-
presented as a cumulative count of client-used API classes (x-axis) re-
presented as a function over the number of client projects (y-axis), with
the coasting of the curve assuring confidence that a stable number of
client-used API classes have been reached. For example, of the 195
collected clients, guava reached a saturation with 98 client systems to
cover 184 API classes. It is important to note that each project was
selected at random, making the formation of the curve unintentional.
The table also summarizes the number of client GitHub projects that we
mined for each of the eight subject libraries (total code base size of
600GB). To ensure maturity and quality of the client projects, the
projects dataset only includes java projects that had at least 100 com-
mits. We ran experiments for about 30 days. The process of client-used
API collection of a single project took between 10min ∼3 h.

3.3. API breakage detection method

In recent times, state–of–the–art API breakage detection tools
[21–25] have been extensively used by both researchers [26,27] and
practitioners [11],[12] alike, especially for a systematic comparison of
API checking backward incompatibilities between library versions3 As
noted by Raemaekers [27], these tools are underestimations– as all
detected breaking API changes will definitely break an API but some
binary compatible APIs could be semantically incompatible.

To identify the API differences between two library binaries, we use
the Japi-cmp library [28]. Similar to other tools, Japi-cmp is able to
detect and differentiate changes in instrumented and generated classes
to determine binary compatibility as well as public or private accessi-
bility. Using the definitions in Section 2, we then map and label all
classes as either breaking or non-breaking. Overall, the resulting dataset
consists of over 9700 detected breaking classes from the eight libraries.

3.4. Refactorings detection method

To automatically collect Ropt applied between the two versions, we
use the state–of–the–art Ref-Finder [29] tool. Based on template
logic rules, the tool identifies up to different 52 refactoring types be-
tween two versions. It is important to note that the collected refactor-
ings are structural, only detectable by mechanical transformations; “
Ref-Finder does not include changes that may either require restricted con-
ditions to be met, or to some degree of additional specification from a de-
veloper that could not be automatically inferred by a tool” [8]. As a result,
our dataset consists of 12,900 Ropt from all eight libraries.

3.5. Mapping refactorings to API breakages

The study involves a mapping between the collected Ref and
breaking classes, where a Ref class contains at least one Ropt. Fig. 3
describes this mapping as an intersection between breaking classes and
Ref classes. It is important to note false positives, where the tools detect

Fig. 1. A conceptual composition of all library class types. The venn diagram shows the
relationship between (a) client-used API, (b) non client-used API and (c) non API class
types.

Table 1
Studied libraries showing the releases range, number of versions, time period, and the
range of number of classes per library (min-max).

Library Release range #Versions Releases Time
Period

# Classes (min
∼max)

GUAVA r03∼18.0 22 Apr 10∼Aug 14 727∼1763
HTTPCLIENT 4.0∼4.5 25 Aug 09∼May 15 230∼460
JAVASSIST 2.5.1∼3.19.0 28 Feb 06 ∼Jan 15 187∼334
JDOM 1.1∼2.0.6 10 Sept 04∼Feb 15 73∼258
JODA-TIME 0.95∼2.8 22 No. 05∼May 15 191∼246
LOG4J 1.1.3∼1.2.17 17 Jun 01∼May 12 242∼974
SLF4J 1.1.0∼1.7.12 38 Dec 06∼Mar 15 11∼28
XERCES 1.2.3∼2.11.0 21 Dec 00∼No. 10 580∼1652

3 For instance, developers of the google guava library, use JDiff to report changes
between two versions, e.g., API changes from guava v18 to v19 are at http://google.
github.io/guava/releases/19.0/api/diffs/.
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refactorings in unchanged classes. Upon manual inspection of some
cases, we confirmed these were false positives as the classes were un-
changed. As a result, we semi-automatically identified and discarded

2100 instances of such false positives, finally leaving us with 10,800
Ropt from all eight libraries.

A simple example of a refactoring that breaks API can be seen with
the com.google.common.collect.ImmutableMultiset of the

Fig. 2. Cumulative count of client-used API classes (x-axis)
represented as a function over the number of client projects
(y-axis). The saturation function (coasting of the curve) in-
dicates that a stable number of client-used API classes classes
have been reached (See Table 2).

Table 2
Collected client-used API classes as shown in Fig. 2.

# Collected Clients At Saturation Point (SP)

used clients at
SP

client-used API classes at
SP

GUAVA 195 98 184
HTTPCLIENT 149 67 87
JAVASSIST 14 11 30
JDOM 35 16 26
JODA-TIME 69 20 27
LOG4J 195 36 46
SLF4J 321 20 9
XERCES 17 15 47
All clients 995 Fig. 3. Venn diagram of the overlapping relations of refactored and breaking classes.
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GUAVA library4. According to the API Diff report, the Im-
mutableMultiset<E> of(E[]) method (i.e., which takes E[] and
returns an immutable multiset) was removed between version 11.0.02
and 12.0. In this example, our approach automatically detects this
change as the remove_method Ropt. The official Java documentation
states that ‘deleting a method or constructor from a class breaks compat-
ibility with any pre-existing binary that referenced this method or con-
structor; a NoSuchMethodErrormay be thrown when such a reference
from a pre-existing binary is linked. Such an error will occur only if no
method with a matching signature and return type is declared in a super-
class’.

