Towards Smoother Library Migrations:
A Look at Vulnerable Dependency Migrations at
Function Level for npm JavaScript Packages

Rodrigo Elizalde Zapata*, Raula Gaikovina Kula*, Bodin Chinthanet*, Takashi Ishio*, Kenichi Matsumoto*, Akinori Ihara+
*Nara Institute of Science and Technology, Nara, Japan
+Wakayama University, Wakayama, Japan
Email: {rodrigo.elizalde.qy5, raula-k, bodin.chinthanet.ay1, ishio, matumoto} @is.naist.jp, ihara@sys.wakayama-u.ac.jp

Abstract—TIt has become common practice for software projects
to adopt third-party libraries, allowing developers full access
to functions that otherwise will take time and effort to create.
Regardless of the migration effort involved, developers are
encouraged to maintain and update any outdated dependency, so
as to remain safe from potential threats including vulnerabilities.
Through a manual inspection of a total of 60 client projects from
three cases of high severity vulnerabilities, we investigate whether
or not clients are really safe from these threats. Surprisingly,
our early results show evidence that up to 73.3% of outdated
clients were actually safe from the threat. This is the first
work to confirm that analysis, at library level, is indeed an
overestimation. The result paves the path for future studies to
empirically investigate and validate this phenomena, and hopes
to aid a smoother library migration for client developers.

I. INTRODUCTION

Raising the awareness of developers to quickly update their
third-party dependent library components (i.e., package de-
pendencies) is now regarded seen as priority by both research
and industry [1]-[4]. Once a newer version of a dependency
is available, developers of the client project (i.e., a project or
package that uses the dependency) are strongly recommended
to update their dependency. As well as fixing bugs and
adding new features, migration to a new version (i.e., updates)
sometimes include fixes to prevent threats of unwanted access
and potential malicious intent. Such threats are regarded as a
vulnerable dependency. To spread the awareness, vulnerable
dependencies are typically assigned a Common Weaknesses
and Exposures (CWE)', or Common Vulnerabilities and Ex-
posures (CVE)?, then archived?.

Recently, researchers have empirically shown that client
developers are not practicing library migrations [5], [6], high-
lighting the perils and effect such as technical lag on the
project, with rippling effect to the ecosystem [7]. Furthermore,
studies have also shown that client developers struggle keeping
up with updates, stating that either they were unaware of
the opportunity, or that the cost benefit to update was a
demotivating factor [1].

website at https://cwe.mitre.org/

2website at https://cve.mitre.org/

3Vulnerabilities can be listed in common locations such as NVD at (https:
/Mvd.nist.gov/) or at CWE Details at (https://www.cvedetails.com/)

Being one of the most used programming language, the
node]S libraries has become one of the most used components
in contemporary software development. The npmJS platform
itself hosts the largest collection of user-contributed libraries,
which spreads over 700,000 packages that are been down-
loaded by millions of users on a daily basis. Furthermore, the
npm ecosystem of packages have been the target of recent
studies for researchers [4], [6], [8]. However, recent events
such as the npm leftpad incident [9] and epidemic vulnerabil-
ities such as heartbleed [10] that have spread throughout an
ecosystem have triggered a reaction within the industry. This
is evident by a rise in tool support and security organizations
such as skyn.io* and greenkeeper.io’ gaining more
popularity among developers. For example, it has become
common for GitHub projects to display a badge, that socially
shows that the project is keeping up to date with its depen-
dencies [2], [11].

Prior empirical studies at the component level state that de-
velopers are slow to update their dependencies. These studies
suggest that developers are driven by several factors, one being
the amount of migration effort (i.e., modifying client code to
integrate the newer version) needed to update. However, a key
threat to validity is that it was performed at the component
rather than at the source code level. Recent studies [12], [13]
shows that, many projects that do not actually call the affected
function are safe from the vulnerability. We refer to these
projects as being clean (i.e., they do not execute the affecting
code in their client applications). Conversely, we refer to used
clients as projects that adopt and execute the vulnerability
code. Similarily, Hejderup et al. studied library migrations
at the function level, constructing a call graph to understand
the true effect of the vulnerability. Their study concluded that
analysis at this level is indeed problematic due to execution
costs needed to construct these graphs.

