
Identifying Design and Requirement Self-Admitted Technical Debt
using N-gram IDF

Supatsara Wattanakriengkrai∗, Rungroj Maipradit†, Hideki Hata†,
Morakot Choetkiertikul∗, Thanwadee Sunetnanta∗ and Kenichi Matsumoto†

∗Mahidol University, Thailand
†Nara Institute of Science and Technology, Japan

Email: supatsara.wat@student.mahidol.ac.th, {morakot.cho, thanwadee.sun}@mahidol.ac.th
{maipradit.rungroj.mm6, hata, matumoto}@is.naist.jp

Abstract—In software projects, technical debt takes place when
a developer adopting a trivial solution containing quick and
easy shortcuts to implement over a suitable solution that
can take a longer time to solve a problem. This can cause
major additional costs leading to negative impacts for software
maintenance since those shortcuts might need to be reworked
in the future. Detecting technical debt early can help a team
cope with those risks. In this paper, we focus on Self-Admitted
Technical Debt (SATD) that is a debt intentionally produced
by developers. We propose an automated model to identify
two most common types of self-admitted technical debt, re-
quirement and design debt, from source code comments. We
combine N-gram IDF and auto-sklearn machine learning to
build the model. With the empirical evaluation on ten projects,
our approach outperform the baseline method by improving
the performance over 20% when identifying requirement self-
admitted technical debt and achieving an average F1-score of
64% when identifying design self-admitted technical debt.

1. Introduction

The main goal of all software projects is to deliver a
high quality and defect-free software. However, in many
situations, developers have to use shortcuts or temporary
solutions in order to complete some urgent tasks. Ward
Cunningham defines technical debt as “not quite right code
which we postpone making it right” [1]. On the other hand,
technical debt refers to a situation of taking shortcuts or
temporary solutions to meet some short-term goals, but this
phenomenon may increase the maintenance cost in the long
run.

Technical debt can be incurred intentionally or uninten-
tionally. Unintended technical debt refers to the technical
debt being taken on unknowingly. In contrast, intended tech-
nical debt is a debt deliberately coined by developers (called
self-admitted technical debt). Potdar and Shihab introduced
the notion of self-admitted technical debt (SATD) as a tech-
nical debt that is intentionally established by developers [2].
This pioneer study in self-admitted technical debt pointed
out that over 30% of source code file in a software project
containing self-admitted technical debt. Currently, there are

several technical debt works paying particular attention to
the intended technical debt [3]; therefore, we determined
to conduct an experiment to explicitly study this type of
technical debt in this paper.

Prior works have shown that source code comments can
be employed to successfully detect self-admitted technical
debt [4]. A number of research works [5]–[7] used manual
inspection of source code comments to detect self-admitted
technical debt. The work in [2] introduced 62 patterns
demonstrating the presence of self-admitted technical debt in
source code comments derived after the manual inspection
of 100k source code comments. Nevertheless, a previous
study in [8] pointed out that the manual inspection of source
code comments is not efficient in practice since it can lead
to reader bias, susceptible to errors, and time-consuming.

Maldonado and Shihab reported that design and require-
ment debt are the most common types of self-admitted
technical debt occurred in source code comments [5]. For
design self-admitted technical debt, it ranged from 42% to
84% across projects and requirement self-admitted technical
debt ranged from 5% to 45%. To clarify the differences be-
tween design and requirement self-admitted technical debt,
we provide definitions and example comments of design and
requirement self-admitted technical debt below.

• Self-admitted design debt refers to source code
comments intentionally established by developers in
order to indicate that there are problems remaining
in the design of the code. Design debt comments can
be comments about the violation of the principles of
good object-oriented design, misplaced code, long
methods, lack of abstraction, poor implementation,
and shortcut solutions [9]. For example: “TODO:
- This method is too complex, lets break it up” -
[from ArgoUml] [5], and “/* TODO: really should
be a separate class */” - [from ArgoUml] [5]. These
source code comments directly stated the problems
that should be fixed in order to enhance the design
of the code. In contrast, the following comment
indirectly conveyed the design problem: “// I hate
this so much even before I start writing it. // Re-
initialising a global in a place where no-one will see

it just // feels wrong. Oh well, here goes.” - [from
ArgoUml] [5]. In this comment, the developer was
concerned that the source code was not written as
its best design but still left the design as it was.

