
Cross Project Defect Prediction Using Class
Distribution Estimation and Oversampling

Nachai Limsetthoa, Kwabena Ebo Benninb,∗, Jacky W. Keungb, Hideaki
Hataa, Kenichi Matsumotoa

aGraduate School of Information Science, Nara Institute of Science and Technology, Japan
bDepartment of Computer Science, City University of Hong Kong, Hong Kong

Abstract

Context: Cross-project defect prediction (CPDP) which uses dataset from

other projects to build predictors has been recently recommended as an effec-

tive approach for building prediction models that lack historical or sufficient

local datasets. Class imbalance and distribution mismatch between the source

and target datasets associated with real-world defect datasets are known to have

a negative impact on prediction performance.

Objective: To alleviate the negative effects of class imbalance and distribution

mismatch on performance of CPDP models by using Class Distribution Estima-

tion and Synthetic Minority Oversampling Technique. A novel approach called

Class Distribution Estimation with Synthetic Minority Oversampling Technique

(CDE-SMOTE) is proposed to optimize and improve the CPDP performance

and avoid excessive oversampling.

Method: The proposed CDE-SMOTE employs CDE to estimate the class dis-

tribution of the target project. SMOTE is then used to modify the class dis-

tribution of the training data until the distribution becomes the reverse of the

approximated class distribution of the target project. Four comprehensive ex-

periments are conducted on 14 open source software projects.

Results: The proposed approach improves the overall performance of CPDP

∗Corresponding author
Email addresses: nachai.limsettho.nz2@is.naist.jp (Nachai Limsettho),

kebennin2-c@my.cityu.edu.hk (Kwabena Ebo Bennin), jacky.keung@cityu.edu.hk (Jacky
W. Keung), hata@is.naist.jp (Hideaki Hata), matumoto@is.naist.jp (Kenichi Matsumoto)

Preprint submitted to Elsevier February 9, 2018

models when compared to the performance of other CPDP approaches. Sig-

nificant improvements are observed in 63% of the test cases according to the

Wilcoxon signed-rank tests with 16.421%, 29.687% and 20.259% improvements

in terms of Balance, G-measure, and F-measure, respectively. Application of

CDE-SMOTE on NN-filtered datasets significantly improved prediction perfor-

mance.

Conclusions: CDE-SMOTE mitigates the class imbalance and distribution

mismatch problems and also helps prevents excessive oversampling that results

in performance degradation of prediction models. This approach is thus recom-

mended for CPDP studies in software engineering.

Keywords: Cross-Project Defect Prediction, Software Fault Prediction,

Oversampling, Class Imbalance Learning, Class Distribution Estimation

1. Introduction

Defect prediction is a process of predicting the defect-proneness of software

modules and is of great importance in organizing and managing scarce testing

resources [1, 2]. Defect prediction is known to work well when the prediction

model is built using its own historical data [1, 2]. However, given a lack of

historical data for a new project, the ability to build an effective defect prediction

model becomes a very difficult task, as specifically noted by He et al. [3] and

Turhan et al [4].

Without sufficient historical or within-company data, cross-project defect

prediction (CPDP) [5, 4, 3, 6], which selects and utilizes historical data from

other similar projects for training predictors can be employed. The CPDP ap-

proach, although promising causes low prediction performance compared to the

performance of within-company defect prediction models. This is mostly due

to the distribution mismatch between the source and target projects [3, 6, 7, 5].

Additionally, class imbalance of defect datasets, a prevalent problem in within-

company defect prediction [8, 9] is inherited by CPDP. Generally, defect predic-

tion dataset contains more non-defective examples than the defective examples

2

[10]. This class imbalanced issue causes a trained prediction model to be biased

toward the majority and thus shifts the decision boundary toward the non-

defective class. Software quality teams and researchers are however interested

in the defective or minority class [10].

A common preprocessing technique adopted by researchers [11, 12, 13, 14, 15]

for tackling the class imbalance and to enhance defect prediction performance is

the application of sampling techniques such as over and under sampling [16, 17].

However, oversampling techniques have been shown to perform better than un-

dersampling techniques in several empirical studies [11, 12, 13] whereby more

minority or defective examples are added to the dataset. Nevertheless, deter-

mining in advance the amount of oversampling required is still a key challenge

during the training of a prediction model. This issue is especially more impor-

tant in the cross-project scenario where the distribution of the defective and

non-defective modules in a target dataset cannot be easily assumed as in the

within-project situation. The exact amount of the skewness vary depending

on each project; while some might only have a very low number of defective

modules (i.e. 8.1% in NetBSD), approximately half of the modules in another

project might be defective (i.e. 49.1% in XFree86) as observed from the projects

considered for our study.

To overcome the aforementioned problems above, TCSBoost [18, 7] and

Boosting-SVM [19] are few of the recently proposed techniques. None of the

existing methods in CPDP considers the distribution mismatch between source

and target datasets and efficiently utilizes the estimated distribution of the tar-

get project when oversampling is applied. A transfer learning technique that

estimates the class distribution of the target/unlabeled data and appropriately

modifies the source data with this estimated value could be applied to improve

the performance of the prediction model. As such, we investigate how the dis-

tribution of the target data could be estimated and how to use this estimated

value for oversampling the source project in CPDP. We thus formulate and ex-

plore the following research questions:

RQ1: Is the prediction performance improved when the true class distribution

3

of the target project is known beforehand?

RQ2: Can the actual distribution of the target project be estimated?

RQ3: Given that we can estimate the unlabeled data distribution, can we build

a better cross-project defect prediction model based on this estimated value?

RQ4: Is the prediction performance improved when CDE-SMOTE is applied

on two state-of-the-art filtering techniques - Nearest Neighbor(NN)/Burak filter

and CLAMI?

The aim of our research is to improve the prediction performance of cross-

project defect prediction models and alleviate the negative effects of class imbal-

ance and distribution mismatch through modification of the training dataset’s

distribution by using SMOTE and a quantification technique. We propose

Class Distribution Estimation with Synthetic Minority Oversampling Technique

(CDE-SMOTE), a technique for cross-project defect prediction that modifies the

distribution of the training dataset according to the estimated distribution of

the unlabeled dataset. Although it is not practical to assume that the true

distribution of the unlabeled data can be obtained, it can be estimated using a

class distribution estimation (quantification) approach [20] mostly used in other

domains of machine learning. By leveraging this estimated distribution, we can

approximate the amount of oversampling required for each dataset and prevent

excessive oversampling, which degrades prediction performance. The hypothe-

ses and performance of CDE-SMOTE are validated and evaluated through four

experiments together with Wilcoxon signed-rank statistical tests. We conduct

extensive empirical studies on 14 open-source projects considering all of their

possible cross-project pairs making a total of 14× 13 = 182 cross-project pairs,

and using 7 defect prediction models comprising of 5 base classifiers and 2 en-

semble classifiers.

In this study, CDE-SMOTE significantly improved the cross-project defect

prediction performance with statistical significance. It also improved the pre-

diction performance compared to the CLAMI [21] and Burak [4] approaches.

The major contributions of this paper are:

4

• We empirically demonstrate the negative effects of building a cross-project

defect prediction model without considering the distribution of the in-

tended target projects and provide guidelines on how to improve the pre-

diction performance using an estimated distribution.

• The first study to apply the quantification technique in the cross-project

scenario, and empirically demonstrate the feasibility of using quantifica-

tion to estimate the expected percentage of defective modules.

• We demonstrate that prediction performance of NN-Filter and CLAMI can

be significantly improved when combined with our proposed approach.

The remainder of this paper is organized as follows. Section 2 summarizes

related work in the area of cross-project defect prediction. In Section the 3, we

describe the steps and procedures of CDE-SMOTE, as well as its base hypothe-

ses. The experimental setup and results are explained in Section 4 and Section

5 respectively. Implications of the results and validity are discussed in Section

6, and conclusion in Section 7.

2. Background and Related Work

2.1. Defect Prediction Process

Defect prediction has the main objective of identifying fault-prone modules

and aids in the effective allocation and prioritization of scarce testing resources

[22]. Several defect prediction models have been proposed in the past decade

employing various machine learning and statistical approaches. Conventional

methods such as neural networks [23], support vector machine [24], bayesian

classifier [25] and random forest [26] have been used. Menzies et al. [27] rec-

ommend the application of Naive Bayes with logNums preprocessing for better

defect prediction. These proposed defect prediction models are however studied

in the within-project scenarios. The models are open to projects with historical

datasets available hence restricting their applicability on new projects without

any historical dataset available.

5

2.2. Defect Prediction with Limited Historical Project Data

Over the years, several studies [5, 4, 3, 6, 28, 21] have proposed different

approaches to solve the lack of historical dataset problem, which can be di-

vided into two main approaches: the unsupervised and the cross-project defect

prediction approaches.