4. Empirical study

In this section, we present the goals and motivation, followed by the
method used to address each research question.

4.1. Research questions

Our motivation is to inspect the relationship between refactorings
and API breakages. Related, Dig and Johnson [9] manually inspected
library release notes for documented API changes to investigate the role
of refactoring during API evolution of a library. They cited two reasons
why they preferred a manual analysis over the use of automated tools:
(1) ‘since most API changes follow a long deprecation replace-remove cycle,
an obsolete API can coexist with the new API for a long time’ and (2) some
behavioral refactoring cases that ‘would have been misinterpreted by a
tool, but a human expert can easily spot’. In this study, we find that sta-
te–of–the–art tools are now able to detect deprecations, thus negating
the first reason. Additionally, we find that the automated approach is
not as reliant on documentation.

Our goal in this study is to use an automated approach to investigate
how client usage-APIs are affected by the refactoring activities. The
automated approach has the benefit of reducing manual inspection and
heuristic errors and enables a large-scale empirical study. We designed
a rigorous quantitative empirical study, formulating the following re-
search questions:

• (RQ1). To what extent are library maintainers breaking client-used APIs
over time? We want to understand the API breaking tendencies of
library maintainers.

• (RQ2). To what extent are refactoring activities breaking client-used
APIs? Sometimes API breakages are unavoidable, even for the more
popular client-used APIs. Prior work indicates that refactoring is
common with API changes. Therefore, we want to understand how
much of client-used API breakage is related to refactoring activities.

In RQ2, we identified many API breakages not related to refactoring
activities. We then formulated RQ3 and RQ4 for a deeper analysis of the
detected changes (both refactoring and non refactoring related) that
break client-used APIs:

• (RQ3). What non-refactoring-related code changes are breaking client-

used APIs?Specifically, our motivation is to understand what API
breaking changes are not related to refactorings.

• (RQ4). What refactoring-related code changes are breaking client-used
APIs?From the perspective of all refactoring activities, we would like
to understand (i) how much and (ii) types of refactoring operations
that are breaking client-used APIs.

4.2. Research method for RQ1

To answer RQ1, we followed two steps. First, we studied con-
secutive versions of a library to understand the library evolution. The
goal is to study how (i) client-used API classes, (ii) non client-used API
classes and (iii) non API classes evolve over several consecutive ver-
sions. Next, we investigate the number of code changes that lead to
incompatibility with respect to the different class categories that we
defined above. Since the tool is only able to compare two versions at a
time, we performed a side-by-side (i.e., each comparison is the current
version against the immediate successive library version). We introduce
a normalized metric namely breakchange to describe the rate of the
number of breaking changes over all class changes at that version re-
lease as defined in Eq. (1):

=break L
breaking classes

all changed classes
( )change v

(1)

where Lv refers to a given library version and ranges from 0 ⩽
breakchange ⩽ 1 for each class category of Lv. Values that are closer to 1
indicate that there are more breakages per class changes.

Table 3 shows the breakchange(Lv) metric interpretation based on the
class type. Hence, the breakchange(Lv) metric has different interpretations
based on the class type. For instance, for non API classes, the metric
shows significant changes that do not affect clients. We believe that it is
important to track which classes are more prone to incompatible code
changes. To assess the significance of breakages between the different
library class categories, we use the Kruskal Wallis and Mann–Whitney
non-parametric test. The null hypothesis would state no statistical dif-
ference between the class types. Furthermore, to assess the difference
magnitude, we study the effect size based on Cohen’s d [30]. The effect
size is considered: (1) small if 0.2 ⩽ d < 0.5, (2) medium if 0.5 ⩽ d
< 0.8, or (3) large if d ⩾ 0.8. For the effect size, we use the Man-
n–Whitney tests with Bonferroni correction.

4.3. Research method for RQ2

For RQ2, our method is to identify library refactorings that are
applied to client-used API classes. We followed two steps. To analyze
the impact of the refactoring activities, we first identified for each li-
brary the (i) number of Ref classes and (ii) Ropt density. We then
identified the Ref classes that are breaking. To map refactorings to
API breakages as described in Section 3.5, we introduce a normalized
metric namely breaking–to–Ref rate as Eq. (2):

− − =
∩

breaking to Ref L
Ref breaking classes

Ref
( )

( )
v

(2)

where Lv refers to a given library version. The metric
− −breaking to Ref rate L( )v returns a percentage that ranges from

[0..100%] for each class category of Lv. Values that are closer to 100%

Table 3
Library Class Categories Incompatibility Matrix.

.