• Self-admitted requirement debt can be defined as
source code comments deliberately created by de-
velopers in order to demonstrate that some parts of
the code are missing, incomplete, or cannot satisfy
the requirement of clients. These following com-
ments are examples of requirement debt comments:
“/TODO no methods yet for getClassname” - [from
Apache Ant] [5], and “// TODO - should check
that error has been logged...” - [from Apache JMe-
ter] [5]. Here, developers clearly recognize that there
is incompleteness of the requirements (missing some
methods) found in the source code.

Maldonado et al. proposed an automated model to iden-
tify design and requirement self-admitted technical debt
using natural language processing and Stanford classifier [8].
Even though, Maldonado et al.’s work is the most recent
acceptable approach for detecting the presence of design
and requirement self-admitted technical debt in source code
comments, the approach can achieve an average F1-score of
40% only [8]. Consequently, we have studied the causes of
the difficulty in detecting design and requirement technical
debts and found that source code comments indicating de-
sign and requirement technical debts are very distinct. This
makes a simple model cannot handle them well.

Considering the previous result in [8] as a baseline, we
propose our classification models to improve the accuracy
by using N-gram IDF and auto-sklearn automated machine
learning. Evaluation results indicated that our approach can
outperform the baseline approach. For identifying design
self-admitted technical debt, we achieve an average preci-
sion of 81%, a recall of 56%, and an F1-score of 64%.
When detecting requirement self-admitted technical debt,
our approach is able to enhance classification performance,
reaching an average precision of 80%, a recall of 56%, and
an F1-score of 63% that is 23% higher than the baseline.
Lastly, to demonstrate that our proposed approach can han-
dle a relatively small training set, we utilize our model to
identify defect self-admitted technical debt. We discover that
our approach can reach an average precision of 62% despite
using a very small defect training set contains only 472
source code comments.

The main contributions of our work are the following:

• We design a classifier with automatic approach lever-
aging N-gram IDF and auto-sklearn automated ma-
chine learning to identify design and requirement
self-admitted technical debt in source code com-
ments.

• We compare our outcomes with the baseline utilizing
publicly available data.

2. Preliminaries

2.1. Detection of Self-Admitted Technical Debt

To replace manual inspection process, several models
have been proposed to automate the detection of self-
admitted technical debt through code comments. The model
of Maldonado and Shihab [5] utilized pattern matching
technique in order to classify self-admitted technical debt
into five categories: design, requirement, documentation,
defect, and test. Farias et al. [10] demonstrated another
model to identify self-admitted technical debt in source code
comments using code tags and word classes to provide a
SATD vocabulary. Huang et al. [11] proposed a text-mining-
based model to automatically determine self-admitted tech-
nical debt. Liu et al. [12] extended their previous work to
propose a tool that is able to detect self-admitted technical
debt comments in the source code editor of Eclipse.

2.2. N-gram IDF

N-gram is all combinations of adjacent words of length
n that appear in a source text. Generally, an n-gram has
more semantic than an isolated word. For instance, the
word “ugly” on its own does not provide much information;
however, when we collect n-gram terms in a source code
comment like “// This is ugly; checking for the root folder.”
- [from Apache Ant] [5], the word “ugly” can be an indicator
that this source code comment is a technical debt. Never-
theless, using all n-gram terms is quite not useful because
they consume enormous memory spaces.

To overcome such problem of using n-grams, we utilize
N-gram IDF, a theoretical extension of Inverse Document
Frequency (IDF) introduced by Shirakawa [13]. IDF is nor-
mally employed to measure the rareness of terms; nonethe-
less, IDF cannot handle n-grams consisting of more than
one word or n-grams with the length of more than 1, (i.e.,
phrases). N-gram IDF is capable of handling multiple words
and phrases; therefore, we can expend N-gram IDF to extract
only dominant n-grams of any length by comparing IDF
weights of words and phrases. [14].