Cross-Project Defect Prediction: With the availability of open source

software projects, the feasibility of cross-project defect prediction where projects

from different companies are used to train prediction models have been inves-

tigated in recent years but with an inconclusive result. The first to attempt

cross-project defect prediction was Zimmermann et al. [5]. Conducting a large-

scale experiment on 12 real-world datasets, 622 cross-project prediction models

were analyzed and investigated for the feasibility of cross-project defect predic-

tion. Observing a low success rate of 3.4%, they concluded cross-project defect

prediction was still a challenge. Turhan et al. [4] proposed a practical defect

prediction approach for organizations aiming to employ defect prediction but

lacks historical data. Applying the principles of analogy-based learning, they

use the k-nearest neighbor algorithm which selects 10 nearest data instances for

every unlabeled test instance for cross-company defect prediction. They demon-

strate that small data samples acquired using their approach could be used to

build effective defect predictors. Similarly, Peters et al. [29] proposed a new

filter which outperformed the Burak filter proposed in the work by Turhan et al.

[4]. The Peters filter selects training data considering the structure of the other

projects and can select as few as one data instance for each test instance. By

conducting large-scale cross-project defect prediction experiments on 34 data

sets extracted from 10 open source projects, He et al. [3] observes that care-

fully selecting training data from different projects is very vital for constructing

defect prediction models for new projects. They also support conclusions that

cross-project defect prediction works in few cases as previously reported in stud-

ies by Zimmermann et al. [5] and Turhan et al. [4]. Jureczko and Madeyski [30]

applied clustering techniques to partition various projects into distinct groups

with the assumption that projects in the same group have the similar char-

6

acteristics. They argue that a defect prediction model trained on datasets in

the same group is reusable for new projects. They argue projects in the same

group tend to have similar characteristics and thus, no need for datasets to have

historical datasets before defect prediction model could be constructed. Zhang

et al. [31] studied the performance of the ensemble approach, which combines

multiple classifiers together, in the cross-project scenario. Their results indi-

cate that several ensemble algorithms can outperform the CODEP, a defect

prediction algorithm proposed by [32]. More recent work by Ryu et al. [18] uses

transfer learning and boosting to deal with problems in cross-project defect pre-

diction. The approach works by integrating a small amount of within project

data to improve the prediction performance. The approach was improved with

a different boosting technique a year later [7]. Poon et al. [33] proposed a cred-

ibility theory based Nave Bayes classifier that considers the data distribution

mismatch between the source and target data. The proposed method provides

a credibility factor that estimates the degree of reweighting the source data and

target data to determine the extent of knowledge transfer from target data to

source data whilst retaining the data distribution pattern of the source data.

Defect Prediction on Unlabeled Datasets: Compared to the cross-

project defect prediction approaches, only few have studied the use of the unsu-

pervised learning approach that creates the prediction model without the need

for any labeled data. Catal et al. [28] proposed the use of a metric threshold.

Similarly, Nam and Kim [21] proposed the method known as CLAMI, which

computes threshold values for each metric value and cluster modules into two

groups below or above the threshold (Defective and Clean). CLAMI requires no

human expert judgment and does the labeling in an automated manner. CLAMI

proved to outperform most traditional and state-of-the-art cross-project defect

prediction approaches with statistical significance.

2.3. Handling of Skewed Dataset in Defect Prediction

Most studies conducted in the domain of cross-project defect prediction fo-

cuses on the techniques for selecting appropriate datasets for training the pre-

7

diction model and inadvertently ignores the class distribution of the obtained

datasets. Since defect prediction datasets are mostly highly skewed in favor of

one class [10] with the non-defective modules most often dominating the defec-

tive modules, the acquired training data for a cross-project defect prediction

will most likely also be highly skewed. As such, the appropriate preprocessing

technique to be applied to the data becomes a research challenge. A common

preprocessing technique adopted by researchers [12, 11, 13, 34] for enhanced

defect prediction performance is the application of sampling techniques such as

over and under sampling. Other research tackle and alleviate this problem by

using boosting and instance weighting approaches such as by Ryu et al. [18, 7].

These techniques are applied to alleviate the negative effects of highly skewed

or the imbalanced distribution of the defect prediction datasets [17]. However,

oversampling techniques have been shown to perform better than undersampling

techniques in several empirical studies [12, 11, 13, 34] whereby more minority

or defective instances are added to the dataset. We thus adopt and focus on an

oversampling approach for this study.

2.4. Synthetic Minority Oversampling Technique (SMOTE)

Among the oversampling techniques, SMOTE is one of the most prevalent

techniques used for synthetic data generation [11] Proposed by Chawla et al.

[35], it aims to alleviate the imbalance in the original dataset by synthetically

generating new data instances in the region of the minority class so as to shift the

classifier learning bias towards the minority class. Figure 1 shows how SMOTE

works.

SMOTE generates synthetic examples by:

1. Choose an example from the minority class. We consider the middle in-

stance that is circled in Figure 1.

2. Find the k-nearest minority instance neighbors of the chosen example. In

Figure 1 these are the three surrounding circles (k=3).

3. Create synthetic examples, between the chosen example and its neighbors.

The synthetic examples will have each of its features randomized between

8

Figure 1: Diagram showing how SMOTE works (k=3)

the chosen and neighbor examples selected. In Figure 1, this is represented

by the three triangles. The possible location for the synthetic example in

the right corner is within the dashed box.

These steps are repeated until the target amount of oversampling is reached.

2.5. Class Distribution Estimation (CDE)

Class distribution estimation (CDE) or Quantification is a machine learn-

ing technique that estimates the proportion of each class in a given unlabeled

dataset [20]. Unlike classification that is interested in the actual label of each

instance, quantification is more interested in the distribution of each class. This

approach has been successfully adopted in many fields such as in text mining

[36], sentiment analysis [37] and epidemiology [38]. However, it is yet to be

utilized in the field of software engineering. Our research uses this estimated

class distribution approach to approximate the amount of oversampling needed

for the target unlabeled project.

3. CDE-SMOTE Principles

Our proposed approach, Class Distribution Estimation with Synthetic Mi-

nority Oversampling Technique (CDE-SMOTE) aims to reduce the negative

effects of a highly skewed dataset on the performance of a cross-project defect

9

prediction model by using CDE and SMOTE oversampling. The amount of

oversampling is obtained by the estimated distribution of the unlabeled dataset

in order to stop the needless oversampling which causes prediction performance

degradation.

3.1. Theoretical basis of CDE-SMOTE

Based on the negative effects class imbalance and the class distribution mis-

match between training and target projects do have on the performance of

CPDP models, we argue that prediction performance will be significantly im-

proved when the class distribution of the source project is similar to that of

the target project. A known approach of improving prediction performance on

the minority (defective modules) is by shifting the decision boundary of clas-

sifiers toward the region on the minority class [35, 17]. Thus, the underlining

hypotheses behind CDE-SMOTE are formulated below:

First The training dataset could be modified to better suit the class dis-

tribution of the target unlabeled dataset

Second Without any prior knowledge of the label of the unlabeled dataset,

the class distribution of the unlabeled dataset can be estimated.

The first hypothesis is based on the previous study of [39], with some modifi-

cations. Application of SMOTE can aid in the modification of the class distri-

bution of the training data. The second hypothesis is however, based on the

quantification technique [20] adopted from machine learning. This technique

estimates the distribution of an unlabeled dataset by using the classification

performance of the trained prediction model on the unlabeled dataset. More

details of this technique is discussed below in 3.2.

3.2. Steps and Procedures

CDE-SMOTE consists of three main steps: class distribution estimation,

class distribution modification, and prediction model building.

10

Figure 2: CDE-SMOTE Diagram: Class Distribution Estimation

Figure 3: CDE-SMOTE Diagram: Class Distribution Modification

11

The first step, class distribution estimation, is shown in Figure 2. The ap-

proach starts by building the first classification model (estimator classifier) from

the training dataset, for approximating the class distribution of the unlabeled

dataset. The training dataset is a historical data from another software archive

that is already labeled and modified using SMOTE to have an equal number of

defective and clean classes. Next, the unlabeled dataset from the target soft-

ware project is labeled (predicted) by the estimator classifier; this will yield a

machine labeled result of the target software. The estimated distribution of

target software is then obtained by the classification and count (CC) technique

[20], through a simple count of the number of machine-labeled instances for

each class. Practically, there might be some classification mistakes in the first

labeled result, however, we assume that we will obtain an approximate class

distribution ratio of the target project. This assumption is investigated in our

results related to experiment 2.

The second step, class distribution modification, is shown in Figure 3. This

part takes the estimated distribution and the training dataset as inputs to out-

put a modified training dataset. The estimated positive rate (the ratio of the

number of defective instances to the number of overall instances), is used to

dictate and obtain the amount of oversampling required. The modification is

done by oversampling the original unmodified training dataset by adding syn-

thetic defective instances to the training dataset until the class distribution of

the training data becomes the reverse of the estimated distribution of the un-

labeled dataset. This is done in order to shift the decision boundary of the

defect prediction model towards the region of minority class thus emphasizing

the presence of the defective class samples. For example, if the distribution of

the training is 6 : 4 and the estimated distribution of the unlabeled datasets

is 8 : 2, synthetic examples will be added to the class with a ratio of 4 (40%)

until the distribution of the training dataset becomes 2 : 8. These synthetic

examples are generated by SMOTE [35], a well-known oversampling technique.

