
Catalogen: Generating Catalogs of Code Examples Collected from OSS

Daiki Takata∗, Abdulaziz Alhefdhi†, Maipradit Rungroj∗,
Hideaki Hata∗, Hoa Khanh Dam†, Takashi Ishio∗ and Kenichi Matsumoto∗

∗Nara Institute of Science and Technology, Japan
Email: {takata.daiki.ta3, maipradit.rungroj.mm6, hata, ishio, matumoto}@is.naist.jp

†University of Wollongong, Australia
Email: {aa043,hoa}@uow.edu.au

Abstract—Given a Java class name as a query, Catalogen gen-
erates a catalog of code examples collected from open source
software projects. A set of code examples are categorized based
on the similarity of N-gram features in code, and automatically
generated comments are attached to all code examples.

1. Catalogs of Code Examples

Code examples are considered to be an important knowl-
edge source of developers [1]. To create reference documen-
tation for a Java class, we develop Catalogen, a system
that generates a catalog of code examples collected from
open source software (OSS) projects. A generated cata-
log contains categorized code examples and corresponding
code comments, which are automatically generated. Code
examples are actual implementations in OSS source code,
and include an instantiation of the class and sequences of
instance method calls.

Techniques. Catalogen consists of three techniques.
(i) Code example collection. Source code related to a query
Java class is searched from OSS projects. From the search
results, appropriate scope of code snippets are extracted.
(ii) Code comment generation. Similar to pseudo-code gen-
eration using sequence-to-sequence (seq2seq) models for
statistical machine translation [2], code comments in natural
language are generated by translating from the collected
code examples. (iii) Code example categorization. Cluster-
ing based on N-gram features of code is applied for the
collected code examples.

Data Sources. To collect source code related to a
query Java class, we employ searchcode1, a web ser-
vice for code search. It takes query words as input and
provides source code fragments related to the query from
OSS projects hosted in GitHub, Bitbucket, Google Code,
SourceForge and GitLab. For code example search, we do
not target Stack Overflow, because it is reported that there
exist API misuses even in the accepted posts [3]. Instead, we
target actual usages in OSS projects, as they are considered
to be reliable in practice. Users can learn frequent practical
patterns of API usages, as it is reported that the usage of
APIs obeys Zipf distribution [4].

1. https://searchcode.com/

For training seq2seq models, we processed the source
code of the Apache POI project and built a corpus of 13,000
pairs of Java methods and their corresponding Javadoc com-
ments.

2. Techniques

2.1. Code Example Collection

Given a Java class name as a query, the web API of
searchcode returns a result in a JSON format; it includes
source file names, their line numbers that match the query
word (i.e. the class name of interest), and file IDs to access
the file contents on the service.

Code examples considering dataflow are beneficial to
learn the usage of API. To extract appropriate scope of
code examples from searchcode, Catalogen collect the
following statements in the same scope.

1) A statement defining a variable v of the given class
C.

2) Statements calling an instance method of the class
C using the variable v.

A code example satisfying the above conditions likely shows
how to get an instance of the class and call an instance
method.

A strict check on the conditions requires a semantic
analysis on source code. It is impossible, since the web
service provides a source file alone. The definitions of exter-
nal classes used in the source file are unavailable. Instead,
Catalogen checks the conditions using patterns of tokens
as follows.

• An occurrence of the class name C followed by an
identifier v is regarded as a definition of the variable
v. The tool recognizes the tokens as the start of a
code example.

• If another occurrence of v followed by a dot appears
in the same code block, the tokens are regarded as
an instance method call for v. The last line of such
instance method calls is recognized as the end of the
code example.



Figure 1. A code example of XSSFWorkbook

The patterns approximate dataflow with respect to a variable
v whose type is C. The constraint of “same code block”
checks the scope of the variable and also limits the size of
a code example.

Figure 1 shows an instance of code example for class
XSSFWorkbook. The instance includes the definition of
a variable xssfWorkbook followed by the lines of method
calls using the variable. To reduce the size of a code exam-
ple, Catalogen shows only the lines including the defined
variable.

2.2. Code Comment Generation

The previous step returns a number of code examples
showing how a given API class has been used in practice.
Those code examples however often do not have comments,
which make it difficult for developers to understand them.
Hence, in this step we automatically generate a high level
description for each code snippet. While the code snippet
is written in a programming language (e.g. Java), its de-
scription is expressed in natural language. Our machinery is
thus built upon the notions and ideas in Neural Machine
Translation. Specifically, we employ the deep learning-
baseed sequence-to-sequence (seq2seq) model to automati-
cally learn both syntactic and semantic features representing
a code snippet, and the relation between them and words in
a comment.

This seq2seq model has two important components: an
Encoder and a Decoder, each of which consists of a Long
Short-Term Memory (LSTM). LSTM [5] is a recurrent
neural network, which maps a sequence of input vectors into
a sequence of output vectors. In our model, a code snippet
is parsed into a sequence of code tokens, which are input
into the Encoder component. The output from the Encoder
is then fed into the Decoder to generate a sequence of word
tokens which represent the code’s comment.

2.3. Code Example Categorization

Inverse Document Frequency (IDF) has been widely
used in many applications because of its simplicity and
robustness; however, IDF cannot handle phrases that are
composed of more than one term. Because IDF gives more
weight to terms occurring in fewer documents, rare phrases
are assigned more weight than good phrases that would be
useful in text classification. N-gram IDF is a theoretical
extension of IDF for handing multiple terms and phrases
by bridging the theoretical gap between term weighting and
multi-word expression extraction [6].

Terdchanakul et al. reported that for classifying bug
reports into bugs or non-bugs, classification models using
features from N-gram IDF outperform models using topic
modeling features [7]. Similary, we use N-gram features
of code detected with N-gram IDF, for categorizing similar
code examples.

By using the N-gram IDF, we vectorize token sequence
of a code example into a feature vector. We use the group
average method to consider outliers and classification sensi-
tivities as a hierarchical clustering method. The number of
clusters is determined by assuming an appropriate threshold
value of the boundary where the characteristics of the clas-
sification greatly change is determined from the generated
tree diagram.

3. Catalogen

A preliminary result is available on the following URL.

https://takata-daiki.github.io/catalogen/preliminary/

Catalogen is available on the following URL.

https://takata-daiki.github.io/catalogen/

Acknowledgment

This work was supported by JSPS KAKENHI Grant
Numbers JP15H02683, 18H03221, and 16H05857.

References

[1] C. Treude and M. P. Robillard, “Understanding stack overflow code
fragments,” in Proceedings of the 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Sept 2017, pp. 509–
513.

[2] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and
S. Nakamura, “Learning to generate pseudo-code from source code
using statistical machine translation (t),” in Proceedings of the 2015
30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015, pp. 574–584.

[3] T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim, “Are
code examples on an online Q&A forum reliable?: A study of API
misuse on stack overflow,” in Proceedings of the 40th International
Conference on Software Engineering (ICSE), 2018, pp. 886–896.

[4] D. Qiu, B. Li, and H. Leung, “Understanding the API usage in java,”
Information and Software Technology, vol. 73, pp. 81–100, may 2016.

[5] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[6] M. Shirakawa, T. Hara, and S. Nishio, “N-gram IDF: A global term
weighting scheme based on information distance,” in Proceedings of
the 24th International Conference on World Wide Web (WWW), 2015,
pp. 960–970.

[7] P. Terdchanakul, H. Hata, P. Phannachitta, and K. Matsumoto, “Bug
or not? bug report classification using N-gram IDF,” in Proceedings
of the 2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), Sept 2017, pp. 534–538.