Terdchanakul [15] leveraged N-gram IDF to construct
a bug reports classification model. Their work indicated
that N-gram IDF is enabled to handle all of the valid n-
gram words and select dominant n-grams to be features of
the classifier. With using N-gram IDF, their approach can
outperform the classification model based on topic modeling
techniques in all cases. Our work is different from the
mentioned previous work in that we do not use all n-gram
words extracted from the n-gram weighting scheme tool
since our n-gram dictionary is large. In contrast, we select
dominant n-grams by comparing the weight1 score of n-
gram terms in order to find only crucial features for the
classification model.

2.3. Automated Machine Learning

For machine learning, two main problems are known:
none of the machine learning give the best result in every

Figure 1. Overview of our source code comment classification model

dataset and some of the machine learning have to use hyper-
parameters [16]. Automated machine learning addresses
these problems by running multiple classifiers and tries
different parameters to optimize the performance.

In our approach, we use auto-sklearn for automated
machine learning [17]. Auto-sklearn contains fifteen classifi-
cation algorithms, fourteen feature pre-processing solutions,
and four data pre-process solutions [17]. The components
support developer not to set hyper-parameters and tune of
machine learning. Auto-sklearn applies two steps to deal
with the two problems: meta-learning and automated en-
semble construction [17]. Meta-learning is added to be the
first step to indicate a solution to use with the dataset. The
automated ensemble is added as the last step, it collects in-
formation during training progress then construct ensemble
which it supports automated machine learning from tuning
the same hyper-parameter.

3. Methodology

A. Overview
The main goal of our approach is to accurately identify

design and requirement self-admitted technical debt. To do
that, firstly, we pre-process source code comments of 10
open source projects using text processing techniques. We
then obtain all valid n-gram key terms of the pre-processed
document utilizing the tool namely, Ngweight. After we get
the output of this process, n-gram dictionary, we employ
weight1 score to filter out non-crucial n-grams. For each
source code comment, we enumerate the raw frequency of
each n-gram term and then collect these values in vector
elements. To compress features, we transform vectors into
sparse matrices. Finally, these matrices are inputted as the
training and testing sets of auto-sklearn automated machine
learning. Fig 1 shows an overview of our approach and in
the next sections, we describe more details.

B. Text Pre-processing

We convert all date formats appear in source code
comments into general words. (e.g., “2007/12/05” changes
to “abstractdate”) since previous studies have shown that
Ngweight [14] will remove valid n-gram words appear
once in a corpus and we also found that dates in the
dataset mostly occur once that can result in low coverage
of the n-gram dictionary. Next, we convert all special
characters into simple words. For example, “?” changes to
“questionmark” and “!” changes to “quote”. For the reason
that Ngweight will remove all special characters during
its process. Besides, special characters are meaningful for
identifying design and requirement self-admitted technical
debt from source code comments.

C. Applying N-gram IDF
To obtain n-gram terms, we use a library namely,

Ngweight1, computes N-gram IDF weights for all valid
n-gram words in the given document. The result after
applying Ngweight to pre-processed document is an n-gram
dictionary, which consists of all n-gram key terms and
other information such as n-gram ID, number of words
in n-gram (term length), global term frequency, document
frequency of n-gram, and document frequency of a set of
words composing n-gram that will be used in the next step.