Oversampling using the reverse of the target estimated distribution value acts

as the limit for oversampling. Our aim is to improve the prediction performance

12

Figure 4: CDE-SMOTE Diagram: Prediction Model Building

whilst the excessive oversampling of the minority class is avoided.

The final step, prediction model building, as shown in Figure 4, adopts the

modified training dataset from the second part to create the second classification

model which we refer to as the CDE-SMOTE prediction model. The unlabeled

dataset from the target software project is then labeled (predicted) by this

classifier producing the final classification results of the target software project

which is evaluated in our results related to experiments 3 and 4.

4. Experimental Setting

To evaluate the proposed CDE-SMOTE approach, this section describes the

datasets, prediction models, evaluation measures, and validation procedures

used for this study.

13

4.1. Defect Prediction algorithms

For a more comprehensive study, both single based classifiers and ensemble

classifiers were used for the experiments. The cross-project defect prediction

experiments are conducted with the following seven classification algorithms: •

J48 Decision Tree [40]

• Random Forest (10 trees) [41]

• Naive Bayes (NB) [42]

• Logistic Regression [43]

• kNN (k = 3) [44]

• Vote ensemble: Average of Probability (J48+NB) [45]

• Vote ensemble: Average of Probability (J48+NB+kNN(3)) [45]

The first five models are well known and commonly used in several defect

prediction studies, while the remaining two are ensemble classifiers created from

the combinations of two or three classification algorithms. The classification

algorithms used in this papers are all implemented in WEKA Machine Learning

Toolkit, version 3.6.3. [46].

4.2. Datasets

The cross-project defect prediction experiments are conducted using 14 datasets,

with each dataset extracted from a different open source software project. We

deliberately extracted 14 single release version of different open source software

engineering projects for the experiment, each with different class distribution

as presented in Table 1. We experiment on a wide variety of class distribu-

tion to examine the impact different class distribution between the training and

target projects have on prediction performance. The metrics of each software

repository are collected from their respective commit logs using Git/CVS ver-

sion control tools to extract seven common process metrics as recommended by

Moser et al. [47]. Modules labeled as error in the commit logs and having error

density values greater than zero, are thus labeled as “Defective” in our datasets.

Table 2 presents nine metrics commonly used in defect prediction [26] extracted

from each software project.

14

Table 1: The 14 Open-source Datasets extracted with their respective defect class distribution

Datasets # Instances %Defective Module Datasets # Instances %Defective Module

Clam Antivirus 1597 5.8 GANYMEDE 184 15.8

NetBSD 6781 8.1 OpenBSD 1706 16.1

Scilab Website 2636 8.8 Squid 250 23.6

OpenNMS 1203 10.2 WineHQ 1627 35.9

Samba Development 1623 11.3 XFree86 713 49.1

Helma.org 312 12.2 Hylafax.org 137 51.1

Spring 926 13.6 Ipnetfilter 151 61.6

Table 2: Dimensions (Metrics) of Datasets

Name Type Description

CODECHURN Integer The total number of lines of code added and deleted from the module.

LOCADDED Integer The total number of lines of code added to the module.

LOCDELETED Integer The total number of lines of code deleted from the module.

REVISIONS Integer Number of revision made to the module.

AGE Integer Age of the module.

BUGFIXES Integer Number of bug fixed in the module.

REFACTORINGS Integer Number of code refactoring made to the module.

LOC Integer Number of lines of code in the module.

BUGGINESS Boolean Indicate the defect proneness of the module. Defective or Clean.

4.3. Evaluation Criteria

Two sets of performance measurements are used for this study. One for mea-

suring the performance of the defect prediction models and second for measuring

the mismatch during and after the class distribution estimation process.

For the first set of measures, the evaluation measures used are: probability

of detection (PD), probability of false alarm (PF), balance (Bal), G-measure

and F-measure. These measures are widely used in the defect prediction field,

which emphasizes the importance of the defective class.

• Probability of Detection (PD): Recall of the defective class:

PD = #Correctly PredictedDefectiveModules
#ActualDefectiveModules

• Probability of False Alarm (PF): Rate of misprediction of Non-Defective

module:

15

PF = #Incorrectly PredictedNonDefectiveModules
#ActualNonDefectiveModules

• Balance (Bal): The Euclidean distance between (0,1) and (PF, PD) points:

Bal = 1−
√

(1−PD)2+(0−PF)2√
2

• G-measure: The harmonic mean of PD and (1-PF):

G−measure = 2×PD×(1−PF)
PD+(1−PF)

• F-measure (F1): The harmonic mean of precision and recall. In this paper,

only the F-measure of the Defective-class is evaluated:

F1 = 2×Precision×Recall
Precision+Recall where

• Precision: the number of predicted defect modules which are actually

defective modules, this is used to calculate the F-measure:

Precision = #Correctly PredictedDefectiveModules
#PredictedDefectiveModules

The predicted results by the prediction models built on the modified train-

ing data are compared with the classification model built from the unmodified

training data (the original classifier). Wilcoxon signed rank tests are further

performed to find the statistical significance of the results. The Wilcoxon Win-

Tie-Loss across all the five measures as well as the percentage improvements are

presented in Section 5.

The second set of measures aims to measure the performance of the class

distribution estimation model, the measures of this set are: Predicted class

distribution mismatch in the actual value and in percentage difference compared

to the difference in the actual training and the unlabeled datasets.

• PositiveRate: the distribution of the defective module in terms of the

ratio between the number of defectives and the total number of modules:

PositiveRate= #DefectiveModules
#Modules

Three PositiveRate measures are used in our experiment:

– PositiveRateTrain, True distribution of the defective module in the

actual unmodified training dataset.

16

– PositiveRateUnlabeled, True distribution of the defective module in

the unlabeled dataset.

– PositiveRatePredicted, Predicted distribution of the defective module

in the unlabeled dataset.

• ActualMismatchV alue: the value of positive rate difference between the

train and the unlabeled datasets:

ActualMismatchV alue

= |PositiveRateTrain − PositiveRateUnlabeled|

• PredictedMismatchActualV alue: the value of positive rate difference be-

tween the estimation (predicted) and the actual distribution of the unla-

beled datasets:

PredictedMismatchV alue

= |PositiveRatePredicted − PositiveRateUnlabeled|

• PredictedMismatch%Diff : the percentage of mismatch difference be-

tween the estimation, PredictedMismatchV alue, and the actual mismatch,

ActualMismatchV alue. A negative value indicates that the estimated pos-

itive rate is closer to the true distribution. On the other hand, a positive

value means the estimation is more misleading than the distribution of

the training dataset.

PredictedMismatch%Diff

= PredictedMismatchV alue−ActualMismatchV alue

ActualMismatchV alue
× 100

4.4. Validation Procedure

We conduct four different experiments to validate the hypotheses formulated

and the proposed CDE-SMOTE approach. We explain how each experiment was

conducted. These experiments provide answers to the four research questions.

Experiment 1: Oracle and Original Classifiers Comparison

17

For the first experiment, we aim to validate the first hypothesis of CDE-SMOTE

and investigate whether the performance of the prediction models can be im-

proved if the true distribution of unlabeled dataset, PositiveRateUnlabeled, is

known beforehand. By confirming our first hypothesis, we demonstrate the

possibility of improving the cross-project prediction model through the modi-

fication of the class distribution of the training dataset. We also demonstrate

the danger of building prediction models on the training data of one project for

another project without considering their class distributions.

In this experiment, we assume that the distribution of the unlabeled data is

known beforehand which is not practical in most cross-project defect prediction

scenario. This knowledge is used to adjust the number of training instances of

each class in the training dataset to make the training dataset more similar and

suitable to the current unlabeled dataset. The adjustment is done by adding

synthetic examples to the training dataset until the class distribution of the

training data becomes the reverse of the actual class distribution of the unlabeled

dataset.

This modified training dataset is used to build a classification model to

predict the defective modules in the unlabeled dataset. This model is called

“Oracle classifier” because it obtains information that is not possible to obtain

in a normal and practical scenario. We then examine the prediction results

of this model against the true labels of the unlabeled dataset and evaluate

its performance. The evaluation measures used are probability of detection

(PD), probability of false alarm (PF), balance (Bal), G-measure and F-measure.

We then compare the prediction results with the original classifier, that is,

the classification model built from the unmodified training data, and lastly

applied a statistical test, specifically the Wilcoxon signed rank test to compare

the significant difference in the performance of the models. Experiments are

performed 14 times, each time one project is selected as a training project to

train a classification model. This model is then used to predict the defect in the

remaining 13 projects, for the total of 14 × 13 = 182 cross-project pairs. The

above 7 classification algorithms are run on each cross-project pair making a

18

total of 182× 7 = 1, 274 runs. The Wilcoxon test is performed on each training

dataset selected across all of its cross-project pairs for each performance measure

and reported in terms of Wins, Ties or Losses depending on its significance level

at p < 0.05 two-tailed test. Five Win-Tie-Loss values are reported for each

training dataset, as such, the total runs of Win-Tie-Loss for each classification

algorithm on the 14 datasets is 14× 5 = 70.

