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ABSTRACT

Propermaintenance of third-party libraries contributes toward sus-

taining a healthy project, mitigating the risk it becoming outdated

and obsolete. In this paper, we propose domain-specific categories

(i.e., grouping of libraries that perform similar functionality) in li-

brary recommendations that aids in library maintenance. Our em-

pirical study covers 2,511 GitHub projects and 150 domain-specific

categories of Java libraries. Our results show that a system uses up

to six different categories in their dependencies. Furthermore, rec-

ommending domain-specific categories is practical (i.e., with an

accuracy between 66% to 81% for multiple categories) and its sug-

gestion of libraries within that domain is comparable to existing

techniques.
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1 INTRODUCTION

Software libraries play an important role in the health of a soft-

ware project, especially in terms of its success, longevity, growth,

resilience, survival, diversity, and sustainability. Two cited reasons

for modern Open Source project failures are the risk of becoming

obsolete (i.e., no longer useful) and continued usage of outdated

technologies (i.e., to outdated, deprecated or suboptimal technolo-

gies, including programming languages, APIs, libraries, frameworks,

and so on) [7]. In fact, recent studies show that outdated libraries

is commonplace, with the potential to hinder project growth while

risking exposure to bugs, dependency-related breakages and se-

curity vulnerabilities [1, 3, 8, 15, 16, 19]. Often, libraries that we

depend on for a larger software system become dormant; its de-

velopment ceases. As operating systems, deployment frameworks

and security infrastructure evolve, there is a likelihood that a soft-

ware will break because of a dormant library dependency.
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We conjecture that searching for useful libraries stretches out

the life-span (i.e., functionality, appeal and usability) of an applica-

tion. For instance, a web-based application’s life-span would be re-

juvenated with the help of specialized libraries like GWT1, Spring2,

Hibernate3 to expand its current set of features.

To cope with the search and maintenance of libraries, existing

research leverages software library recommendation systems. For

example, Thung et al. [26] proposed a technique that automatically

identifies new candidate libraries to unaware developers. We spec-

ulate a limitation– that existing techniques ignore that candidate

libraries may belong to same domain. To address this limitation,

we introduce domain-specific categories (DSC), as a classification

of software libraries based on their specific functional properties

or domains. We conjecture that popular libraries belonging to the

same domain may be of interest to developers. Libraries may serve

a specific functionality such as a logging framework (i.e., log4j),

HTML analysis (i.e., jsoup) and SSH (Secure Shell) and encryp-

tion (i.e., bouncycastle). For instance, library search services4 use

these categories to search and discover new libraries.

In this paper, we investigate how DSC aids library recommen-

dation. Using association rule mining, we conducted an empirical

study that covers 2,511 GitHub projects to investigate the diverse

usage of DSCs. Results of the study show that projects depend on

multiple libraries that belong to various categories, with systems

depending on up to 6 different types of DSC in their library depen-

dencies. Our approach uses association rule mining to show how

our technique is practical, with an accuracy of 66% to 81% for mul-

tiple categories. However, we show in a comparative study that

our prototype DSCRec is comparable to existing techniques (i.e.,

LibRec[26]).

Ourmain contributions are two-fold. The first contribution is an

investigation into DSC and how they contribute to library recom-

mendation. The second contribution is evidence that although our

technique is practical, its effectiveness is not as straightforward as

selecting the most popular library within that domain.

2 MOTIVATION & RESEARCH OVERVIEW

First, we describe our motivation and the problem definition. We

then introduce our study and our research questions.

2.1 Problem Definition & Illustrative Example

We adopt the exact problem definition of library recommendation

from Thung et al., which is that it should satisfy two conditions

[26]:

1GWT: http://www.gwtproject.org
2Spring: http://spring.io/
3Hibernate: http://hibernate.org/
4Maven Repository at https://mvnrepository.com/
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(1) it should not contain an existing library.

(2) it should be useful.