To analyze the impact of safe clients, we explore how
clean and used client projects react to vulnerability library
updates. In order to do that, We performed an exploratory
study at the function level and access of the library Application
Programming Interface (i.e., API). We manually identified

“website at https:/snyk.io/
Swebsite as https://greenkeeper.io/

[fix] Default to a sane value

P master (#1) © 520 .. 111

. 3rd-Eden committed on 24 Jun 2016

Showing 1 changed file with 1 addition and 1 deletion.

lib/WebSocketServer js

2 Em lib/WebSocketServer.js

L] 3@ -37,7 +37,7 @@ function WebSocketServer(options,

disableHixie: false,
clientTracking: true,
perMessageDeflate: true,
maxPayload: null

+ maxPayload: 1@ * 1824 * 1824

Figure 1.

and validated vulnerability fixes and how they affected the
client code. In an empirical study of npm projects and their
dependencies, we manually examined a total of 60 projects,
investigating three cases of high priority vulnerabilities to
understand how safe and unsafe projects handle migration to
safer dependency versions.

Results of the exploratory study suggest that up to 73.3%
of the sampled outdated clients were indeed safe from the
vulnerability threat (i.e., did not execute the vulnerable code).
Furthermore, the study highlights how mapping vulnerable
code to client usage is not trivial for JavaScript, with depen-
dency information needed to understand the control flow and
API detection of function difficulty. We envision that the early
results of this paper will lead to further rigours studies and
helps towards aiding a smoother library migration for client
developers.

II. MOTIVATING EXAMPLE

113

WebSocket (i.e., ws package)® is described as “a sim-
ple to use, blazing fast, and thoroughly tested WebSocket
client and server implementation.” for the nodelS distribu-
tion. According to the npm website, the library is very
popular (with over 3,158,600 downloads and is depended
upon by 3,785 other libraries) within the npm ecosystem.
In 2016, the CWE disclosed a high severity vulnerability
(i.e., Denial of Service (DoS)) that affected clients that used
this library (i.e., https://snyk.io/vuln/npm:ws:20160624), urg-
ing clients to update if they used any ws versions 1.1.0
and lower. In fact, the issue was so severe, that it was also
published as an advisory by the Node Security Platform (i.e.,
https://nodesecurity.io/advisories/120).

As shown in Figure 1, the manual inspection of the
code reveals that the function WebSocketServer in the
file WebSocketServer. js had been modified. Although
small, it does pose as a dependency breaking issue, with client

5GitHub repository at https://www.npmjs.com/package/ws

Browse files

1 parent 426326 commit 8328a8149f004f98d2913@16214e93b2Fc2713bc

Unified Split
+1 -1 Hl
View v

Vulnerability Fix that was applied to the WebSocketServer function in the ws package.

Class: WebSocket.Server

This class represents a WebSocket server. It extends the EventEmitter .

newIWebSocket.Server(options[, callback])]

® options {Object}
host {String} The hostname where to bind the server.

°

port {Number} The port where to bind the server.
backlog {Number} The maximum length of the queue of pending connections.
server {http.Server|https.Server} A pre-created Nodejs HTTP/S server

verifyClient {Function} A function which can be used to validate incoming connections. See description below.

o o o o o

handleProtocols {Function} A function which can be used to handle the WebSocket subprotocols. See description
below.

path {String} Accept only connections matching this path
noserver {Boolean} Enable no server mode

clientTracking {Boolean} Specifies whether or not to track clients.

o o o o

perMessageDeflate {Boolean|Object} Enable/disable permessage-deflate.

o |maxPayload {Number} The maximum allowed message size in bytes.|

Figure 2. API documentation for the WebSocket API which is related to the
WebSocketServer function.

project developer’ stating that "Indeed, the breaking of node.js
0.10 is precisely why we’ve not been able to update already’.

After consulting the API documentation® and as shown in
Figure 2, we find that WebSocketServer is not simply a
function but is called from the class WebSocket which has the
maxPayload as one of the option parameters.

Furthermore, due to the nature of JavaScript, there can
be many different interpretations of the calling function’. As
shown in Listing 1, we found at least three ways (i.e., (i) user-
defined variable, (ii) call from the ws package and (iii) use the
require function) that the client could call the Server function:

var wss = new WebSocket. Server ({

ws. Server ({
require ('ws’).Server;

Listing 1. Three ways that a client project can call the WebSocketServer
function. This is through the WebSocket API.