Experiment 2: Performance of the Class Distribution Estimator

The second experiment aims to validate the second hypothesis of CDE-SMOTE

and investigate the impact of applying the quantification technique on the per-

formance of cross-project defect prediction models. Practically, the actual class

distribution of the testing or unlabeled data is unknown or unobtainable. The

question we ask ourselves is, can we estimate the actual class distribution of the

unlabeled dataset? We thus focus on using the training (labeled) data, the same

data used as the input for the already built classification model and examine

the quantification performance of the classification and count (CC) technique

applied on the cross-project models.

To evaluate the estimation performance, quantification experiments are run

on 182 cross-project pairs. Each prediction model is built on 1 of the labeled

historical data and further used to estimate the 13 remaining unlabeled projects.

Estimation performances are evaluated in terms of PredictedMismatchActualV alue

and PredictedMismatch%Diff .

Experiment 3: CDE-SMOTE and Original Classifiers Comparison

Given that we can estimate the class distribution of the unlabeled data, can

we build a better cross-project defect prediction model based on this estimated

value? This experiment demonstrates and provides the practical contribution

of this study. That is, to estimate the class distribution of the unlabeled data

and accordingly use the estimated value to modify the class distribution of the

training data.

The performance of the CDE-SMOTE prediction model is validated in terms

of PD, PF, Bal, G-measure and F-measure. The results are compared to the

19

performance of the original classifier using Wilcoxon Win-Tie-Loss procedure

and percentage improvement in the same manner as in Experiment 1. The

results are presented in Section 5.3. In contrast to experiment 1, the actual

class distribution of the unlabeled dataset is never used in this experiment so as

to avoid contaminating the trained classifier. The estimated class distribution

of the unlabeled dataset is rather used in this experiment.

Experiment 4: CDE-SMOTE and Related Works Comparison

The final experiment is conducted to compare the predictive performance of

CDE-SMOTE with two state-of-the-art filtering techniques discussed in our re-

lated works: Burak filter [4] and CLAMI [21].

The Burak filter is an approach proposed for selecting the right training

examples for the target unlabeled project. This approach filters large quantity

of labeled instances, usually consisting of several software engineering projects,

and selects only a subset of these combined projects to be used as a training

dataset. Each instance in the filtered dataset is selected according to how similar

they are to the unlabeled instance. For each unlabeled instance, the closest k

labeled instances are selected and added to the training dataset.

Our Burak filter experiments consist of 14 runs. The Burak filter approach

assumes that there is a large amount of training dataset composed of historical

data from several software engineering projects. Therefore, per each run of

experiment, 1 dataset is selected as the testing/unlabeled dataset whilst the

remaining 13 datasets are combined to create a composite labeled dataset with

which the Burak filter is applied to. The number of closest instances, k, is set

to 10 and the similarity is measured using the Euclidean distance metric. We

then applied our CDE-SMOTE to the filtered training dataset and compared its

performance to just using the Burak filter alone. The performance is evaluated

in terms of increased Balance, G-measure, and F-measure.

The second approach, CLAMI, is a more recent approach. It is an unsu-

pervised threshold approach for identifying the defect-prone modules from an

unlabeled dataset. CLAMI starts by calculating the median of each feature or

20

metric from the unlabeled dataset. The median value for each feature is used

as a threshold; values which exceed the corresponding median are identified and

marked. CLAMI then counts the number of marked values for each instance

and clusters the same number together. The instances are then separated into

two big groups: the group with higher and lower number of marked values,

which are labeled as defect-prone and not defect-prone, respectively. After this

labeling, CLAMI then performs metrics and instance selections to further refine

its labeled dataset. The final labeled dataset is then used as a training dataset

for building defect prediction models.

While CLAMI and its assumptions are very different from ours, the final goal

is the same: to identify the defect-prone modules. To demonstrate the effective

performance of our proposed approach, we compare the performance between

ours and CLAMI. Different from the Burak experiments where we filter the

training dataset using Burak’s technique before applying CDE-SMOTE, CDE-

SMOTE experiments are not performed on the CLAMI labeled dataset, as our

pilot experiment shows that applying CDE-SMOTE to CLAMI labeled dataset

often result in either insignificant or detrimental performance. Instead, we com-

pare the performances of using only CDE-SMOTE and using only CLAMI.

Similar to the setups in experiment 3, each run is performed 14 times making

a total of 14 × 13 = 182 cross-project pairs. However, the original classifier is

substituted with CLAMI and compared to CDE-SMOTE. We use the Logistic

Regression Classifier for CLAMI as the authors recommend that model for bet-

ter performance [21]. The results of Both Burak and CLAMI experiments are

presented in Section 5.4.

5. Results and Analysis

In this section, we discuss and present the results of the four conducted

experiments. The answers to the research questions are also provided.

21

5.1. RQ1: Is the prediction performance improved when the true class distribu-

tion of the target project is known beforehand?

For this experiment, we compared the cross-project defect prediction perfor-

mance of the oracle classifier with the performance of the classifier built from

the original unmodified training dataset. Across 14 extracted datasets, 182

cross-project experiments are conducted and the summarized results in terms

of Wilcoxon Win-Tie-Loss comparison between the oracle and the original clas-

sifiers for each select training dataset. The barplot in Figure 5 shows the sum-

marized result, the Y-axis denotes the number of Win, Tie or Loss while the

X-axis denotes the classification algorithm used.

Figure 5: Oracle comparison to the Original Classifier: Wilcoxon Win-Tie-Loss

We observe from Figure 5 that modifying the training dataset to be the

reverse of the class distribution of the unlabeled dataset can help improve the

performance of the cross-project defect prediction models. Out of the 490 Win-

Tie-Loss comparison, 70 from each of the 7 classifiers, this approach performed

significantly better than the original, 64.286% of the time according to the

Wilcoxon statistical test.

22

The average increase in performance of each classifier is shown in Table 3.

The table demonstrates the average performance increases, compared to the

original predictor, evaluated using the following three measures: Balance, G-

measure and F-measure. All measures are the means across 182 cross-project

pairs.

Table 3: Oracle performance increase (%) compared to original classifier [Averaged from 14 x

13 = 182 combinations of cross-project pairs]

Balance G-measure F-measure

J48 23.016 47.296 40.082

RF (10 Trees) 15.628 22.861 22.861

Naive Bayes 10.143 15.726 10.045

Logistic 0.920 -1.380 24.110

kNN (k=3) 11.649 21.262 20.910

Vote 1 (J48+RF) 12.979 20.874 15.490

Vote 2 (J48+RF+kNN) 22.637 39.157 26.224

Averaged 13.853 24.406 22.817

Across these seven classification algorithms, we can see the increase in per-

formance across all measures; G-measure and F-measures increase by 24.406%

and 22.817%, respectively. Furthermore, the performances of all algorithms

have shown at least some improvements. Out of the seven experimented algo-

rithms, aside from a slight G-measure decrease in Logistic Regression, none of

the algorithms experienced a performance degradation in the results. We have

enough evidence to conclude that the use of the oracle classifier improves predic-

tion performance across all models and performance measures with statistical

significant results.

5.2. RQ2: Can the actual distribution of the target project be estimated?

As it is not practical to assume that the distribution of the unlabeled data

is known beforehand, this experiment investigates the practicality of estimating

the distribution of the unlabeled dataset. First, the average mismatch class

23

Figure 6: Actual class distribution mismatch (PredictedMismatchV alue) between train and

unlabeled datasets in the actual value

distributions in term of positive rate (PR) between the estimation and the

true value (PredictedMismatchV alue), averaged across all cross-project pairs

for each training dataset, are shown in Figure 6. From the graph, the Y-axis

denotes the positive rate (PR) mismatch while the X-axis denotes the various

training datasets used for training the prediction model. The Logistic Regression

and kNN results are excluded from Figure 6 as well as our further experiments,

because these two algorithms could not accurately estimate the distributions of

the unlabeled datasets. They produced worst mismatched estimations, generat-

ing 160% and 190% more error at maximum compared to the use of the original

unmodified training dataset.

From Figure 6, we observe that the remaining five classifiers can estimate the

class distribution of the unlabeled dataset. Without any prior information or

knowledge about the unlabeled dataset, the class distribution can be estimated

with a positive rate (PR) mismatch value of 0.1689 averaged across all classifiers.

24

Figure 7: Class Distribution Mismatch Compared to the original Training Data: Percentage

differrent betwen actual test data error and CDE estimation (PredictedMismatch%Diff)

Comparing the estimation result with the mismatch of the original training

dataset, we present the increase/decrease percentage mismatch (PredictedMismatch%Diff)

in Figure 7. The X-axis displays the training dataset used where each result

is averaged across all the unlabeled datasets. The Y-axis shows the increase and

decrease in percentage error of the estimated distribution, PredictedMismatchV alue,

compared to ActualMismatchV alue. The decrease in error when the value is less

than zero, indicates that the estimated class distribution is more accurate than

when we assume that the distribution of the unlabeled dataset is the same as the

training dataset. In constrast, the increase in error implies that the estimated

class distribution is more misleading than the original unmodified training data.