To satisfy the second condition, Thung et al. proposed a hybrid

technique of mining the usage patterns of libraries to reveal more

useful libraries. As well as library popularity and usage patterns,

domain-specific categories has potential to also reveal useful li-

braries. For instance, current techniques would reveal the specific

library such as JUnit (i.e., which is a testing library5). In our ap-

proach, we present any libraries within the testing framework cat-

egory. As shown at the Maven Repository website, there are up to

42 different Maven testing frameworks available to developers6.

Under this higher level of abstraction, other testing libraries such

as testNG7 can also be presented as viable candidates to the de-

veloper. As a result, not only recommending DSC, our approach

suggests candidate libraries within the DSC.

To achieve this, our approach follow two steps. It first presents

a domain-specific category. After this step is completed, our tech-

nique suggests a candidate library belonging to that specific do-

main.

2.2 Research Questions

In this study, we investigate the practical implications of usingDSC

for library recommendations. As shown in Figure 1, we formulate

three research questions that guide our study.

• RQ1: How diverse are the specific domains of libraries

adopted by a software system?Themotivation of the first

research question is to understand whether or not projects

consist of a wide range of DSC in their dependencies.

• RQ2: How accurate is the recommendation of domain-

specific categories? Themotivation of the second research

question is to investigate domain-specific categories practi-

cal usage in recommendation models (i.e., category recom-

mendation).

• RQ3: Howdodomain-specific categories impact library

recommendation?Themotivation of the final research ques-

tion is to investigate how domain-specific categories are ef-

fective for library recommendations.

3 DATA EXTRACTION

To answer our research questions, we created a dataset that cap-

tures the DSC of library dependencies. Our dataset comprises of (1)

a set of projects that use Maven Libraries (i.e., Kula et al. [16]) and

(2) a labeled set of domain-specific categories of Maven Libraries

(i.e., Maven Repository website8). We performed two major activ-

ities of (1) extraction of systems and libraries and (2) mapping the

categories to the libraries:

Extraction of Target Systems and their Libraries. Similar to related

work [18, 21, 26], library usage is extracted from the listed depen-

dencies in the pom.xml. We use the dataset provided by Kula et

al. [16]. We use the following dependency properties: <groupId>

5available at http://junit.org/
6available at http://mvnrepository.com/open-source/testing-frameworks
7available at http://testng.org/doc/
8We used simple scripts to mine the domain-specific categories of Maven libraries
retrieved from https://mvnrepository.com/

Table 1: Proportion ofDSCUsage Patterns. Frequency is rep-

resented by (FR= # thenumber of systemsusing the domain-

specific category / # all systems).

Rank DSC FR # systems

1 Testing Frameworks 52% 4,198

2 Logging Frameworks 48% 3,940

3 Java Specifications 42% 3,437

4 Core Utilities 39% 3,181

5 Logging Bridges 29% 2,348

6 Dependency Injection 27% 2,162

7 JSON Libraries 26% 2,154

8 Mocking 25% 2,048

9 I/O Utilities 21% 1,729

10 XML Processing 21% 1,698

... ... ... ...

150 Enterprise Service Bus 0% 5

indicating the developer name, <aritfactId> indicating the li-

brary unique id, and <version> indicating the version of the li-

brary. It is important to note that a project may contain more than

one system (i.e., a project may contain several pom.xml files)9.

To ensure a quality dataset, we applied filtering to remove noisy

systems from our dataset (i.e., such as single dependencies). Addi-

tionally, we targeted more mature and complex projects with more

complex library dependencies. Similar to Thung et al., we targeted

systems that use at least ten or more libraries.

Mapping DSC to Libraries. In this step, we mapped the targeted

system libraries to domain-specific categories. As mentioned in

the prior steps, we extracted a labeled set of domain-specific cat-

egories with their libraries from the Maven Repository website.

As shown in Figure 1, then mapped the libraries to each category.

Note that libraries that not mapped to any domain-specific cate-

gory are classified as “others”. Consistent with our goal to collect

mature and complex projects, we filtered out target systems with

a single domain-specific category.