Compatible Change Incompatible Changes (breakchange(Lv))

client-used API API compatible API Breaking code change

non client-used API API compatible Incompatible change unintended for client

non API Not affect client Incompatible change does not affect client

4 the API change at http://google.github.io/guava/releases/12.0/api/diffs/changes/
com.google.common.collect.ImmutableMultiset.html#methods.
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indicate that there are more refactorings that are breaking each of the
different class categories. Conversely, from an API breakage perspec-
tive, we now introduce a normalized metric namely Ref–to–breaking rate
to describe the ratio of overlap with respect to all breaking classes as
defined in Eq. (3):

− − =
∩

Ref to breaking L
Ref breaking classes

breaking classes
( )

( )
v

(3)

where Lv refers to a given library version. The metric
− −Ref to breakingrate L( )v returns a score that ranges from [0..1] for

each class category of Lv. Values that are closer to 1 indicate that there
are more breakages that are related to refactoring activities.

4.4. Research method for RQ3

For RQ3, we used a qualitative approach to investigate the breaking
APIs changes that were not detected in our approach as refactoring
operations. Results from the prior RQ2 (See Section 5.2, Table 5) in-
dicate that three of the six projects (GUAVA, HTTPCLIENT and XERCES) have
many client-used API breakages that were not related to refactoring
activities. We consulted related change logs of these three projects;
GUAVA,5 HTTPCLIENT

6 and XERCES
7 to understand the reason why these API

breakages were performed by the developer. We manually checked
documented change logs of each release to map an API breakage to
either a bug fix issue or to accommodate a new enhancement (feature)
in the library. To reduce bias, a manual check was carried by a team of
three researchers (one postdoctoral and two graduate master students)
persons with have an intermediate level of java programming and
software development. Since team members do not possess any project-
specific knowledge, we solely rely on keywords or issues links
(i.e., issueID) in the change log comments to map each API breakage
with a bug issue or new features. XERCES was later removed from the
analysis as there was too many ambiguous references with no clear
linkage to the source code. Analysis will include the aggregation of all
API documented changes as either bug fixes or new features and show
how many can be mapped to the API breakages that did not involve any
refactoring operations.

For a deeper analysis and validation, we will investigate and present
some examples of these non-refactoring related API breaking classes.

4.5. Research method for RQ4

For RQ4, we identified what refactoring operations are breaking
client-used APIs. We followed two steps in the analysis. For a library,
we aggregated the number of Ref instances where a certain Ropt (e.g.,
move_method) has been applied. In the second step, we used a nor-
malized metric prsv to describe the ratio of overlapped breaking re-
factorings between client-used API classes and non client-used API
classes as defined in Eq. (4).

=
∑ − ∩ ∩

∑ − ∩ ∩

∈

∈

prsv L R
client used API breaking Ref classes

nonclient used API breaking Ref classes

( , )opt

L L

L L

v

v (4)

where L refers to a given library, Ropt refers to a certain refactoring
operation type.

Our hypothesis is that a prsv ratio less than 1 (0 ⩽ prsv < 1) in-
dicates that developers are applying less refactoring operations to
client-used API classes. Conversely, a high prsv ratio (prsv ⩾ 1) indicates
that more refactoring operations are applied to client-used API classes.
A value of 1 indicates that the certain Ropt type is equally applied to

both client-used API classes and non client-used API classes.

5. Results

In this section, we present our results of the study by addressing
each of the four research questions.

5.1. Findings for RQ1

Figs. 4–6 depict class category analysis of each consecutive library
version. Each figure shows the evolution of (i) client-used API classes,
(ii) non client-used API classes and (iii) non API classes over con-
secutive library versions. From these figures, we summarize our find-
ings with three observations (i.e., Figs. 4a–6b). First, we observe that
most libraries are composed of non client-used API classes categories
(green line), showing that libraries usually have more non client-used
API classes than client-used API classes. The exception is LOG4J, which is
shown in Fig. 5c to have most APIs intended for external API usage.
Interestingly, we see in Fig. 4c that non client-used API classes of JA-

VASSIST disappears from the more recent libraries. Upon closer inspec-
tion, we noticed that this was because developers had changed these
non client-used API classes into non API classes. Second, we observe a
stable number of client-used API classes (red line) shown across all
projects. From a client user viewpoint, the findings indicate that de-
velopers of a library are less likely to expand their external APIs. The
obtained results show that the number of non API classes (blue line) is
constantly changing (i.e., illustrated by various peaks) over time. We
find that some of the peak changes can be correlated to different events,
such as a major or specially-named releases, beta releases such as
xercesImpl2 x x jaxb. . and log4j1.3alpha6, or modifying private non API
classes into public APIs such as in the case of HTTPCLIENT.

Library maintainers are less likely to apply client-used API
classes changes compared to other class categories.

Fig. 7a shows the breakchange rates for all eight libraries. From this
figure, we observe that except for JAVASSIST and JODA-TIME, library de-
velopers are more likely to break non client-used API classes than
client-used API classes. Related, Fig. 8 depicts the breakchange rates
grouped by all class categories. The Figure shows that non client-used
API classes are more prone to breakages than client-used API classes for
all libraries. As shown in the Figure, non client-used API classes are
reported to have the most breakages. A Kruskal Wallis test revealed a
significant differences between client-used API classes, non client-used
API classes and non API classes values (p<0.01). The post-hoc test
using Mann–Whitney tests with Bonferroni correction proves the effect
size to be medium (p< 0.01, r = 0.54) when comparing all class ca-
tegories.