The best possible estimation will decrease the error by 100% maximum (-100%)

where the prediction is exactly the same as the true distribution, On the other

hand, there is no upper limit for the increase in estimation error (+∞). The

two red dotted horizontal lines in the figure show the lines where there are 5%

increase and decrease in class distribution mismatch.

From Figure 7, we observe that on several instances, the classification and

25

count (CC) accurately estimates the class distribution of the unlabeled dataset.

Out of 70 test cases, the estimations reduced the class distribution mismatch

more than 5% in 50% of the cases which shows that the class distribution of the

unlabeled dataset could be estimated.

5.3. RQ3: Given that we can estimate the unlabeled data distribution, can we

build a better cross-project defect prediction model based on this estimated

value?

This experiment investigates the practicality of using the estimated class

distribution of the target project. The experiment setup is very similar to that

in experiment 1, with the only difference being that, we have no prior knowl-

edge about the class distribution of the unlabeled datasets. Rather than use

the actual class distribution of the unlabeled dataset which is unknown to us,

the estimated class distribution is used. Additionally, as mentioned previously,

the Logistic Regression and kNN algorithms are not included in this experi-

ment since they could not accurately estimate the distribution of the unlabeled

datasets.

Figure 8, shows the Wilcoxon Win-Tie-Loss comparison between our CDE-

SMOTE and the original classifier, the Y-axis denotes the number of Win, Tie

or Loss while the X-axis denotes the classification algorithm used.

26

Figure 8: CDE-SMOTE comparison to the Original Classifier: Wilcoxon Win-Tie-Loss

The results in Figure 8 shows that the CDE-SMOTE performed much better

than the original classifier. Considering the 350 Win-Tie-Loss comparisons, the

prediction performances significantly improved in 62.857% of the cases. The

J48 and the ensemble Vote 2 (J48+RF+kNN) models accomplished 44% and

50% improvement, respectively. The increase in performances for the remaining

classifiers are shown in Table 4 summarized with respect to their Balance, G-

measure and F-measure values which are averaged across 182 cross-project pairs.

From Table 4, we observe the increase in performances for all measures and all

classifier algorithms, especially for J48 and Vote 2 (J48+RF+kNN) cases which

exhibited major improvements.

The actual performances for each selected training data are shown in Table

5. The first column presents the training dataset, the remaining columns are

the Balance, G-measure, and F-measure values respectively. The performances

shown for each training dataset are the averaged across all 13 cross-project

pairs. We conclude that application of CDE-SMOTE can significantly improve

performance of CPDP.

27

Table 4: CDE-SMOTE performance increase (Percentage) when compared to original classifier

Balance G-measure F-measure

J48 20.471 43.455 34.049

RF (10 Trees) 15.487 27.806 21.261

Naive Bayes 11.018 17.467 10.082

Vote 1 (J48+RF) 12.038 19.718 12.163

Vote 2 (J48+RF+kNN) 23.094 39.988 23.741

Averaged 16.422 29.687 20.259

Table 5: CDE-SMOTE cross-project defect prediction performance in terms of Balance, G-

measure, and F-measure

Training Dataset
Balance G-measure F-measure

J48 RF NB Vote 1 Vote 2 J48 RF NB Vote 1 Vote 2 J48 RF NB Vote 1 Vote 2

Clam 0.632 0.655 0.586 0.651 0.631 0.629 0.653 0.569 0.649 0.629 0.448 0.467 0.414 0.458 0.423

NetBSD 0.465 0.446 0.658 0.591 0.623 0.384 0.344 0.657 0.578 0.618 0.302 0.282 0.441 0.419 0.414

Scilab 0.646 0.618 0.583 0.638 0.669 0.644 0.609 0.562 0.633 0.670 0.435 0.421 0.398 0.439 0.459

OpenNMS 0.623 0.630 0.619 0.634 0.634 0.614 0.624 0.602 0.631 0.627 0.430 0.417 0.421 0.419 0.404

Samba 0.602 0.579 0.494 0.591 0.579 0.597 0.562 0.434 0.585 0.568 0.406 0.376 0.327 0.416 0.377

Helma 0.573 0.575 0.643 0.625 0.655 0.548 0.561 0.633 0.617 0.651 0.414 0.382 0.423 0.423 0.435

Spring 0.532 0.508 0.653 0.645 0.603 0.485 0.450 0.644 0.636 0.589 0.378 0.350 0.410 0.422 0.397

GANYMEDE 0.573 0.508 0.639 0.566 0.648 0.546 0.448 0.634 0.540 0.643 0.364 0.302 0.396 0.350 0.405

OpenBSD 0.552 0.535 0.625 0.579 0.616 0.527 0.493 0.620 0.559 0.604 0.356 0.377 0.422 0.368 0.404

Squid 0.563 0.579 0.628 0.598 0.613 0.551 0.563 0.627 0.590 0.611 0.341 0.374 0.397 0.376 0.374

WineHQ 0.578 0.603 0.537 0.573 0.632 0.559 0.592 0.498 0.552 0.626 0.384 0.413 0.356 0.391 0.421

XFree86 0.652 0.671 0.569 0.655 0.672 0.643 0.669 0.544 0.648 0.670 0.426 0.442 0.382 0.426 0.425

Hylafax 0.560 0.620 0.626 0.531 0.631 0.512 0.615 0.612 0.479 0.617 0.353 0.401 0.399 0.312 0.405

Ipnetfilter 0.618 0.666 0.675 0.678 0.653 0.598 0.666 0.674 0.673 0.652 0.402 0.434 0.428 0.427 0.429

Averaged 0.584 0.585 0.610 0.611 0.633 0.560 0.561 0.594 0.598 0.627 0.389 0.388 0.401 0.403 0.412

28

5.4. RQ4: Is the prediction performance improved when CDE-SMOTE is ap-

plied on two state-of-the-art filtering techniques - Nearest Neighbor(NN)/Burak

filter and CLAMI?

To demonstrate the practicality and effectiveness of CDE-SMOTE, we com-

pare our proposed method to other related works. Two well-known defect pre-

diction approaches are implemented: Burak filter and CLAMI.

The Burak filter experiments were performed across 14 extracted datasets

and the average increase in performance for each classifier after CDE-SMOTE

is applied to the training dataset selected by Burak filter is presented in Table

6.

Table 6: Performance increase (%) comparison between Burak Filtered dataset and Burak

Filtered dataset with CDE-SMOTE applied

Balance G-measure F-measure

J48 18.852 35.566 24.469

RF (10 Trees) 16.855 32.499 21.044

Naive Bayes 17.262 35.596 21.502

Vote 1 (J48+RF) 22.327 41.538 20.440

Vote 2 (J48+RF+kNN) 28.684 52.873 22.904

Averaged 20.796 39.615 22.072

The results in Table 6 indicate that by taking into account the distribu-

tion difference, the prediction performance could be significantly improved.

Across all prediction models, we observe an average of 20% increase regard-

ing the Balance and F-measure values and 40% regarding the G-measure val-

ues. The win-tie-loss (Wilcoxon signed-rank tests at p < 0.05) results of CDE-

SMOTE+BURAK Filter against the BURAK Filter alone is displayed in Figure

9. Compared to just using Burak’s filter alone, the CDE-SMOTE combined with

Burak’s filter significantly enhanced the prediction performances in four mea-

sures: probability of detection (PD), balance (Bal), G-measure and F-measure

29

losing in terms of Probability of False Alarm (PF) across all the prediction

models. This demonstrates that CDE-SMOTE can be used in conjunction with

Burak filter and it does provide a significant improvement in prediction perfor-

mance.

Figure 9: Wilcoxon Win-Tie-Loss comparison of CDE-SMOTE with Burak Filter vrs Burak

Filter:

In contrast to the Burak experiments, the CLAMI algorithm was directly

trained on a single dataset, which was selected as the unlabeled dataset because

CLAMI requires no training dataset. The results from the 14 trained CLAMI

datasets was then compared to the CDE-SMOTE results from Experiment 3.

Table 7 displays the averaged prediction performances of CLAMI across 14

unlabeled datasets and across 182 cross-project pairs for CDE-SMOTE.

As shown in Table 7, performances of the CLAMI approach were really

promising. With the ensemble classification model Vote 2 (J48+RF+kNN) be-

ing the only model that demonstrated some slight improvement in prediction

performance, CLAMI outperformed the other classification models trained with

CDE-SMOTE. Whilst the results shows that CLAMI is a very efficient defect

prediction approach, it should, however, be noted that, the results computed

30

Table 7: Performance increase (%) comparison between CLAMI and CDE-SMOTE (trained

and tested on Cross-Project pairs randomly chosen)

Balance G-measure F-measure

J48 -7.277 -10.734 -2.033

RF (10 Trees) -7.013 -10.585 -2.079

Naive Bayes -3.107 -5.344 1.110

Vote 1 (J48+RF) -2.899 -4.673 1.708

Vote 2 (J48+RF+kNN) 0.559 -0.041 3.933

Averaged -3.948 -6.275 0.528

for the CDE-SMOTE models were trained on cross-project training datasets

randomly chosen without considering the similarity between the cross-project

pairs projects in contrast to the CLAMI algorithm.