From an original dataset of 8,142 systems, after filtering and

mapping of categories, we were left with the final dataset of 7,185

systems and 38,848 libraries. We mapped 150 domain-specific cat-

egories to support finding appropriate library (i.e., see Table 1). As

shown in the Table, the most popular (i.e., calculated by the fre-

quency) domain-specific categories are Testing Frameworks, Log-

ging Frameworks, and Language Runtime. To validate the cover-

age of the dataset, as shown in Table 2, we show that up to 94% of

the top 100 popular libraries is classified into any domain-specific

categories.

4 EVALUATION

Using the extracted dataset, we proceed to answer our research

questions. To answer each research question, we present the ap-

proach taken and then present the result, which includes the an-

swer to each question.

9In this case we extract them systems of the GitHub project
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Figure 1: An Overview of the Approach Used to Address RQ1, RQ2 and RQ3

Table 2: Percentage of Popular Libraries Classified into DSC

Usage Patterns

Popular Libraries DSC

(Top N) Usage Patterns

100 94%

200 85%

300 75%

400 69%

500 61%

... ...

38,884 4%

4.1 RQ1: How diverse are the specific domains
of libraries adopted by a software system?

Approach . To answerRQ1, we performed an exploratory study

of real-world projects and their different categories. We provided

two levels of analysis:

• (Step 1) DSC Analysis: In this analysis, we studied (i) the

number of libraries used by a system and (ii) the number

of different categories per system.

• (Step 2) DSC Usage Pattern Analysis: We used association

rule mining to generate some usage pattern rules. Also em-

ployed by Thung et al., association rule mining technique

is a popular method for the generation of usage rules and

patterns [11, 31].

Association rule mining is a method to extract a relationship be-

tween two or more items as an association rule from a combina-

tion of a large number of items. We use an example of a simple

rule showing the relationship that if user has both Logging Frame-

works (LF) and Testing Frameworks (TF). In this case, the asso-

ciation rule for both domain-specific categories is represented by

pre-condition and pre-condition as follows.

{LF } ⇒ {T F } (1)

To evaluate the extracted rules, we used the support, confidence,
and lift metrics. We define the support as the proportion of rules
which both pre-condition (LF) and post-condition (TF) exist in all
systems (i.e., where σ (LF∩ TF) means the number of all systems
using both LF and TF). A high support means the rule is a popular
combination, while a lower support implies less popularity.

suppor t ({LF } ⇒ {T F }) =
σ (LF ∩T F )

all systems
(2)

The confidence metric is the proportion of rules which both pre-

condition (LF) and post-condition (TF) exist in ruleswith pre-condition

(LF). A high confidence means the combination that is likely to be

used.

conf idence({LF } ⇒ {T F }) =
suppor t ({LF } ⇒ {T F })

suppor t (LF )
(3)

Finally, the Lift measures the magnification of the data which

pre-condition (LF) and post-condition (TF) exist in rules with post-

condition (TF). A high lift means strong combination of relation-

ships between the conditions.

l i f t ({LF } ⇒ {T F }) =
conf idence({LF } ⇒ {T F })

suppor t (T F )
(4)

We used the Orange [9] library, which uses the apriori algo-

rithm [2] in Python for extraction of the rules. Note that the apriori

algorithm used can filters minor rules from the output.

4
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(a) Distribution of DSC usage
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(b) Distribution of libraries usage

Figure 2: Distribution of DSC and libraries for Observation 1. In detail, we show (a) the distribution of DSC and (b) distribution

of libraries

Table 3: Top 14 Generated Rules for DSC (sorted by support)