7the comment is taken from the npm blog at https://github.com/node-red/
node-red/issues/931

Swebsite as https:/github.com/websockets/ws/blob/HEAD/doc/ws.md

A developer blog on the different ways to call a function highlights the
variationshttps://dmitripavlutin.com/6- ways-to-declare-javascript-functions/

As a result, we find that automation detection is not a
trivial task with manual inspection being required to validate
the mapping between the affected function and the client-side
code in JavaScript. We summarize the challenges below for
JavaScript client projects:

1) The affected function in the vulnerability fix is not
the same as how it is used in the API. We show that,
how the fix affects the API, is not trivial.

2) The exposed function call and how it is used by the
client call is not the same. Extracting the exposed
functions is not a trivial task when manual validation
is required.

III. EXPLORATORY STUDY

The objective of the exploratory study is to understand to
what extent the usage of the library vulnerable code affects
the way developers update their vulnerable dependencies.

A. Approach

Figure 3 depicts an overview of our approach, which is
detailed in three steps. Based on the motivating example, we
used a manual investigation to validate our mapping of both
(1) identification of the vulnerability fix and the affected API
and (ii) identification of how the client calls the vulnerable
APIL. We will now describe each step in detail.

o Step One: Extract and Identify the Vulnerable De-
pendency and its Fix
From the Snyk website'?, we collected the fix information
for the vulnerability issue (i.e., in the form of the pull
request (PR), GitHub issue and the commit location).
The output is the identification of the code fixes and the
affected API that a client project may use.

o Step Two: Identify and Collect Client Projects
Taking the output from Step One, for Step Two we mined
and collected npmJS projects'! from GitHub that used
the vulnerable dependency. We then mined the client
project repository to identify whether or not the client
had migrated to a cleaner version of the dependency.
This was done by inspecting the package. json meta-
file to see whether or not the vulnerable dependency was
updated to a newer version. Hence, the output is a sample
of client projects that have either (i) migrated away from
the vulnerable dependency (i.e., Updated) or (ii) are still
dependent on the vulnerable dependency (i.e., Outdated).

o Step Three: Usage and Update Analysis
Taking the outputs of Step One and Two, for Step Three
we classified client projects based on (i) their update
status (i.e., Updated or Outdated) and (ii) whether or
not they explicitly used the affected vulnerability in their
client code. As such, the output was a classification of
the client projects based on the following update patterns:

10data was mined from website https://snyk.io/vuln
data was mined from the npmjs website at https://www.npmjs.com

1) Clean and Updated (CU): refers to clients that are
using the vulnerable dependency, but were not using
the affected function in their projects. These projects
are deemed safely mitigated, as they have migrated
away from the vulnerable version.

2) Used and Updated (UU): refers to clients that
are using both the vulnerable dependency and the
affected function in their projects. These projects
are deemed safely mitigated, as they have migrated
away from the vulnerable version.

3) Clean and Outdated (CO): refers to clients that
are using the vulnerable dependency but are not
using the affected function in their projects. These
projects are deemed potentially unsafe as they have
not migrated to the safe version.

4) Used and Outdated (UO) : refers to clients that
are using both the vulnerable dependency and the
affected function in their projects. These projects are
deemed unsafe as an attack is able to compromise
the client project.

The analysis results will be reported in two sets. In the first
set, we will report on the proportion of each update patterns
(i.e., CU, UU, CO and UO). Our intention is to understand if
using the vulnerable function has an impact on whether or not
the client project dependency will be updated.

For the second set, we will analyze the time taken to update
for projects that followed the CU and UU update patterns. Our
intention is to understand which one of these patterns updates
first.

B. Case Study Setup and Data Collection Criteria

As shown in the Table III, the three vulnerabilities were
chosen due to their high severity and their impact (popularity)
to the npm ecosystem of packages (i.e., we used the number
of GitHub stars and downloads to rank popularity). As well as
the ws package from the motivating example, the other two
studied vulnerabilities are the popular angular and marked
libraries. It is important to note that we selected security
vulnerabilities that were published at least a year ago before
our study, allowing ample time for client projects to become
aware of the security advisories.

For the client selection, as shown in Table II, we selected the
top projects based on popularity (i.e., GitHub stars, dependents
and download counts). Our assumption is that popular libraries
are more likely to be updated. We sampled 10 updated and 10
outdated client projects for each vulnerability, resulting in 60
client projects for the case study.