Figure 10 shows the performance comparison between CLAMI and CDE-

SMOTE Vote 2 (J48+RF+kNN) in terms of Balance (Bal), G-measure (G),

and F-measure (F1). The Y-axis denotes the actual value of these measures.

Results from CLAMI come from 14 experiments, as it runs on only unlabeled

data, while CDE-SMOTE results are from 182 cross-project pairs.

Considering the Balance and G-measure values (Figure 10), there is almost

no difference between CLAMI and CDE-SMOTE. Their medians are exactly the

same (0.640) with slightly larger ranges for the CDE-SMOTE values. Regarding

the F-measure values, CDE-SMOTE shows an improvement over CLAMI with

13.16% increase in median.

In the real-world scenario, the main advantage the Cross-Project defect pre-

diction approach holds over the unsupervised method such as CLAMI, is the

ability to select the training dataset that is similar to the target unlabeled

project. Aiming to investigate this question, in the three measurements: Bal-

ance, G-measure, and F-measure, we compute another Win-Tie-Loss compari-

son for each selected cross-project pair. Win is defined as the case where CDE-

31

P
e
rf

o
rm

a
n
c
e
 V

a
lu

e
s
 (
0
-1

)

CLAMI

CDE-SMOTE

Prediction Method

Performance measures

Balance Balance G-measure G-measure F1-Value F1-Value

Figure 10: Box plots Performance (Actual value) comparison between CLAMI and CDE-

SMOTE (VOTE 2) for Cross-Project training datasets chosen at random

SMOTE offers more than 5% improvement than CLAMI, Loss when CLAMI

offers more than 5% improvement than ours, and Tie when neither of the cases

is true. Each Win-Tie-Loss, contributes 1, 0, and -1 to the selected cross-project

pair, the case where the summation of scores is more than 0 is deemed as “Suc-

cess” and the rest is considered as “No improvement”.

Figure 11 presents the ratio of “Success” and “No improvement”. The 14

unlabeled datasets in total are represented by a barplot represented on the x-

axis and each unlabeled dataset consists of 13 scores in percentages distributed

among the two results (ratio).

We observe that the overall percentage of the “Success” case is 39.010%

despite the fact we randomly selected cross-project pairs. Moreover, out of

14 randomly chosen datasets, 12 (85.7%) of them contains at least one case

where CDE-SMOTE produced a “Success” compared to CLAMI, offering better

prediction performances. This shows that CDE-SMOTE could achieve better

performance results than the CLAMI algorithm when the training dataset is

carefully selected.

32

Figure 11: Percentage of cases that CDE-SMOTE shows Significant improvement over CLAMI

In Table 8, we present the overall increase in prediction performance when

only the “Success” cross-project pairs are selected. Results for OpenNMS and

WineHQ datasets were thus omitted in the table since they were regarded as

no “Success” projects.

Similar to Figure 11, the results in Table 8 also indicates that when the

training datasets are carefully selected, CDE-SMOTE approach does perform

significantly better than CLAMI. We observe how CLAMI performs worse for

the NetBSD dataset. When we exclude the results of NetBSD from the table, the

average performance improvement is still quite significant, with CDE-SMOTE

gaining 7.742406%, 8.045064%, and 18.70076% increments, respectively for Bal-

ance, G-measure, and F-measure.

Our results show that although the CLAMI approach is capable of handling

defect prediction very well overall especially for unsupervised prediction, if sim-

ilar cross-project datasets are available, our proposed approach CDE-SMOTE

would offer a significant improvement.

33

Table 8: Performance increase (%) comparison between CLAMI and CDE-SMOT when the

Cross-Project training dataset is carefully selected

Training Dataset

Vote 2 (J48+RF+kNN)

Training Dataset

Vote 2 (J48+RF+kNN) (Con.)

Increase performance (Percentage) Increase performance (Percentage)

Balance G-measure F-measure Balance G-measure F-measure

Clam 7.443 7.615 22.223 GANYMEDE 4.122 2.899 6.541

NetBSD 105.686 149.683 452.052 OpenBSD 7.982 8.418 10.416

Scilab 4.996 5.371 21.008 Squid 4.414 4.783 12.256

OpenNMS - - - WineHQ - - -

Samba 12.330 12.897 38.539 XFree86 4.894 4.923 9.071

Helma 7.865 4.281 24.560 Hylafax 2.408 3.163 6.683

Spring 4.763 4.900 21.778 Ipnetfilter 23.950 29.244 32.635

Averaged Balance: 15.904 G-measure: 19.848 F-measure: 54.813

6. Discussion

6.1. Summary of Results

Results from experiment 1 show the danger of applying training data from

one project to predict another project without considering their class distribu-

tions. The results also indicate that the low performance caused by the class

distribution could be mitigated by appropriately modifying the class distribu-

tion of training dataset. Using the modified dataset, significant improvements

(an increase of at least 5% in performance) are observed in 64% of the test cases

according to Wilcoxon signed rank test and thus validates our first hypothesis.

Experiment 2 demonstrates that in the practical scenario of a cross-project

prediction, the class distribution of an unlabeled dataset can be estimated. An

average positive rate (PR) error of 0.1689 was observed in comparison to just

using the unmodified training data. These estimations significantly reduced

the mismatch in 50% of the cases (reduced by at least 5%) which confirms our

second hypothesis.

Experiment 3 simulated the practical case of using CDE-SMOTE in real

world scenarios. The results validate RQ3 by confirming that the estimated

distribution can be used as a substitute for the actual distribution and can

significantly improve (increase by at least 5%) the cross-project defect prediction

performance in 63% of the test cases according to Wilcoxon signed rank tests.

34

The final experiment compared CDE-SMOTE with two proposed approaches

in literature: Burak filter and CLAMI. According to our results, applying CDE-

SMOTE after the Burak filter is applied can help improve the prediction perfor-

mance of models by 27%. In comparison to CLAMI, when the training dataset is

randomly selected, a slight improvement in F-measure is observed, while signif-

icant performance improvements are observed when similar cross-project pairs

were selected.

6.2. General Discussion and Implications of Results

From the empirical results and statistical tests computed, the success of

CDE-SMOTE confirms the association between defect prediction performance

and class distribution of defect datasets. We have provided sufficient support

that oversampling can improve the performance of cross-project prediction mod-

els when appropriately applied. Based on the hypothesis of CDE-SMOTE, not

only have we shown that class distribution of the training dataset is important

but the amount of oversampling applied to the training data is important as

well. The results for CDE-SMOTE is dependent on the strategy to use the

reverse of the class distribution of the testing data. We use the reverse of the

estimated class distribution value to dictate the amount of oversampling since

the stability conclusion on the amount of oversampling to be applied for defect

prediction studies is yet to be established [9].

The experiments also demonstrate that even after preprocessing the data

using the Burak filter, CDE-SMOTE can significantly help improve the over-

all performance of prediction models trained on these datasets. The results

of CDE-SMOTE and CLAMI were also very competitive when CDE-SMOTE

was applied on randomly paired projects. Although CLAMI is useful and ef-

fective for unsupervised classification, we note that not all projects are suitable

for the CLAMI threshold approach. An example is observed in experiment 4

where CLAMI could not capture the underlying structure of the NetBSD project

and achieved a very low performance (Balance: 0.298, G-measure: 0.243, and

F-measure: 0.045). Carefully pairing the cross-projects considering their sim-

35

ilarities and applying CDE-SMOTE will improve the prediction performance

even if the datasets are unlabeled as demonstrated by the CLAMI experiments.

This also confirms the conclusion made by He et al. [3] that carefully selecting

the training data from different projects is very essential for improved predic-

tion perform. Our approach is practically feasible and easy to implement. The

general implications of our results are:

1. When building a cross-project defect prediction model, the class distribu-

tion of the training and the intended target projects should be taken into

account.

2. The quantification approach from the machine learning field can be applied

to improve performance of cross-project prediction models.

6.3. Threats to Validity

As an empirical study, there are several potential limitations. The construct,

internal and extenal threats to validity in this study are discussed in this section.

6.3.1. Construct Validity

We considered only process metrics which are different from static code and

other object-oriented metrics. These metrics however, have been used for most

prediction studies and have been shown in literature to perform better at pre-

dicting defects [48, 49, 50, 47, 51]. The performance measures used for the

experiment were carefully selected to ensure the reliability of the results. We

adopted several performance measures which are used in similar cross project

prediction studies for evaluation. Other performance measures will be consid-

ered in a future study.

6.3.2. Internal Validity

The method of labeling (faulty or clean) the modules for each dataset using

comments from the commit logs poses a possible threat to the results obtained.

The datasets used for the experiments were extracted from commit logs using

open source tools. Faults that were not reported in such commit logs were

36

thus not included in our dataset and better extraction techniques could be used

to ensure all fault data are recorded. As a future study, we will include all

possible techniques to record all faulty modules aside those in the commit logs.

The proposed approach is compared with two state-of-the-art techniques. For

a fair comparison, we implemented the algorithms of these techniques in strict

adherence to the authors instructions.