Findings show that incompatible API code changes are sta-
tistically more likely to occur in non client-used API
classes compared to client-used API classes.

5.2. Findings for RQ2

Table 4 presents a summary of Ref classes and their Ropt density.
For instance, we identified 32 GUAVA client-used API classes that were
Ref classes. Out of the 32 Ref classes, we report a median of 7
Ropt that were applied per Ref class. From this table, we can see that,
in general, library maintainers applied more Ropt to non client-used API
classes and non API classes, as compared to client-used API classes,
except for JAVASSIST. For example, the table shows that for XERCES, around

5 and example of Release 11 https://github.com/google/guava/wiki/Release11.
6 https://archive.apache.org/dist/httpcomponents/httpclient/RELEASE_NOTES-4.5.x.

txt.
7 change logs at https://xerces.apache.org/xerces2-j/releases.html.
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244 non client-used API classes were refactored, compared to 44 client-
used API classes. In more detail, the results show that apart from SLF4J,
the median density of Ropt per class ranges from 1 to 10 Ropt at most.
Interestingly, we find that SLF4J had a high number of Ropt applied to
one non-breaking client-used API classes (x=22). LOG4J, SLF4J and JDOM

libraries reported only a few breaking classes matched to Ropt, which is
consistent with recent empirical studies conducted by Cossette et al.
[8].

Table 5 reports the median values of Ropt that cause API breakages.
We use this table to compare between client-used API classes and non
client-used API classes. For GUAVA, non client-used API classes (x=9)
were breaking due to refactorings compared to client-used API
classes (x=2). From this table, we find that non refactoring changes are
more likely to break client-used API classes than non client-used API
classes. Moreover, applied refactorings tend to break more non client-
used API classes compared to client-used API classes. The results show
that many of the API breakages are not mapped to the detected re-
factorings (i.e., non Ref classes). We find that more refactoring non

client-used API classes are breaking compared to refactored client-used
API classes, with the exception of JAVASSIST.

Table 5 also shows the breaking–to–Ref and Ref–to–breaking rates.
We report that the median Ref–to–breaking rate for client-used API
classes is up to 37% across all projects (x=1%∼ 37%). Except for JA-

VASSIST, the result provides evidence the detected API breakages could
not be mapped to refactoring operations. Alternatively, the break-
ing–to–Ref rates reported for client-used API classes in Table 5 indicates
that breaking refactorings accounted for a median range of up to 75% of
all Ropt. The highest breaking-Ref rate for non client-used API classes was
86%, reported for the GUAVA library.

Findings show that up to 75% refactored API classes are
breaking their client-used APIs. However, these API breaking
refactorings account for less than 37% of all client-used API
breakages.

Fig. 4. An evolution of changed classes per class types for (a) GUAVA, (b) HTTPCLIENT, (c)
JAVASSIST. These figures show the different # of classes identified in chronological order of
release. Fig. 5. An evolution of # of classes per class types for (a) JDOM, (b) JODA-TIME and (c) LOG4J

libraries. Similar to Fig. 4, these figures show the different # of classes identified in
chronological order of release.
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5.3. Findings for RQ3

Table 6 shows results of the manual study of API breakages that did
not map to any Ref Classes in developer documentation (i.e., change
logs). For instance, release 11 of the GUAVA library listed 26 issues and
13 new features.8 The table confirms our results that find these client-
used API class breakages are not only related to refactoring activities
(i.e., non Ref Class). We find that all four API breakages could be
mapped to the API documented changes. From the table, we were able
to map 82% of non refactoring client-used API breakages to the API
documentation for GUAVA and 58% for HTTPCLIENT. This finding indicates
that many of the API breakages not involved in refactorings are most
likely motivated by maintenance issues such as bug fixes and for new
feature enhancements.

From our manual analysis and similar to a study by Murphy–Hill
et al. [31], we find that not all API changes appear in the API change
logs. Fig. 9 does show two documented case examples of API breakages
that are not mapped to a detected refactoring operation (i.e., non-
Ref). These examples provide evidence that these many client-used API
class breakages are: (a) motivated by a bug fix or new feature or (b)
consists of a complex refactoring that is not captured by the automated
approach. In the first example (i.e., Fig. 9a, we show an unavoidable
API breaking change, especially if it is used to fix a complex defect such
as a third party library. This API breaking change was triggered in re-
sponse to an error reported by a client user “JDK and Guava

TypeVariable implementations are no longer compatible under 1.7.0 51-
b13”.9 It was widely reported to affect many client users of the library.
Developers found that a change in the standard Java library (JDK)
causes guava to break API compatibility, as prior guava version im-
plemented an undocumented internal API of the JDK (i.e., Type-
s.TypeVariable.newTypeVariable()).10 After much discussion
among developers, the accepted API change was documented to ‘con-
ditionally work only under the new JDK’.