rule id pre-condition post-condition Support Confidence Lift p-value

�1 { Logging Frameworks } ⇒ { Testing Frameworks } 0.36 0.69 1.24

�2 { Testing Frameworks } ⇒ { Logging Frameworks } 0.36 0.65 1.24
<0.01

3 { Core Utilities } ⇒ { Testing Frameworks } 0.30 0.72 1.29
<0.01

4 { Testing Frameworks } ⇒ { Core Utilities } 0.30 0.54 1.29

5 { Java Specifications } ⇒ { Logging Frameworks } 0.28 0.62 1.19
<0.01

6 { Logging Frameworks } ⇒ { Java Specifications } 0.28 0.54 1.19

7 { Java Specifications } ⇒ { Testing Frameworks } 0.28 0.62 1.11
<0.01

8 { Testing Frameworks } ⇒ { Java Specifications } 0.28 0.51 1.11

9 { Core Utilities } ⇒ { Logging Frameworks } 0.28 0.66 1.27
<0.01

10 { Logging Frameworks } ⇒ { Core Utilities } 0.28 0.53 1.27

�11 { Logging Bridges } ⇒ { Logging Frameworks } 0.27 0.87 1.67

�12 { Logging Frameworks } ⇒ { Logging Bridges } 0.27 0.52 1.67
<0.01

13 { Mocking } ⇒ { Testing Frameworks } 0.22 0.83 1.50
<0.01

14 { Testing Frameworks } ⇒ { Mocking } 0.22 0.41 1.50

Results . We are able to make the following observations as

part of the results to RQ1 (Step 1 and Step 2):

Observation 1 - Systems depend on up to 6 different categories in their

library dependencies.

Figure 2 presents the distribution of both the DSC and library

usage, confirming that projects are more likely to use multiple cat-

egories in their dependencies. Figure 2a shows the distribution of

categories per system, showing that systems use up to 6 domain-

specific categories. (i.e., median value). Complementary, Figure 2b

shows the distribution of libraries used per system, with systems

using up to 17 libraries (i.e., median value). Other results are dif-

ferent from related work, with Thung et al. reporting an average

or 28 libraries.

Observation 2 - Themost commonDSC usage pattern is Testing Frame-

works DSC and Logging Frameworks DSC.

Confirming the proportions of DSC patterns in Table 1, results

from the association rulemining in Table 3 show that Testing Frame-

works and Logging Frameworks (i.e., 36% target systems) are the

most frequent DSC usage pattern for the target projects. Interest-

ingly, the confidence scores for rule id 1 and 2 in the Table 3 are

0.69 and 0.65, suggesting that both functions are not necessary for

usage.

Observation 3 - A system using the Logging Bridges DSC is likely

to use a library from the Logging Frameworks DSC, however, this

does not necessarily mean that testing and logging frameworks are

dependent on each other.

As shown in in Table 3, there are 7 DSC rule pairs (14 rules)

which pre-condition and post-condition are interchangeable (i.e.,

such as rule 1 and rule 2). Using a Fisher exact test, we show that

the rules are not coincidental. The Fisher exact test [4, 10] is used

to define the interestingness of association rules and has been used

in software engineering [28]. As shown in the 7th row, the Testing

Frameworks and Logging Frameworks are highly interdependent

(i.e., p-value is less than 0.01 for all pairs with a 99% confidence

level)

Looking at rule 11 and 12 in Table 3, we find a relatively high

number of systems (i.e., 27% systems) uses libraries belonging to

both Logging Bridges and Logging Frameworks. Both rules exhibit

high support, suggesting that 87% systems with Logging Bridges

function are highly likely to use the Logging Frameworks. On the
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other hand, 52% systems with Logging Frameworks function use

Logging Bridges function, suggesting that although Logging Bridges

is often necessary to use Logging Frameworks, Logging Frame-

works is not necessary for Logging Bridges. In detail, logging bridges

(such as SLF4j log4j12 Binding) often control the output of log

message. However, this is not needed for some Logging Framework

libraries such as SLF4J and logback.

Based on our results, we now return to answer the first research

question:

We find that system depend on multiple libraries that belong to

various domain-specific categories. This study shows that up to

systems depend on up to 6 different types of domain-specific cat-

egories in their library dependencies.

Results from RQ1 provide evidence that using DSC for library

recommendation is valid, as systems do contain a diverse set of

DSC. Therefore, we proceed to answer RQ2 and RQ3.