D. Feature Selection
Due to the large-scale dataset (62,275 documents), our

n-gram dictionary is also immense (about 60,000 n-gram
terms). It is difficult for auto-sklearn automated machine
learning to handle all of them or we need to reserve enor-
mous memory space for supporting the proposed approach.
We solve the problem by filtering out n-gram terms that have
less consequence on the classification model. Firstly, we
remove n-grams appeared in only one source code comment
or have global term frequency equal to 1. Then, we compute
the weight1 score of each n-gram term. A weight1 score
is generally utilized to measure the significance of a term;
therefore, n-grams possessed of high weight1 score will be
crucial for identifying self-admitted technical debt. We use
the following equation to calculate weight1 score of each
n-gram term:

Weight1 = log(
|D|
sdf

) ∗ gtf

We use only 25% of n-gram dictionary (about 15,000
n-gram words). However, utilizing the small number of
n-gram terms has a small impact on the performance
of our classification model. After selecting n-gram key
terms, we create vector elements, which act as features
for our classification, from the pre-processed source code
comments corpus and the filtered n-gram dictionary. Each
feature vector contains comment ID and the raw frequency
value of all dominant n-grams appears in each comment.

E. Feature Compression

1. https://github.com/iwnsew/ngweight

TABLE 1. DETAILS OF STUDY SUBJECTS

Ant ArgoUML Columba EMF Hibernate JEdit JFreeChart JMeter JRuby Squirrel Total
Defect 13 127 13 8 52 43 9 22 161 24 472
Test 10 44 6 2 0 3 1 12 6 1 85
Documentation 0 30 16 0 1 0 0 3 2 2 54
Design 95 801 126 78 355 196 184 316 343 209 2703
Requirement 13 411 43 16 64 14 15 21 110 50 757
No Technical debt 3967 8039 6264 4286 2496 10066 4199 7683 4275 6929 58204
Total 4098 9452 6468 4390 2968 10322 4408 8057 4897 7215 62275

To utilize more n-gram key terms, we convert feature
vectors into sparse matrices2, which are matrices consist of
mostly zero values. The zero values will be ignored, and
only non zero values are utilized to process data [18]. This
assists our proposed approach to save execution time and
deal with more dominant n-grams (from 10% to 25% of
n-gram dictionary). From this step, the sparse matrices serve
as features of classification model instead of feature vectors.

F. Classification Using Machine Learning Technique
To identify design and requirement self-admitted tech-

nical debt, we determine to use auto-sklearn3, an automated
machine learning presented by Matthias [17]. Auto-sklearn
will automatically find the best classifier and adjust hyper-
parameters of some classification algorithms (e.g., random
forest) to achieve the best ones.

4. Evaluation

In this section, we describe how we manage the dataset
for the evaluation and explain an approach utilized to assess
the performance of our classification model.

4.1. Dataset

We derive the dataset4 from a previous study [8] and
process them with the same way. The dataset consists of
the project name, label of the comment that is manually
determined using the rules based on prior work by Alves
et al [2], and source code comments from 10 open source
projects namely, Ant, ArgoUML, Columba, EMF, Hiber-
nate, JEdit, JFreeChart, JMeter, JRuby and SQuirrel SQL.
There are six main categories of source code comments:
design, requirement, defect, documentation, test, and no self-
admitted technical debt code comments (total is 62,275 code
comments). After we gathered the dataset, we determine
to separate source code comments into two groups, design
and requirement self-admitted technical debt, which are the
particular focus of our study. The first group contains design
and no self-admitted technical debt code comments (60,907
code comments) that we employ to identify design self-
admitted technical debt. On the contrary, we utilize another
group consists of requirement and no self-admitted technical
debt code comments (58,961 code comments) to detect
requirement self-admitted technical debt.

2. https://docs.scipy.org/doc/scipy/reference/sparse.html
3. https://automl.github.io/auto-sklearn/stable
4. https://github.com/maldonado/tse.satd.data

4.2. Evaluation Setting

To evaluate our proposed approach, we apply a leave-
one-out cross-project validation to two dataset groups, sim-
ilar to the evaluation of the baseline, by splitting the dataset
into nine projects for training and one project for testing.
The validation process is repeated 10 times and all projects
act as testing data once. We then report an average value
of F1-score, precision, and recall after 10 rounds of leave-
one-out cross-project validation. Afterwards, we compare
the performance of our classification model to the baseline
that we construct by following the methodology established
in the prior work.