In the second example (i.e., Fig. 9b), we acknowledge cases where
the automated approach is unable to detect more complex refactoring
operations. Soares et al. [32] showed that Ref-Finder is unable to cor-
rectly detect all types of refactoring operations, which is a validity
threat and is discussed in detail (See Sections 6.3 and Section 6.4).
Moreover, this change is listed as a submitted enhancement issue11

related to ‘Move HashCodes static methods to HashCode’ and involves 17
changed files (261 added and 219 deleted lines of code)12.

Findings indicate that many client-used API breakages are
likely to be motivated by other maintenance issues (i.e., bug
fixes and new features) and involve more complex refactoring
operations.

Fig. 6. An evolution of # of classes per class types for (a) SLF4J and
(b) XERCES libraries. Similar to Figs. 4 and 5, these figures show the
different # of classes identified in chronological order of release.

8 The release notes are available at https://github.com/google/guava/wiki/Release11.

9 issue at https://github.com/google/guava/issues/1635 and fix at https://goo.gl/
bqDpxU.

10 A blogger discussions by users is at https://goo.gl/8tcHfY.
11 https://github.com/google/guava/issues/1495.
12 the code change is at https://goo.gl/JHVi5J.
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5.4. Findings for RQ4

Table 7 shows a classification of the applied Ropt for the three li-
braries GUAVA, XERCES, and HTTPCLIENT in our collected dataset. As seen in
the table, GUAVA developers applied the change_parameter Ropt 28
times to breaking client-used API classes. Developers subsequently ap-
plied the same Ropt and broke 25 non client-used API classes during the
library evolution of GUAVA. We find that the GUAVA and XERCES libraries
tend to refactor and break their versions during evolution than
HTTPCLIENT. Our results align with the findings of Cossette et al. [8] on

API transformations, where they also used the same libraries in their
experiments. Results in Table 7 show that developers apply specific
Ropt more frequently when evolving their libraries. For instance,
Ropt such as move_method (GUAVA- 34 Ropt), change_parameter
(HTTPCLIENT- 11 Ropt), and rename_method (XERCES- 363 Ropt) were the
most frequently applied that cause API breakages. For client-used API
classes, remove_parameter (GUAVA- 30 Ropt), move_method
(HTTPCLIENT- 3 Ropt) and rename_method (XERCES- 146 Ropt) are reported
as most frequent. Notably, move_method (GUAVA- 190 Ropt, XERCES- 256
Ropt), remove_parameter (HTTPCLIENT- 8 Ropt) were applied to non
client-used API classes.

Table 7 also reports the prsv ratio for each library. This metric
measures the degree of likelihood to which library developers apply
certain Ropt to client-used API classes compared to non client-used API
classes (i.e., preserving client-used API classes). We use color to high-
light the prsv scores. Green highlights in the table represents a low
preservation of client-used API classes, while the red highlights in-
dicates a high ratio of Ropt in non client-used API classes. For example,
the library developers of both GUAVA (prsv= 0.08) and XERCES (prsv =
0.05) tend to apply less move_method refactoring operations to client-
used API classes. Our results shows library maintainers are less likely to
refactor (using the more frequent Ropt) client-used API classes than non
client-used API classes. For example, 5 out of 10 Ropt in GUAVA, 3 out of 5
Ropt types in HTTPCLIENT, and 16 out of 17 Ropt types in XERCES are less

Fig. 7. Results of the breakchange rates for all eight libraries ana-
lyzed.

Fig. 8. Summary of breakchange comparing (1) client-used API classes in red, (2) non

client-used API classes in green and (3) non API classes in blue. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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likely applied to client-used API classes. We find that many high prsv
ratios (depicted by red in the table) where by the rarely applied
Ropt types (e.g., remove_control_flag (GUAVA- 5 Ropt, HTTPCLIENT- 2
Ropt) and pull_up_method (HTTPCLIENT- 3 Ropt, XERCES- 7 Ropt).

Findings show that library maintainers were more likely to
refactor non client-used API classes compared to client-used
API classes.

6. Discussion

In this section, we first discuss the implications of results and then
compare with related work. We then discuss some challenges of our
approach and finally present threats to the validity of our study.

6.1. Implications

Our results indicate that when evolving libraries, out of all code
changes applied, maintainers are less likely to apply incompatible code
changes to external API classes compared to the other classes during the

library evolution. This implies that library developers may understand
the efforts by clients needed to update their libraries. Complementary
to this finding, Bloch mentions the growing awareness of library
maintainers to APIs [33]. This is also reinforced by Seo et al. [34] where
they found that there are many cases where API breakage changes are
only applied when unavoidable (i.e., in response to either vulner-
abilities or needed bug fixes etc...). There are benefits to this awareness
of client-used API breakages. In particular, the evolution of APIs en-
courages trust and reduce the latency of adoption by client projects,
which is currently being experienced as a problem by many OSS clients
[35]. Larman [36] introduced a notion of the Protected Variation (PV)
pattern: identify points of predicted variation and create a stable in-
terface around them. This PV pattern could explain how contemporary
developers build and evolve libraries in relation to client-used APIs.