4.2 RQ2: How accurate is the recommendation
of domain-specific categories?

Approach . To answer RQ2, we built a recommendation model

to show that we are able to accurately suggest useful categories. As

shown in Figure 1 for the model, our approach trains and evaluates

the model is the same as related work [21, 26]. The model also does

a comparison against a random guessing model. The training of

our model follows these two steps:

• (Step 1) DSCUsage Rules Generation: Similar toRQ1, wemined

DSC usage rules from the training dataset. The RuleGener-

ator accepts the domain-specific category of libraries. The

RuleGenerator then generates association rules. To remove

noisy rules, we set the minimum support (minsup) and min-

imum confidence (minconf) to filter out many minor in-

significant rules.

• (Step 2) Ranking of DSC: Algorithm 1 shows the algorithm

used to provide a more useful recommendation by ranking

the more useful categories. In detail, the algorithn searches

for the useful association rules (pre-conditions) included the

combination with categories (CurDSCat) of the target sys-

tem (in line 4). When the pre-conditions includes the com-

bination with CurDSCat, RankGenerator sets DSC with the

post-condition in the recommendation list (RecList) (in line

9-10). Finally, RankGenerator outputs DSC in RecList sorted

by confidence score.

To filter out minor rules (i.e., from Step 1), we used the default

settings to set minsup = 0.05 and minconf = 0.4. We set lower min-

sup = 0.05 to avoid missing rules in this experiment. On the other

hand, we set a bit higher minconf = 0.4 to suggest the valued rules.

To evaluate the recommended categories (i.e., from Step 2), we

use the well-known Recall Rate@K [20, 22, 26, 29] metric. Let a

system be Si , with at least one of DSC recommended being (Ri )
and its ground truth (GTi ). Hence, we calculate:

Recall Rate =
Systems (Si |Ri ∩GTi � ϕ)

All Systems
(5)

The Recall Rate for the number of categories (i.e., K is # DSC) is

indicated as Recall Rate@K. Importantly, we evaluate the median

Algorithm 1 RankGenerator algorithm for Step 2 in RQ2

Input: CurDSCat = DSC that the system currently uses

Rules = association rules

Output: RecList = recommended domain-specific categories and score

1: Method:

2: Let RecList = {}

3: for all Rule ∈ Rules do

4: if Cur FuncCat ⊇ Rule .PreCondit ion then

5: for all A ∈ Rule .PostCondit ion do

6: if A � CurDSCat then
7: add A and A.Conf to RecList

8: else

9: if RecList [A] < A.Conf then

10: add RecList [A] = A.Conf

11: end if

12: end if

13: end for

14: end if

15: end for

16: return RecList
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Figure 3: Recall Rate effect on varying DSC recommenda-

tion list sizes. The figures highlights Recall Rate@1, Recall

Rate@3, Recall Rate@5 and Recall Rate@10 are 41%, 66%,

75% and 81%.

Recall Rate using a ten-fold cross validation. The control config-

urations of our recommendations (i.e., minsup and minconf) in-

dicates usefulness and demand. This study controls minisup from

0.05, and miniconf from 0.20 to 0.65. A higher minsup means more

demand for this category, while a higher minconf suggests a more

useful recommendation.

Results. For the results, we first analyze the recall rate for the

different DSC recommendation list sizes.We then evaluate the con-

trol configurations to understand the usefulness and demand of the

recommendation. For this we use the recall rate@3.

Figure 3 depicts the Recall Rate@K by different recommenda-

tion size, showing that accuracy of our model improves as we in-

crease the number of recommended libraries. It shows that the Re-

call Rate gradually increases as K increases reaching a peak ac-

curacy of 81%. For instance, Recall Rate@1, Recall Rate@3, Recall

Rate@5 and Recall Rate@10 are 41%, 66%, 75% and 81%. Addition-

ally, in the Figure 3, we also show a comparison against a random

guessing model, which only gains an Recall Rate of 26% at most

(i.e., Recall Rate@10).
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Figure 4: Recall Rate results when comparing DSCRec(DSC, library), LibRec and a random guessing model. Note that the figure

5b depicts recommendation of multiple libraries within multiple DSC

.

Based on our results, we now return to answer second research

question:

Our proposed method recommends domain-specific categories

with accuracies of Recall Rate@1, Recall Rate@3, Recall Rate@5

and Recall Rate@10 are 41%, 66%, 75% and 81%.