4.3. Result

In this section, we report the performance of our classi-
fication model based on leave-one-out cross-project valida-
tion setups and use three standard metrics in automating
classification: F1-score, precision, and recall to be units
of measurement. As we see in Table 2, our approach can
outperform the work of Maldonado et al. in many cases
with an average precision of 81%, a recall of 56%, and
an F1-score of 64% when identifying design self-admitted
technical debt. For detecting requirement self-admitted tech-
nical debt, our approach is able to improve classification
performance, reaching an average precision of 80%, a recall
of 56%, and an F1-score of 63%. Accordingly, we can
enhance the performance of our model over 20% although
we reduce the dictionary size and formats of design and
requirement self-admitted technical debt code comments are
opposed.

5. Discussions

5.1. Threats to Validity

Relying on the labeled dataset of the prior study.
This is obviously a threat to construct validity. Since
the labeled dataset established by manual inspection,
it can have common errors produced by humans, (e.g.,
mislabelling and prejudicing) that can result in decreasing
classification performance of the proposed approach. For
instance: “//why do we do nothing?” - [from Apache Ant]
seems to classify as no self-admitted technical debt, but
actually, this source code comment is categorized as design
self-admitted technical debt. Even though the previous

TABLE 2. COMPARISON OF PRECISION, RECALL, AND F1 BETWEEN OUR APPROACH AND BASELINE FOR DESIGN AND REQUIREMENT SATD

Design Debt Requirement Debt
Our approach Maldonado et al. Our approach Maldonado et al.

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Ant 0.676 0.301 0.360 0.554 0.484 0.517 0.650 0.136 0.226 0.154 0.154 0.154
ArgoUML 0.784 0.703 0.741 0.788 0.843 0.814 0.779 0.762 0.771 0.663 0.540 0.595
Columba 0.765 0.940 0.842 0.792 0.484 0.601 0.781 0.935 0.851 0.755 0.860 0.804
EMF 0.802 0.501 0.604 0.574 0.397 0.470 0.826 0.682 0.747 0.800 0.250 0.381
Hibernate 0.833 0.450 0.583 0.877 0.645 0.744 0.809 0.435 0.566 0.610 0.391 0.476
JEdit 0.943 0.701 0.810 0.779 0.378 0.509 0.937 0.715 0.811 0.125 0.071 0.091
JFreeChart 0.872 0.250 0.390 0.646 0.397 0.492 0.846 0.280 0.421 0.220 0.600 0.321
JMeter 0.706 0.420 0.530 0.808 0.668 0.731 0.693 0.418 0.522 0.153 0.524 0.237
JRuby 0.856 0.750 0.801 0.798 0.770 0.783 0.859 0.749 0.800 0.686 0.318 0.435
SQuirrel 0.903 0.630 0.740 0.544 0.536 0.540 0.848 0.535 0.656 0.657 0.460 0.541
Average 0.814 0.564 0.640 0.716 0.560 0.620 0.803 0.565 0.637 0.482 0.416 0.403

study inspected data with fixed rules introduced by Alves
et al. [9], mistakes might still occur since they depend on
an individual perspective. On the other hand, if there are
different rules were utilized, our proposed model might
produce distinct outputs.

N-gram extraction tool. This is a threat to the internal
validity of our approach, for Ngweight excludes some
significant words, which appear once, from the n-gram
library. For example, words indicate project name, (e.g.,
Ant, Columba, and SQL) and programming language, (e.g.,
Java). These words may be a part of n-gram key terms
in the n-gram library. In addition, Ngweight is unable
to detect some words that are not English words (e.g.,
noi18n). These have an impact on the coverage of n-gram
library.

Utilizing top n-gram words. This limitation is also
a threat to internal validity. According to our large-scale
dataset, we have to remove n-gram terms that are not
important, from the n-gram library. This is able to affect
our classification model works inadequately. To minimize
the threat, we use the sparse matrix that is capable of
compressing our features, then we can use more n-gram key
terms (from 10% to 25% of n-gram library). Nevertheless, to
achieve higher accuracy of our classification model, we need
to find an approach to solving this problem in the future.