6.3.3. Statistical Conclusion Validity

In this study, we used the Wilcoxon sign rank test for the win-tie-loss anal-

ysis. We however acknowledge the existence of more robust non-parametric

statistical test such as the Brunner’s test and cliff’s effect size recommended by

Kitchenham et al. [52]. These tests will be considered in future studies.

6.3.4. External Validity

With our results from the experiments conducted on this limited amount of

datasets, we thus cannot guarantee that our results will be able to generalize

for every non-experimented projects. We acknowledge the existence of several

methods for tackling the class distribution challenge such as undersampling,

oversampling, resampling and cost-sensitive classifier. However, we only con-

sidered the SMOTE approach to aid handle the class imbalance issue. This

approach is widely used in defect prediction studies and regarded as an effi-

cient method for handling the class imbalance issue of defect datasets. Impact

of these other methods for modifying the training dataset distribution in the

cross-project scenario is left for future studies. In estimating the class distribu-

tion of the unlabeled dataset, while there are several ways to quantify the class

distribution of the unlabeled dataset, we adopted the classification and count

(CC) technique. As such we cannot guarantee that this method is the most

suitable approach for estimating the percentage of the defect-prone module in

cross-project defect prediction.

Additionally, seven classification algorithms were considered in this study.

These algorithms are widely used for several defect prediction studies. We also

37

extended our study to include ensemble techniques. However, many classifica-

tion algorithms were not considered. Consideration of more prediction models

is left for future studies.

7. Conclusions

Class imbalance and distribution mismatch of datasets are associated with

real world defect prediction datasets and significantly affects the performance

of the prediction models trained on cross-project datasets. This study proposed

an approach for improving the prediction performance of cross-project defect

prediction models utilizing class distribution estimation and SMOTE referred

to as CDE-SMOTE. CDE-SMOTE alleviates the negative effect of class distri-

bution difference between the source and target projects and class imbalance on

prediction performance. We validate our approach by conducting four empirical

experiments over 14 open source projects and 7 prediction models. The results

demonstrate that CDE-SMOTE could significantly improve the cross-project

defect prediction performance. It also supports our underlying theory that the

skewness of the unlabeled dataset can be estimated and mitigated by using over-

sampling to shift decision boundary toward that minority class, thus improving

the overall defect prediction performance. The results of this paper emphasizes

the importance of class distribution and its effects on the performance of defect

prediction models. Specifically, the major contributions of this paper are:

• The study demonstrate the detrimental effects of building a cross-project

defect prediction model without considering the distribution of the in-

tended target projects and how to improve the prediction performance

using an estimated distribution.

• The study confirms that the class distribution of the unlabeled project

could be estimated even in the cross-projects situation, and provide the

steps on how to estimate this distribution appropriately.

The results obtained by our approach indicates that CDE-SMOTE could be

used by practitioners to predict the defect-proneness of software project mod-

38

ules and could be easily applied to any software engineering project. For future

studies, we plan to consider more measurement software data metrics and in-

clude other techniques for recording all faulty models. We also intend to further

optimize the CDE-SMOTE approach by considering other quantification and

class distribution modification techniques. Lastly, we aim to compare our pro-

posed approach with some genetic algorithm frameworks [53].

8. Acknowledgements

This research was supported by JSPS KAKENHI Grant number 26330086,

was conducted as a part of the Program for Advancing Strategic International

Networks to Accelerate the Circulation of Talented Researchers: Interdisci-

plinary Global Networks for Accelerating Theory and Practice in Software Ecosys-

tem, Japanese Goverment Scholarship (Monbukagakusho) and was supported

in part by the General Research Fund of the Research Grants Council of Hong

Kong (No. 125113, 11200015 and 11214116), and the research funds of City

University of Hong Kong (No. 7004683 and 7004474).

References

[1] M. D’Ambros, M. Lanza, R. Robbes, Evaluating defect prediction ap-

proaches: a benchmark and an extensive comparison, Empirical Software

Engineering 17 (4-5) (2012) 531–577.

[2] S. Lessmann, B. Baesens, C. Mues, S. Pietsch, Benchmarking classification

models for software defect prediction: A proposed framework and novel

findings, Software Engineering, IEEE Transactions on 34 (4) (2008) 485–

496.

[3] Z. He, F. Shu, Y. Yang, M. Li, Q. Wang, An investigation on the feasibility

of cross-project defect prediction, Automated Software Engineering 19 (2)

(2012) 167–199.

39

[4] B. Turhan, T. Menzies, A. B. Bener, J. Di Stefano, On the relative value of

cross-company and within-company data for defect prediction, Empirical

Software Engineering 14 (5) (2009) 540–578.

[5] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, B. Murphy, Cross-project

defect prediction: a large scale experiment on data vs. domain vs. process,

in: Proceedings of the the 7th joint meeting of the European software engi-

neering conference and the ACM SIGSOFT symposium on The foundations

of software engineering, ACM, 2009, pp. 91–100.

[6] Y. Ma, G. Luo, X. Zeng, A. Chen, Transfer learning for cross-company

software defect prediction, Information and Software Technology 54 (3)

(2012) 248–256.

[7] D. Ryu, O. Choi, J. Baik, Value-cognitive boosting with a support vector

machine for cross-project defect prediction, Empirical Software Engineering

21 (1) (2016) 43–71.

[8] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto, K.-i. Matsumoto,

The effects of over and under sampling on fault-prone module detection,

in: Empirical Software Engineering and Measurement, 2007. ESEM 2007.

First International Symposium on, IEEE, 2007, pp. 196–204.

[9] K. E. Bennin, J. Keung, A. Monden, Y. Kamei, N. Ubayashi, Investigating

the effects of balanced training and testing datasets on effort-aware fault

prediction models, in: Computer Software and Applications Conference

(COMPSAC), 2016 IEEE 40th Annual, Vol. 1, IEEE, 2016, pp. 154–163.

[10] J. Riquelme, R. Ruiz, D. Rodŕıguez, J. Moreno, Finding defective modules

from highly unbalanced datasets, Actas de los Talleres de las Jornadas de

Ingenieŕıa del Software y Bases de Datos 2 (1) (2008) 67–74.

[11] V. Garćıa, J. S. Sánchez, R. A. Mollineda, On the effectiveness of pre-

processing methods when dealing with different levels of class imbalance,

Knowledge-Based Systems 25 (1) (2012) 13–21.

40

[12] N. Japkowicz, S. Stephen, The class imbalance problem: A systematic

study, Intelligent data analysis 6 (5) (2002) 429–449.

[13] A. A. Shanab, T. M. Khoshgoftaar, R. Wald, A. Napolitano, Impact of noise

and data sampling on stability of feature ranking techniques for biological

datasets, in: Information Reuse and Integration (IRI), 2012 IEEE 13th

International Conference on, IEEE, 2012, pp. 415–422.

[14] S. Wang, X. Yao, Using class imbalance learning for software defect pre-

diction, IEEE Transactions on Reliability 62 (2) (2013) 434–443.

[15] K. E. Bennin, J. Keung, P. Phannachitta, A. Monden, S. Mensah, Mahakil:

Diversity based oversampling approach to alleviate the class imbalance issue

in software defect prediction, IEEE Transactions on Software Engineering.

[16] K. Bennin, J. Keung, A. Monden, P. Phannachitta, S. Mensah, The signif-

icant effects of data sampling approaches on software defect prioritization

and classification, in: 11th International Symposium On Empirical Soft-

ware Engineering and Measurement, ESEM 2017, 2017.

[17] S. L. Phung, A. Bouzerdoum, G. H. Nguyen, Learning pattern classification

tasks with imbalanced data sets, 2009.

[18] D. Ryu, J.-I. Jang, J. Baik, A transfer cost-sensitive boosting approach for

cross-project defect prediction, Software Quality Journal (2015) 1–38doi:

10.1007/s11219-015-9287-1.

URL http://dx.doi.org/10.1007/s11219-015-9287-1

[19] B. X. Wang, N. Japkowicz, Boosting support vector machines for imbal-

anced data sets, Knowledge and Information Systems 25 (1) (2010) 1–20.

doi:10.1007/s10115-009-0198-y.

URL http://dx.doi.org/10.1007/s10115-009-0198-y

[20] G. Forman, Quantifying counts and costs via classification, Data Mining

and Knowledge Discovery 17 (2) (2008) 164–206.

41

http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.1007/s11219-015-9287-1
http://dx.doi.org/10.1007/s10115-009-0198-y
http://dx.doi.org/10.1007/s10115-009-0198-y
http://dx.doi.org/10.1007/s10115-009-0198-y
http://dx.doi.org/10.1007/s10115-009-0198-y

[21] J. Nam, S. Kim, Clami: Defect prediction on unlabeled datasets (t), in:

Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-

tional Conference on, 2015, pp. 452–463. doi:10.1109/ASE.2015.56.

[22] A. Tosun, A. B. Bener, R. Kale, AI-based software defect predictors: Ap-

plications and benefits in a case study., in: 22th Innovative Applications of

Artificial Intelligence Conference, 2010, pp. 1748–1755.

[23] T. M. Khoshgoftaar, A. S. Pandya, D. L. Lanning, Application of neural

networks for predicting program faults, Annals of Software Engineering

1 (1) (1995) 141–154.