Results from RQ2 show recommending DSC is practical with a

reasonable Recall Rate. Therefore, we proceed to RQ3, where we

would like to investigate the impact the DSC.

4.3 RQ3: How do domain-specific categories
impact library recommendation?

Approach. To answer RQ3, we proposed a library recommen-

dation prototype DSCRec and compare our model to existing tech-

niques. As shown in Figure 1, we adopted the model from RQ2, by

adding a step to rank and recommend the most popular library in

the recommended DSC list:

• library ranking by DSC: Our model recommends the most

popular library (i.e., calculated by a frequency count of the

usage by systems in the dataset). Our key assumption is the

popularity of a library within the categories should be the

most useful.

We compared our model against two other techniques of (i)

LibRec (RULE) proposed by Thung et al. and (ii) random guessing

model. We measure performance using the Recall Rate but at the

library level (i.e., N is # libraries). Based on Recall Rate@K, we had

two parameters of K and N. Thus, the Recall Rate@N at different

levels of K.

Based on the RQ2 results, we made the appropriate adjustments

to the rank generator (i.e., minsup = 0.05, minconf = 0.4) to allow

for library recommendations instead of the category level. We also

adjusted the configuration (i.e., minsup = 0.02, minconf = 0.3) to

allow for more library recommendations.

Results . For the results, we first analyze the performance of

the different models over multiple sets of libraries. Our analysis

will present the performance of each model against (i) one library
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Figure 5: Venn diagram of the propositions of the ground

truth (GT) when comparing LibRec vs DSCRec (DSC and li-

brary) recommendations.

(i.e., N=K) from a category and (ii) two libraries (i.e., N=2K) from

multiple categories. Since LibRec, does not recommend a category,

we only compare the recall rate of recommended library.

Figures 4 shows how LibRec recommendsmore accurate (higher

recall rate) libraries better than our proposed prototype DSCRec.

However, as shown by the white portion of the barplot, the rec-

ommended DSC portion of the DSC actually performs better than

LibRec. This means that the tool is getting the DSC correct, how-

ever, fails when selecting the library within the domain. Our naive

library recommended method suggests that systems do not neces-

sarily use the more popular libraries within that specific domain.

Based on our results, we now return to answer third research

question.

Our proposed prototype DSCRec does not perform better than

LibRec. However, the DSC shows better results than LibRec, sug-

gesting that systems do not necessarily use the more popular li-

braries within the DSC.
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Table 4: Example Case 1 where DSCRec makes a correct recom-

mendation and LibRec is incorrect

Output

Ground Truth (GT) DSCRec LibRec

Library �slf4j-api �slf4j-api spring-context

wicket

DSC �Logging Frameworks �Logging Frameworks

Web Frameworks

Table 5: Example Case 2 where DSCRec makes incorrect library

recommendation and correct DSC recommendation

Output

Ground Truth (GT) DSCRec LibRec

Library mule-tests-functional spring-test slf4j-api

commons-collections

mule-core

DSC �Testing Frameworks �Testing Frameworks

Collections

Enterprise Integration

5 DISCUSSION

In this section, we discuss the implications of our results, especially

taking a closer analysis of the correction of recommendations be-

tween DSCRec and LibRec and some qualitative case examples.

Figure 5 shows how correct themodels LibRec and DSCRec (DSC

and library levels) are against the ground truth, revealing that our

method is still comparable to existing techniques. This figure shows

that our proposed method could correctly identify 12% of DSC and

6% the libraries not correctly recommended LibRec.

5.1 Practical Examples of Recommendations

We show concrete examples of cases scenarios to understand the

strengths and weaknesses of each model output.

Table 4 illustrates the first example where LibRecmakes an in-

correct recommendation. In this example, our recommended DSC

is the correct logging framework. Intuitively, LibRec recommends

spring-context, most likely because one of the input libraries is

spring-beans, which belongs to the same spring web framework10.

In this case, the spring-beans does not require the core utilities of

the spring-context.