5.2. Can Our Approach Work Well with a Rela-
tively Small Training Set?

Table 1 shows numbers of source code comments in each
type of self-admitted technical debt. As we see in Table 1,
design self-admitted technical debt has the largest training
set (2,703 source code comments) following by requirement
self-admitted technical debt (757 source code comments),
which they are appropriate for training our model. However,
we would like to know that can our proposed approach work
well with a relatively small training set? Consequently, we
utilize our model to identify defect self-admitted technical
debt, which has a very small training set comparing to
design and requirement self-admitted technical debt (472
source code comments). We do not use documentation or

TABLE 3. COMPARISON OF AN AVERAGE F1-SCORE, PRECISION, AND
RECALL BETWEEN AUTO-SKLEARN AND RANDOM FOREST FOR

DEFECT SATD

Precision Recall F1-score
Random forest 0.550 0.110 0.170
Auto-sklearn 0.620 0.316 0.333

test self-admitted technical debt to be the sample of the
experiment because in the corpus, documentation, and test
self-admitted technical debt do not appear in some project,
(e.g., documentation SATD does not occur in EMF project
and test SATD does not be found in Hibernate project), that
can cause problems when using leave-one-out cross-project
validation to evaluate outcomes.

Firstly, we establish a new group of source code com-
ments, which contains only defect and no self-admitted
technical debt, and we then follow our methodology to
identify defect self-admitted technical debt from source
code comments. To evaluate classification performance, we
perform leave-one-out cross-project validation or training on
9 projects and testing on 1 project. We report an average
value of precision, recall, and F1-score after 10 rounds of
leave-one-out cross-project validation.

The evaluation results show in Table 3. Even though
we use a relatively small defect training set in the proposed
approach, the performance of our classification model is still
acceptable with an average precision of 62%, recall of 31%,
and F1-score of 33%.

We presume that N-gram IDF is crucial to improving
the classification performance when detecting defect self-
admitted technical debt since N-gram IDF is enabled to
extract dominant key terms varying in both lengths and con-
texts [15]. To prove this hypothesis, we replace auto-sklearn
with random forest classifier. Table 3 demonstrates eval-
uation results compares between auto-sklearn and random
forest classifier. Although we use random forest classifier
that is not adjusted hyper-parameters, an average value of
precision is acceptable. Therefore, we can summarize that
N-gram IDF is able to be utilized as features that make a
positive contribution to our proposed approach. However,
to achieve high efficiency, auto-sklearn is also a significant
part of our classification model.

6. Conclusion

In this paper, we proposed an automatic model based
on N-gram IDF-based technique and auto-sklearn automated
machine learning to identify design and requirement self-
admitted technical debt through source code comments. The
purpose of our technique is to accurately detect design
and requirement self-admitted technical debt although the
patterns of design and requirement source code comments
are dissimilar. We conducted an experiment on the dataset
that we gathered from the previous study. The dataset con-
tains source code comments of 10 open source projects
namely, Ant, ArgoUML, Columba, EMF, Hibernate, JEdit,
JFreeChart, JMeter, JRuby, and SQuirrel SQL. To assess
classification performance of our model, we performed
leave-one-out cross-project validation or training on nine
projects and testing on one project. Based on the evaluation
results of performing leave-one-out cross-project validation
10 times, we conclude that

• N-gram IDF-based model can outperform the work
of Maldonado et al. with an average precision of
81%, recall of 56%, and F1-score of 64% when
detecting design self-admitted technical debt. For
identifying requirement self-admitted technical debt,
our method can produce outstanding outputs with an
average precision of 80%, recall of 56%, and F1-
score of 63% that exceeds the baseline by 23%.

• Our classification model also works well for classi-
fying defect self-admitted technical debt, that has a
relatively small training set with an average preci-
sion of 62%.

• Applying N-gram IDF is able to separate source
code comments, which have self-admitted techni-
cal debt, from no self-admitted technical debt code
comments since it can extract dominant n-grams in-
dicated the presence of self-admitted technical debt.