6.2. Comparison to literature

It is important to understand that our work cannot be simply
compared at face-value to prior studies. As outlined in Section 4.1 there
are obvious differences with our approach, compared to the studies of
Dig and Johnson [9] and Cossette et al. [8]. Dig and Johnson used the
change logs as heuristic to locate all API changes, and other considered

Table 4
The table reports (a) number of Ref classes and (b) Ropt density per Ref class ( =x Ropt ). Note that (–) represents no matches.

breaking classes non breaking

clientUse non clientUse non API clientUse non clientUse non API

|Ref| GUAVA 32 143 44 31 24 139
HTTPCLIENT 3 11 – 6 16 7
JAVASSIST 111 8 6 29 10 2
JDOM 1 1 – – 3 –
JODA-TIME 30 – 11 29 5 12
LOG4J 1 – – 2 – 3
SLF4J – 1 – 2 1 –
XERCES 44 244 31 23 104 66

Roptdensity
(Median) GUAVA 7 8 5 4 4 8

HTTPCLIENT 5 5 – 2 3 2
JAVASSIST 2 5 2 1 1 1
JDOM 1 1 – – 4 –
JODA-TIME 3 – 10 1 1 1
LOG4J 1 – – 2 – 2
SLF4J – 1 – 3 22 –
XERCES 8 6 4 4 4 5

Table 5
Matrix that shows the median average # refactored API classes per library. For each library, we summarized the median values across all library versions. Table includes median (x ) of
matched refactored classes. 0 represents a value less than 0.01. (–) reports no matched classes.

# versions |Ref| |non Ref| Ref–to–breaking rate breaking–to–Ref rate
(Median) (Median)

breaking non breaking breaking non breaking

clientUse GUAVA 22 2 2 166 251 1% 53%
HTTPCLIENT 25 1 1 46 74 1% 55%
JAVASSIST 28 2 1 3 1 37% 75%
JDOM 10 1 0 1 16 1% 1%
JODA-TIME 22 15 2 65 45 6% 48%
LOG4J 17 0 1 87 75 0% 0%
SLF4J 38 – 1 41 136 0% 0%
XERCES 21 3 2 24 16 10% 64%

non clientUse GUAVA 22 9 2 91 20 9% 86%
HTTPCLIENT 25 2 1 8 18 14% 58%
JAVASSIST 28 4 1 2 1 5% 44%
JDOM 10 1 1 13 3 1% 22%
JODA-TIME 22 – 1 9 7 – –
LOG4J 17 0 – 36 – 0% –
SLF4J 38 0 1 2 2 0% 0%
XERCES 21 14 7 210 22 6% 68%
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public entities are APIs. In this study, we detect syntactic changes in
classes to infer changes and determine client usage to identify if the
change has an effect to its users. As a result, our approach is unable to
detect behavioral API breakages. Dig and Johnson’s study included
behavioral breakages, which we do not consider due to the limitations
of our approach. Our definition of an API does differ from prior work.
Dig and Johnson considered all public entities. Our work are more si-
milar to the work of Cossette et al., in which we include the detection of
protected entities. In this work, we go further and use client usage to
focus on API breakages the more popular APIs.

The usage of tools revealed more API breakages, some of which
were not reported in the API change logs, which was also consistent
with the findings of Murphy-Hill et al. [31]. These undocumented API
changes could also explain the disparity in results between manual
(i.e., Dig and Johnson study) and machinery refactoring detection. For
mechanical refactoring detection, since Ref-Finder is template-based
refactoring reconstructing approach, we were only able to identify 23
out of 70 of Fowler’s catalog. In fact, Cossette et al. [8] also believed
that tools would miss some behavioral refactoring, saying that they
‘...do not believe that some changes would be easily handled by mechanical
transformation tools; instead the API maintainer, or the client developer
would need to craft some minimal specification that would describe how to
remap classes to accommodate these breaking changes.’ Another difference

Table 6
Shows for a library release (i) the number of issues and new features per version release
analysis and (ii) the number of non-refactoring related API breaking classes. We also show
in the number of these API breakages mapped to the change log comments.

Library Change Log # Issues # New Features |non Ref| ∩ breaking
Release ∩ clientUse

(# mapped to change logs)

GUAVA v11 26 13 4 (4)
v12 43 24 4 (4)
v13 26 28 7 (6)
v14 64 10 5 (5)
v15 53 11 7 (6)
v16 19 8 5 (4)
v17 11 5 6 (4)
v18 21 7 3 (2)

263 106 41 (34) 82%
HTTPCLIENT v4.1.2 5 – 3 (2)

v4.1.3 4 – 3 (2)
v4.2 15 4 3 (1)
v4.2.1 8 – 4 (2)
v4.2.2 8 – 4 (2)
v4.2.3 21 – 2 (2)
v4.2.4 6 9 3 (1)
v4.2.5 6 4 2 (2)

73 17 24 (14) 58%

Fig. 9. We show two examples of API breaking changes that were
not mapped to detected refactoring operations (i.e., non-Ref).
We conjecture that these changes are (a) in response to a complex
defect in the code and (b) consist of a complex refactoring that is
not captured by the automated approach.
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in our method that may have influenced results, is where we analyze
API changes between consecutive versions, while prior work analyzed
versions that were not consecutive.