We undertook a roundtable session with four co-authors
present to manually investigate each vulnerability and usage
within the client. In step one, we examined the git commit
history to manually trace the change commit of the vulner-
ability to an APIL. For step two, with the help of a simple
regular expression search!?, we located possible locations

12for the search we used the atom text editor to load the vulnerable version
of the client and executed the search

77" Identify and Callect
=\ %/ Client Projects

&

" Extract and Identify ",
(1)vuinerable Dependency

— and its Fix)

Libraries

Projects

amssmssmmmsmmnmnmant®

"
-
-
*
+

Libraries API

Documentatio n\ l

&
3
=
!

L T T T T

o
3

Eamsmsmssssssssmsmmmmsmssmnmst®

Function Affected in
Vulnerable Version

Vulnerable and Fixed
Library Versions

L./ Analysis

Clean
Updated
(Cu)

f,f;\, Usage and Update

o8|

&

‘ ‘ | |J,-__ Outdated
— (uo)

N—

Used
Updated
(uu)

Clean
Outdated
(CO)

Used

Figure 3. An Overview of our approach, comprises of three steps (i) Extract and Identify Vulnerable Dependency and its Fix (ii) Identify and Collect Client

Projects (iii) Usage and Update Analysis.

Table 1
SUMMARY OF THE THREE SELECTED VULNERABILITIES

Vulnerable Dependency | Severity Snyk ID General Description Affected versions Disclosed Published in Snyk
angular High npm:angular:20131113 | Protection Bypass <122 12 Nov 2013 | 23 Jan 2017
marked High npm:marked:20150520 | Content & Code Injection (XSS) | <0.3.6 20 May 2015 | 20 Apr 2016
ws High npm:ws:20160624 Denial of Service (DoS) <=1.1.0 24 Jun 2016 26 Jun 2016

Table 11
SUMMARY OF THE 60 SELECTED CLIENT POPULARITY (MEASURED BY GITHUB STARS). NOTE THE 30 CLIENTS (UPDATED) HAD MIGRATED, WHILE 30
CLIENTS (OUTDATED) STILL DEPEND ON THE VULNERABLE DEPENDENCY.

. Updated dependents Outdated dependents
Vulnerable Dependency # GitHub stars Max stars | Min stars | Max stars | Min stars
angular 58,610 886 63 390 7
marked 16,459 3,614 176 11,448 1,021
ws 8,751 15,145 691 64,907 1,092
Table III
SUMMARY OF MANUAL VALIDATION MAPPING
Vulnerable Dependency Fixed function Mapped APIs Keywords used in searching client code
angular getTrustedContext | $compileProvider $compileProvider
marked unescape Renderer, InlineLexer | .Renderer, InlineLexer
ws websocketserver websocket.server ws, WebSocket, require("ws’).Server, .Server

where the client would be using the library API. We then
manually validated that the client was using the library APIL.
Full documentation for the investigation will be available in
the final version of this paper.

C. Results

(Step One): 73.3% (22 out of 30) outdated clients do not
use the vulnerable code. Figure 4 shows the results of the
first step. Interestingly, while analyzing two out of the three
libraries, we found that even if the client projects were using
the vulnerable library most of them were not executing the
affected function (UO). On the contrary, we found especially in
angular and marked client projects, that a high proportion
of clients that had not migrated away from the vulnerability
were indeed clean of the vulnerable code. Figure 4 shows the
results of how the ws affecting vulnerability differs from the

other two vulnerabilities. One potential explanation is that the
update caused a breaking change, and thus, we speculate that
this would require additional migration effort.

(Step Two): Clients that do not use the affected function
code show a longer delay to migrate away from the
vulnerable dependency. Figure 5 shows, except for the clients
of ws project, that clean updated projects (CU) had a wider
spread of time taken to update. Similar to the first step, the
time taken to fix the ws vulnerability may be related to the
fact that it is a breaking change. We speculate that since the
client code is not affected by the vulnerability, the developers
may either be interested in keeping up to date (i.e., update
as soon as possible as the migration effort will be low) or
satisfied with the current state (i.e., if it is not broken, it is
better not to fix).

100 uo
20 40 70
B co
uu
80 5 cU
%]
c
b 60
©
[
o
=3 40
20
angular marked ws angular marked

Figure 4. Proportion of each update pattern for the 30 Updated (CU, UU)
and 30 Outdated (CO, UO) client projects.

40 uu

30

20

Updating time (months)

]

marked ws

angular

Figure 5. Time taken (months) for the updated clients (CU, UU) to migrate
away from the vulnerable dependency.