For future work, we plan to enhance the performance of
our classification model by using other n-gram extraction
tools, which can cover more n-gram key terms, and find an
approach to improve the compression of our features. We
also plan to extend our work to be able to classify multiclass
label corpus and other programming languages. Lastly, we
aim to establish an experiment on other areas not only source
code comments classification.

Acknowledgments

The authors would like to thank Napat Srisermphoak
from Mahidol University for valuable discussions in this
work. This work has been supported by JSPS KAKENHI
(Grant Number 16H05857 and 17H00731) and Faculty of
Information and Communication Technology, Mahidol Uni-
versity.

References

[1] W. Cunningham, “The wycash portfolio management system,” SIG-
PLAN OOPS Mess., vol. 4, no. 2, pp. 29–30, Dec. 1992.

[2] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in 2014 IEEE International Conference on Software
Maintenance and Evolution, Sept 2014, pp. 91–100.

[3] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In
search of a metric for managing architectural technical debt,” in 2012
Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, Aug 2012, pp. 91–
100.

[4] N. Zazworka, R. O. Spı́nola, A. Vetro’, F. Shull, and C. Seaman, “A
case study on effectively identifying technical debt,” in Proceedings
of the 17th International Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’13, 2013, pp. 42–47.

[5] E. d. S. Maldonado and E. Shihab, “Detecting and quantifying
different types of self-admitted technical debt,” in 2015 IEEE 7th
International Workshop on Managing Technical Debt (MTD), Oct
2015, pp. 9–15.

[6] S. Wehaibi, E. Shihab, and L. Guerrouj, “Examining the impact
of self-admitted technical debt on software quality,” in 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and
Reengineering (SANER), vol. 1, March 2016, pp. 179–188.

[7] G. Bavota and B. Russo, “A large-scale empirical study on self-
admitted technical debt,” in 2016 IEEE/ACM 13th Working Confer-
ence on Mining Software Repositories (MSR), May 2016, pp. 315–
326.

[8] E. d. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted technical
debt,” IEEE Transactions on Software Engineering, vol. 43, no. 11,
pp. 1044–1062, Nov 2017.

[9] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, and R. O.
Spnola, “Towards an ontology of terms on technical debt,” in 2014
Sixth International Workshop on Managing Technical Debt, Sept
2014, pp. 1–7.

[10] M. A. d. F. Farias, M. G. d. M. Neto, A. B. d. Silva, and R. O.
Spnola, “A contextualized vocabulary model for identifying technical
debt on code comments,” in 2015 IEEE 7th International Workshop
on Managing Technical Debt (MTD), Oct 2015, pp. 25–32.

[11] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-
admitted technical debt in open source projects using text mining,”
Empirical Softw. Engg., vol. 23, no. 1, pp. 418–451, Feb. 2018.

[12] Z. Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li, “Satd detector:
A text-mining-based self-admitted technical debt detection tool,” in
Proceedings of the 40th International Conference on Software Engi-
neering: Companion Proceeedings, ser. ICSE ’18, 2018, pp. 9–12.

[13] M. Shirakawa, T. Hara, and S. Nishio, “Idf for word n-grams,” ACM
Trans. Inf. Syst., vol. 36, no. 1, pp. 5:1–5:38, Jun. 2017.

[14] ——, “N-gram idf: A global term weighting scheme based on infor-
mation distance,” in Proceedings of the 24th International Conference
on World Wide Web, ser. WWW ’15, 2015, pp. 960–970.

[15] P. Terdchanakul, H. Hata, P. Phannachitta, and K. Matsumoto, “Bug
or not? bug report classification using n-gram idf,” in 2017 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), Sept 2017, pp. 534–538.

[16] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-
weka: Automated selection and hyper-parameter optimization of clas-
sification algorithms,” CoRR, vol. abs/1208.3719, 2012.

[17] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum,
and F. Hutter, “Efficient and robust automated machine learning,” in
Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds., 2015,
pp. 2962–2970.

[18] N. Trendafilov, M. Kleinsteuber, and H. Zou, “Sparse matrices in data
analysis,” Computational Statistics, vol. 29, no. 3, pp. 403–405, Jun
2014.