6.3. Challenges of the automated approach

Key threats to the automated approach accuracy is when: (i) re-
factorings are missed by our approach (i.e., Ref-Finder [32]), (ii) de-
velopers may not report all API changes [31] and (iii) misidentification
of breaking APIs is reported but it did not cause a breakage. Fig. 10
presents an example of a misidentification reported by our automated
approach.13 In this example, Ref-Finder detects this change as an
add_parameter Ropt, that is also API breaking since it has a change in
the method signature. However, according to Java documentation, the
superclass extends indicates that the change of this special ‘type
parameter of the class does not, in itself, have any implications for binary
compatibility’. We believe these limitations will encourage researchers
to further investigate and help us understand how developers evolve
their libraries, especially in regards to avoidable API breakages.

6.4. Threats to validity

Internal Threats: The most significant internal threat is correctness
of the automated tools, especially Ref-Finder. To mitigate this and as
a sanity check, we randomly inspected a small sample of the results for
validation. Mentioned earlier in the paper, an example of a false posi-
tive was when a unchanged file was reported to have a refactoring
identified. In the end, we understand that recall is not as obvious to
investigate as ground truth is unknown. Ref-Finder is the current
state–of–the–art and actively used in research.

Another minor threat to our approach is that API breakages false
positives caused by the class-level granularity of analysis. Theoretically,
an external API class that has a breakage related to a private entity
could be a false positive. However, even with this assumption in mind,
our analysis may be underestimations. It is true that the accuracy of the
saturation point is fairly dependent on the sample size. We believe our
sample clients are sufficient to at least identify the most popular APIs

that reside in the client-used API classes. Sometimes variations between
the refactored classpath (originating from source code) and API
breakages class path (originating from binary code) may cause a miss-
match. To overcome this, we manually validated the consistency of file
paths to ensure consistency and completeness. Correct ordering of
consecutive library releases is another minor threat. We therefore
consider Maven [37] as the ground truth to base our chronological
ordering of the released versions of a library. Some of our conclusions
are based on the statistical analysis. We believe that due to outliers and
nature of the data collected, non parametric statistical tests were
deemed appropriate.

External Threats: As an external threat, we understand that our
collected clients and the six selected OSS libraries are not necessary
complete representations of the real world. However, we believe that
the diverse nature (such as size, domain, team) of the six libraries is
enough to assume generalization. Although our approximations of ex-
ternal APIs can only be justified through documentation and devel-
opers, we believe our method provides sufficient confidence of external
client coverage. Another important threat is selection of the more
popular libraries. As a results, our findings may not be applicable for
less popular libraries. In this study, we consider that both library de-
velopers and users are more concerned with popular APIs, as they tend
to reach a larger client user-base. Moreover, the same libraries that we
study have been used in prior studies by researchers. As future work, we
plan to expand our study to investigate more frameworks and libraries.
Since our study is focused only on java libraries, we cannot make
generalizations to other programming languages. We are confident that
our research method is scalable and can be replicated with different sets
of clients and subject libraries in other languages.

7. Related work

In this section, we introduce literature related to API usage, library
migration support and library evolution.

API usage. There has been different work that have collected clients
API usage. For example, work such as De Roover et al. [38] exploit API
usage to understand popularity and usage patterns of clients. The data
collected is visualized to further explore to provide program compre-
hension as well as identify patterns in the code. Another set of research
use the API usage as a measure of stability or popularity [39,40]. Our

Fig. 10. Example of a misidentified detected re-
factoring-related API breaking change (Ref ∩
breaking class). Ref-Finder detects this code
change between GUAVA version 12 and 13 as an ad-

d_parameter Ropt, while the API breaking tool re-
ports it as binary incompatible modified

method.

13 commit can be found at goo.gl/CwXoBj and API change at https://goo.gl/VPPTIX.
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previous work [41], among work leveraged popularity to recommend
when libraries are deemed safe to use by the masses. Other related work
that studied the impact of API evolution on their clients on online
forums such as Stack Overflow [42] and the Android App [43], Pharo
[44] and Smalltalk ecosystems [45].