IV. IMPLICATIONS

(1) Security vulnerability analysis at the dependency level is
likely to be an overestimation. The results of the study provide
evidence that many of the outdated project are free of the
vulnerability. This insight is an indication that more analysis
at the function level is needed to support this claim.

(2) Understanding whether or not the vulnerability affects
the client code will help developers better plan their library
migrations. We speculate that analysis to find whether or
not the code is affecting the client code would be beneficial
(especially for the novice developer) when making the decision
to update.

(3) Developers should be encouraged to migrate away from
the vulnerable dependency, even if the vulnerable code is not
being used. As shown in the results, a significant number of
clients that were clean were still found using the older version.
Although there are different reasons for keeping the outdated
version (i.e., fix breaks the older version or new changes are
not needed), developers should be encouraged to update as
soon as the fix is made available. Furthermore, we suggest
that security only patches should be released. This is similar
to the Debian ecosystem, where security patches are especially
released and not packaged with other updates. We believe that
this will help towards facilitating smoother library migrations.

(4) Automatic approaches are needed to increase the scala-

bility of mapping the usage of library code in client projects.
A potential avenue for future work is the automation of
our current approach. Currently, our projects are a limited
sample of the population. With automation, the same study
can be conducted at a larger scale providing a more accurate
comprehensive analysis.

(5) This case study should be expanded to other program-
ming languages to generalize our results. For this case study
we are using client projects that are also npm libraries. For
a more rigorous study, we would like to investigate this
phenomena in more generic JavaScript client projects (i.e.,
such as websites and frameworks written in a combination
of different languages).

V. CONCLUSION AND FUTURE WORK

This paper investigates how developers react to vulnerable
dependencies based on whether or not they use the affected
code in their client projects. In our study of popular npm
libraries and their clients, early results suggest that up to
73.3% of the outdated clients that depend on the vulnerable
dependency were in fact safe from its threat since they were
not using the affected function. Immediate future work is a
more rigorous replication of this study at a larger scale to
validate and strengthen results.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
bers 18H04094, JP15H02683, and 17H00731.

REFERENCES

[1] C. Bogart, C. Kistner, J. Herbsleb, and F. Thung, “How to break an api:
Cost negotiation and community values in three software ecosystems,”
in Proc. FSE, 2016, pp. 109-120.

[2] S. Mirhosseini and C. Parnin, “Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?” in Proc. ASE,
2017, pp. 84-94.

[3] R. G. Kula, D. M. German, A. Ouni, T. Ishio, and K. Inoue, “Do
developers update their library dependencies?” Emp. Softw. Engg.,
vol. 23, no. 1, pp. 384—417, Feb. 2018.

[4] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and evolution
of package dependency networks,” in Proc. MSR, 2017, pp. 102-112.

[5] R. G. Kula, D. M. German, T. Ishio, and K. Inoue, “Trusting a library: A
study of the latency to adopt the latest Maven release,” in Proc. SANER,
2015, pp. 520-524.

[6] A. Decan, T. Mens, and E. Constantinou, “On the impact of security
vulnerabilities in the npm package dependency network,” in Proc. MSR,
2018.

[7]1 J. M. Gonzalez-Barahona, P. Sherwood, G. Robles, and D. Izquierdo,
“Technical Lag in Software Compilations: Measuring How Outdated a
Software Deployment Is,” ser. OSS 2017, 2017, vol. 496, pp. 182-192.

[8] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the dynamics of the
javascript package ecosystem,” in Proc. MSR, 2016, pp. 351-361.

[9] “The npm blog kik, left-pad, and npm,” https://blog.npmjs.org/post/

141577284765/kik-left-pad-and-npm, 2018, (Accessed on 06/16/2018).

“Heartbleed bug,” http://heartbleed.com/, 2017, (Accessed on

06/16/2018).

A. Trockman, S. Zhou, C. Kistner, and B. Vasilescu, “Adding Sparkle

to Social Coding : An Empirical Study of Repository Badges in the npm

Ecosystem,” in Proc. ICSE, 2018.

J. Hejderup, A. van Deursen, and G. Gousios, “Software ecosystem call

graph for dependency management,” in Proc. ICSE (NIER), 2018, pp.

101-104.

S. E. Ponta, H. Plate, and A. Sabetta, “Beyond metadata: Code-

centric and usage-based analysis of known vulnerabilities in open-source

software,” in Proc. ICSME, 2018.

(10]

(11]

[12]

[13]