[24] F. Xing, P. Guo, M. R. Lyu, A novel method for early software quality

prediction based on support vector machine, in: 16th IEEE International

Symposium on Software Reliability Engineering (ISSRE’05), 2005, pp. 213–

222. doi:10.1109/ISSRE.2005.6.

[25] G. J. Pai, J. B. Dugan, Empirical analysis of software fault content and fault

proneness using bayesian methods, Software Engineering, IEEE Transac-

tions on 33 (10) (2007) 675–686.

[26] H. Hata, O. Mizuno, T. Kikuno, Bug prediction based on fine-grained mod-

ule histories, in: Proceedings of the 34th International Conference on Soft-

ware Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp.

200–210.

URL http://dl.acm.org/citation.cfm?id=2337223.2337247

[27] T. Menzies, J. Greenwald, A. Frank, Data mining static code attributes to

learn defect predictors, Software Engineering, IEEE Transactions on 33 (1)

(2007) 2–13.

[28] C. Catal, U. Sevim, B. Diri, Clustering and metrics thresholds based soft-

ware fault prediction of unlabeled program modules, in: Information Tech-

nology: New Generations, 2009. ITNG ’09. Sixth International Conference

on, 2009, pp. 199–204. doi:10.1109/ITNG.2009.12.

42

http://dx.doi.org/10.1109/ASE.2015.56
http://dx.doi.org/10.1109/ISSRE.2005.6
http://dl.acm.org/citation.cfm?id=2337223.2337247
http://dl.acm.org/citation.cfm?id=2337223.2337247
http://dl.acm.org/citation.cfm?id=2337223.2337247
http://dx.doi.org/10.1109/ITNG.2009.12

[29] F. Peters, T. Menzies, A. Marcus, Better cross company defect prediction,

in: Mining Software Repositories (MSR), 2013 10th IEEE Working Con-

ference on, IEEE, 2013, pp. 409–418.

[30] M. Jureczko, L. Madeyski, Towards identifying software project clusters

with regard to defect prediction, in: Proceedings of the 6th International

Conference on Predictive Models in Software Engineering, ACM, 2010, p. 9.

[31] Y. Zhang, D. Lo, X. Xia, J. Sun, An empirical study of classifier com-

bination for cross-project defect prediction, in: Computer Software and

Applications Conference (COMPSAC), 2015 IEEE 39th Annual, Vol. 2,

2015, pp. 264–269. doi:10.1109/COMPSAC.2015.58.

[32] A. Panichella, R. Oliveto, A. D. Lucia, Cross-project defect prediction

models: L’union fait la force, in: Software Maintenance, Reengineering

and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week

- IEEE Conference on, 2014, pp. 164–173. doi:10.1109/CSMR-WCRE.2014.

6747166.

[33] W. N. Poon, K. E. Bennin, J. Huang, P. Phannachitta, J. W. Keung,

Cross-project defect prediction using a credibility theory based naive bayes

classifier, in: Software Quality, Reliability and Security (QRS), 2017 IEEE

International Conference on, IEEE, 2017, pp. 434–441.

[34] M. Tan, L. Tan, S. Dara, C. Mayeux, Online defect prediction for im-

balanced data, in: Proceedings of the 37th International Conference on

Software Engineering - Volume 2, ICSE ’15, IEEE Press, Piscataway, NJ,

USA, 2015, pp. 99–108.

URL http://dl.acm.org/citation.cfm?id=2819009.2819026

[35] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer, Smote: syn-

thetic minority over-sampling technique, Journal of artificial intelligence

research (2002) 321–357.

43

http://dx.doi.org/10.1109/COMPSAC.2015.58
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747166
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747166
http://dl.acm.org/citation.cfm?id=2819009.2819026
http://dl.acm.org/citation.cfm?id=2819009.2819026
http://dl.acm.org/citation.cfm?id=2819009.2819026

[36] A. Esuli, F. Sebastiani, Optimizing text quantifiers for multivariate loss

functions, ACM Transactions on Knowledge Discovery from Data (TKDD)

9 (4) (2015) 27.

[37] W. Gao, F. Sebastiani, Tweet sentiment: From classification to quantifica-

tion, in: Proceedings of the 2015 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining 2015, ACM, 2015, pp.

97–104.

[38] G. King, Y. Lu, et al., Verbal autopsy methods with multiple causes of

death, Statistical Science 23 (1) (2008) 78–91.

[39] J. C. Xue, G. M. Weiss, Quantification and semi-supervised classification

methods for handling changes in class distribution, in: Proceedings of the

15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’09, ACM, New York, NY, USA, 2009, pp. 897–906.

doi:10.1145/1557019.1557117.

URL http://doi.acm.org/10.1145/1557019.1557117

[40] J. R. Quinlan, C4.5: programs for machine learning, Elsevier, 2014.

[41] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.

[42] G. H. John, P. Langley, Estimating continuous distributions in Bayesian

classifiers, in: Proceedings of the Eleventh conference on Uncertainty in

artificial intelligence, Morgan Kaufmann Publishers Inc., 1995, pp. 338–

345.

[43] S. Le Cessie, J. C. Van Houwelingen, Ridge estimators in logistic regression,

Applied statistics (1992) 191–201.

[44] D. W. Aha, D. Kibler, M. K. Albert, Instance-based learning algorithms,

Machine learning 6 (1) (1991) 37–66.

[45] L. I. Kuncheva, Combining pattern classifiers: methods and algorithms,

John Wiley & Sons, 2004.

44

http://doi.acm.org/10.1145/1557019.1557117
http://doi.acm.org/10.1145/1557019.1557117
http://dx.doi.org/10.1145/1557019.1557117
http://doi.acm.org/10.1145/1557019.1557117

[46] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten,

The WEKA data mining software: An update, SIGKDD Explor. Newsl.

11 (1) (2009) 10–18.

[47] R. Moser, W. Pedrycz, G. Succi, A comparative analysis of the efficiency of

change metrics and static code attributes for defect prediction, in: Software

Engineering, 2008. ICSE ’08. ACM/IEEE 30th International Conference on,

2008, pp. 181–190. doi:10.1145/1368088.1368114.

[48] M. D’Ambros, M. Lanza, R. Robbes, An extensive comparison of bug pre-

diction approaches, in: Proceedings of 2010 7th IEEE Working Conference

on Mining Software Repositories (MSR), IEEE, 2010, pp. 31–41.

[49] T. Mende, R. Koschke, Revisiting the evaluation of defect prediction mod-

els, in: Proceedings of the 5th International Conference on Predictor Mod-

els in Software Engineering, ACM, 2009, p. 7.

[50] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, A. E.

Hassan, Revisiting common bug prediction findings using effort-aware mod-

els, in Proceedings of 2010 IEEE International Conference on Software

Maintenance (ICSM) (2010) 1–10.

[51] K. E. Bennin, K. Toda, Y. Kamei, J. Keung, A. Monden, N. Ubayashi, Em-

pirical evaluation of cross-release effort-aware defect prediction models, in:

Software Quality, Reliability and Security (QRS), 2016 IEEE International

Conference on, IEEE, 2016, pp. 214–221.

[52] B. Kitchenham, L. Madeyski, D. Budgen, J. Keung, P. Brereton, S. Char-

ters, S. Gibbs, A. Pohthong, Robust statistical methods for empirical

software engineering, Empirical Software Engineering (2016) 1–52doi:

10.1007/s10664-016-9437-5.

URL http://dx.doi.org/10.1007/s10664-016-9437-5

[53] J. Murillo-Morera, C. Castro-Herrera, J. Arroyo, R. Fuentes-Fernández,

An automated defect prediction framework using genetic algorithms: A

45

http://dx.doi.org/10.1145/1368088.1368114
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5
http://dx.doi.org/10.1007/s10664-016-9437-5

validation of empirical studies, Inteligencia Artificial 19 (57) (2016) 114–

137.

46

	Introduction
	Background and Related Work
	Defect Prediction Process
	Defect Prediction with Limited Historical Project Data
	Handling of Skewed Dataset in Defect Prediction
	Synthetic Minority Oversampling Technique (SMOTE)
	Class Distribution Estimation (CDE)

	CDE-SMOTE Principles
	Theoretical basis of CDE-SMOTE
	Steps and Procedures

	Experimental Setting
	Defect Prediction algorithms
	Datasets
	Evaluation Criteria
	Validation Procedure

	Results and Analysis
	RQ1: Is the prediction performance improved when the true class distribution of the target project is known beforehand?
	RQ2: Can the actual distribution of the target project be estimated?
	RQ3: Given that we can estimate the unlabeled data distribution, can we build a better cross-project defect prediction model based on this estimated value?
	RQ4: Is the prediction performance improved when CDE-SMOTE is applied on two state-of-the-art filtering techniques - Nearest Neighbor(NN)/Burak filter and CLAMI?

	Discussion
	Summary of Results
	General Discussion and Implications of Results
	Threats to Validity
	Construct Validity
	Internal Validity
	Statistical Conclusion Validity
	External Validity

	Conclusions
	Acknowledgements