Library Migration Support. Much work has been in transformation
of the client code to support migration of library API changes. Work by
Chow and Notkin [46] and Balaban et al. [47] use a change specifica-
tion language. There is work that provides the client with automatic
tool support to accommodate changes made the APIs of a library. For
instance, SemDiff [48] recommends replacements for framework
methods that were accessed by clients. Other similar tools were pro-
posed by Xing and Stroulia [49] and Schafer et al. [50]. Other work on
reuse support is through code analysis. This area of work considers code
clone detection techniques [51] to support which library version is most
appropriate candidate for migration. Godfrey et al. [52] proposed
origin analysis to recover context of code changes. Our previous work
[53] tracked how code is reused cross-projects. Related works [10]
focused on support for clients migrating to a newer library version.
Likewise, other works [39,54–56] studied how library maintainers
balance API compatibility with an evolving library.

Library Evolution. There is similar work with respect to library

maintenance and evolution. Cossette et al. [8] manually illustrated the
complexities of library changes and transformations. Other work such
as Kim et al. [57] studied the role of refactoring during software evo-
lution. Recently, there has been large-scale empirical studies conducted
on library migrations and evolution. Empirical studies by Raemakers
et al. [27,58], Jezek et al. [26] and Joel et al. [59] studied in-depth how
libraries that reside in the Maven Central super-repository evolve and
break APIs.

8. Conclusions and future work

Refactorings is a key maintainability practice, even for library
maintainers. When evolving code, we find that library developers are
less likely to break APIs. However, we find that many of these API
breaking changes relate to bug fixes and new features, with only up to
37% of client-used API breakages related to refactoring operations. The
study finds that there are still challenges to improving our tools. The
study also reveals challenges faced by the tools. As future work, we
envision that this study encourages more research into automated re-
factoring detection techniques to advance our understanding of re-
factoring activities on API breakages.

Table 7
Classification of Ropt for API classes with presver ratio. Note that one class may be classified under several refactoring types. Note (–) represents no matches. We also show the total of all
breakages (cu. + ncu.) and use to colors to highlight when prsv = low and prsv = high.

Classification of Ropt secrextneilcptthavaug

breaking non breaking breaking non breaking breaking non breaking

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

p
rs

v

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

p
rs

v

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

p
rs

v

cl
ie

n
tU

se

n
o
n

cl
ie

n
tU

se

change parameter 28 25 (53) 1.12 20 4 1 10 (11) 0.10 − 11 56 217 (273) 0.26 − 19
cdcf* − − − − − 1 4 1 44 74 (118) 0.59 8 48
extract method 8 32 (40) 0.25 3 − − 1 − 2 9 61 (70) 0.15 5 47
extract subclass 3 − − − − − − − − 1 − −
extract superclass − 1 − − − − − − − 2 − −
inline method 6 3 (9) 2.00 − 2 1 − − − 7 23 (30) 0.30 1 1
inline temp 4 4 (8) 1.00 6 1 2 − − − 8 20 (28) 0.40 − 7
introduce explaining variable − 10 6 2 − − − 8 33 (41) 0.24 2 21
introduce null object − − 1 2 − − − − − − − −
move field 10 66 (76) 0.15 9 7 − 4 − − 15 255 (270) 0.06 7 5
move method 15 19 (34) 0.08 8 14 3 6 (9) 0.50 − 7 12 256 (268) 0.05 16 12
pull up constructor body − − 1 − − − − − − − − −
pull up field − 3 − 3 − − − − − 5 − −
push down field − 2 − − − − − − − 41 − −
ratp* − 2 − 3 2 − 2 5 2 14 (16) 0.14 − 9
remove control flag 5 1 (5) 5.00 1 12 2 1 (3) 2.00 − 5 1 11 (12) 0.09 1 6
remove middle man 1 − − − − − − − − − − −
remove parameter 30 20 (50) 1.50 16 2 1 8 (9) 0.12 1 − 45 170 (62) 0.26 − 18
rename method 28 54 (82) 0.52 1 4 − − 2 − 146 217 (363) 0.67 1 19

22*mfwcr (4) 1.00 12 7 − − − − − − − −
replace data with object 2 − − − − − 1 − 4 11 (15) 0.36 − 2
replace exception with test − 9 − − − 1 − − − 3 − 4

4361*cwnmr (50) 0.47 8 20 − 8 − 17 49 165 (214) 0.30 9 117
4*omwmr − 2 − − − 1 − 4 40 (44) 0.10 1 5

rncgc* − − − 1 − − − − 9 27 (36) 0.33 − 14
replace temp with query − 6 1 − − − − − − − − 1
pull up method − − − − 2 1 (3) 2.00 − − 5 2 (7) 2.50 − −
extract interfacea − − − − − − − − − 1 9 −

Median (x̄) 4 4 1.00 3 3 2 1 0.50 1 5 9 17 0.33 5 11
Mean (µ) 8.4 14.78 1.19 5.14 4.4 1.75 3.2 0.95 1.71 6.17 24.9 62.70 0.46 5.45 19.72

*Note types abbreviations - cdcf = consolidate_duplicate_cond_fragment, rcwfm = replace_constructor_with_factory_method, ratp = remove_assignment_to_parameters, rmnwc = re-
place_magic_number_with_constant, rmwmo = replace_method_with_method_object, rncgc = replace_nested_cond_guard_clause
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