Table 5 illustrates the final example where both LibRec and

DSCRec are incorrect, however theDSCwas correctly recommended.
under closer investigation, the libRec recommendation commons-

lang belongs to an existing DSC (i.e., core collections). We conjec-

ture that in this case, the filtering of the DSC before the library was

not appropriate.

6 THREATS TO VALIDITY

The threats are divided into external, internal and construct valid-

ity.

External validity. - refers to the generalization concerns of the

study to other library ecosystem such as npm package, RubyGems

and the others. This study found that specific results for Java li-

brary ecosystem. However, our proposed approach using domain-

specific categories contributes a possible solution to recommend

appropriate libraries in the other library or package ecosystems.

Currently our domain-specific categories only suit Java projects.

Internal validity. - refers to the concerns of definitions of domain-

specific categories. First, we rely on the correctness of the domain-

specific categories from the Maven Repository website. Based on

our experience and bymanual evaluation, we are confident that the

150 categories are correct. Furthermore, the study found that the

10The Spring Framework at https://projects.spring.io/spring-framework/

domain-specific category could assist for the library recommen-

dation. However, our target domain-specific categories does not

cover all Java systems. As shown in Table 2, the domain-specific

categories could cover 94% of the top 100 trend libraries. Therefore

we are confident of our domain-specific categories.

Construct validity. - refers to the concerns the construction of

the problem definition. Our key assumption is that developerswould

not like a recommendation that would be a replacement for exist-

ing libraries. We understand that there exist cases where a devel-

oper would like to know if there are replacements. However, we

believe that this is a different kind of recommendation.

7 RELATEDWORK

Our related work is separated into three parts: recommendations

systems, the use of association rule mining. and work related to

libraries. There is been extensive studies that propose different

recommendation methods focused on code examples and method-

level (i.e. Application Programming Interface (API)). For instance,

work by Thummalapenta and Xie [24] proposes ParseWeb, a tool

that recommends code examples from a large number of publicly

accessible source code repositories. Other work such as Heine-

mann et al. [12] recommend at the API level. In this work, they

propose an approach to recommend API method based on iden-

tifier similarity. Other notable API recommendation tools recom-

mendmethods based on historical data of code changes [17, 25, 27].

Different to these work, we recommend at the library level, which

is a higher abstraction than the API level. Our approach uses the

well-known and widely used association rule mining of historical

data. For instance, Zimmermann et al. [32] propose an approach to

recommend code elements which should change at the same time

using association rule mining.

There has been many empirical studies conducted that are re-

lated to software libraries, with include librarymigration and adop-

tion. For instance, Ihara et al. [13] conduct an empirical study to

understand the library adaption. Furthermore, work by Teyton et

al. [23] propose an approach to visualize library migration graph

based on the past librarymigration. Zerouali et al. [30] andKabinna

et al. [14] also analyzed libraries from the testing category (Testing

and Logging Frameworks). Chen [5, 6] propose a tool SimilerTech

that recommend libraries with similar functions by analyzing com-

munications in Stack Overflow when a system migrate from the

current library. None of the work use domain-specific categories

in their recommendations.
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Our study is inspired by the work of Thung et al. [26]. In this

work, they propose an approach to recommend libraries by a hy-

brid approach using combines association rule mining and collab-

oration filtering. This approach recommends some libraries that

some systems frequently used with a combination. Later, Ouni et

al. [21] propose an approach to recommend libraries by a search

base algorithm NSGA-II. Related, Mileva et al. [18] propose the

tool AKTARI to recommend trend version of a library based on

the wisdom of the crowd. We conjecture that as well as popularity,

developers would like to identify similar libraries that belong to

the same specific domain.

8 CONCLUSION AND FUTURE DIRECTIONS

The maintenance of software libraries plays a key role in keeping

a project healthy. To facilitate efficient and effective management

of libraries (i.e. update and searching for new candidate libraries),

our study investigates the impact of using DSC in library recom-

mendation. Although our proposed library recommendation tool

does not perform better than the existing state–of–the–art, there is

potential for DSC with library recommendations. For future work,

we would to investigate other techniques and combining existing

techniques such as collaborative filtering to improve our results.
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