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ABSTRACT 
We describe an experiment investigating the distribu- 

tion of failure intensity in software reliability growth 
models. We found that the assumption of conventional 
models that the failure intensity follows a gamma distri- 
bution is not always true. Our new software reliability 
model does not make this assumption; rather, the fail- 
ure intensity is calculated from failure data. We show 

that our new model predicts more accurately the num- 
ber of detected faults for our study project than the 
conventional models. 

Keywords 
Failure intensity, testing, software reliability growth 
model, hyperexponential SRGM, Littlewood model, 
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INTRODUCTION 
Software reliability growth model (SRGM) is a model 
which can be used for evaluating and/or estimating 
software reliability. It is plotted on a graph with the 
elapsed time on the X-axis and the cumulative number 
of detected software faults on the Y-axis. The elapsed 

time may be either calendar time or computer execu- 
tion time, but normally calendar time is used. Thus, 
SRGM is a formalization of the characteristics of this 
growth curve and can be used to estimate the number 
of remaining faults from data on detected faults and the 

time needed to detect these remaining faults. 

There are many types of SRGMs with different assump- 
tions and preconditions. Some examples are: exponen- 
tial SRGM [2], delayed S-shaped SRGM (71, hyperexpo- 
nential SRGM (41, and connective exponential SRGM 
[5]. When these models are applied to actual software 

development projects, the corresponding assumptions 

and preconditions must apply to the target project. 
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In exponential SRGM, there is an assumption that the 
failure intensity of all faults in a software, i.e. the prob- 
ability of a fault actually causing failure, are the same, 

This, however, has been found to be questionable from 
an experiment at NASA [6]. 

Littlewood has proposed a model which assumes that 

if faults in a software are chosen at random, the failure 
intensity of the faults would have a probability distri- 
bution such as the gamma distribution [3]. Although 
gamma distribution has the characteristics of being easy 
to handle from a mathematical standpoint, no evidence 

has been shown that failure intensity actually takes the 
shape of gamma distribution. 

This paper shows a method for measuring the failure 

intensity of software faults and applies it to a small pro- 

gram. Furthermore, based on the results, we propose a 
model where the failure intensity of faults have discrete 
distribution, and evaluate the accuracy of the estima- 
tion of cumulative number of faults. Hyperexponential 
SRGM is an example of using discrete distribution as 
the distribution of failure intensity. However, in hy 

perexponential SRGM, the failure intensity of the same 
module is assumed to be the same. In our proposed 
model, it is possible for the failure intensity of the same 
module to take different values. 

FAILURE INTENSITY OF FAULTS 
Software failure is the phenomena where software does 
not function properly in terms of its requirements. 
Faults are the defects found within a program that 

causes one or more failures. The occurrence of a failure 
depends on conditions such as input data. Just because 
there is a fault, it doesn’t mean that it will cause a fail- 
ure. So, we can think of the frequency of a fault causing 
a failure. We define this frequency of fault F causing a 

failure (average number of times per time unit) as the 
failure intensity bF of fault F. 

If we define the probability of fault F causing a failure 

in a certain time unit as 4,~~ the average time interval 
of fault F causing a failure can be shown as followa[l]: 



-1 

= log(l-4F) 

30, the following relation holds: 

bF = -log(l- '$F) (3) 

Generally, different faults appear in different places 
within the software, and the type of input data that 
causes failure differs between faults. In other words, 
the failure intensity of each fault is different. Further- 
more, it is not known what sort of fault exists in the 
software. 

Therefore, when randomly choosing faults within soft- 
ware, we can consider the failure intensity of the chosen 
fault to be a random variable. The probability distri- 
bution is called the failure intensity distribution of the 
fault. In the rest of this paper, we will be referring to 

this when we say failure intensity distribution. 

FAILURJ?, INTENSITY IN CONVENTIONAL 
SRGM 

This section will describe the following five conventional 
SRGMs with respect to failure intensity: 

Exponential SRGM A model which assumes that 

the failure intensity of all faults are the same. 

S-shaped SRGM A model where the failure intensity 
changes with time. 

Hyperexponential SRGM A model which assumes 
that the failure intensity of faults within the same 
module are the same. 

Connective Exponential SRGM A model which 
assumes that the failure intensity of all faults are 
the same. 

Littlewood model A model where the failure inten- 
sity takes a certain distribution. 

Exponential SRGM 
Exponential SRGM assumes that the number of faults 
found at time t is proportionate to the number of faults 
left in the software. This means that the probability 
of the failures for faults actually occurring, i.e. being 
found, is constant. This can be shown as the following 

differential equation: 

dW) - = b(a- El(t)) 
dt 

where 

&: the expected total number of faults that exist in a 
software before testing 
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b: the failure intensity of a fault 

H(t): the expected number of faults at time t 

This can be solved as follows: 

H(t) = a(1 -Cat) 

b is also called the detection rate, the rate of incident 
or the appearance rate, but this paper will refer to this 
as failure intensity. 

S-shaped SRGM 
In the delayed S-shaped SRGM, the reliability growth 
curve is an “S” curve. The detection rate of faults be- 
come greatest at a certain amount of time after test- 
ing begins, after which it decreases exponentially. So, 
since the detection rate of faults as well as the remaining 
number of faults changes with time, we can say that this 
SRGM assumes that the failure intensity differs among 
faults. 

Hyperexponential SRGM 
Hyperexponential SRGM extends exponential SRGM 
by dividing software into modules using 0 such as new 
parts and reused parts. The failure intensity of faults 
within different modules are assumed to be different, 

while the failure intensity of faults within the same mod- 
ule are assumed to be the same. The expected number 
of faults detected for each module are exponential. So, 
the expected number of faults detected for the software 
as a whole can be expressed as follows: 

H(t) = a&(1 - Chit) (6) 
i=l 

where 

a>0 ) 0 < pi < 1, (7) 

and 

a: the expected total number of faults existing in soft- 
ware before testing 

bi: the failure intensity of one fault within the ith mod- 
ule 

pi: the density of faults for the ith module 

Connective Exponential SRGM 
Nakagawa analyzed the characteristics of the growth 
curve using the number of faults detected per time unit. 



From his analysis, he postulated that the basic shape of 
the growth curve is exponential, and that an “S”-curve 
forms due to the test. Based on this, he proposed the 
Connective Exponential SRGM. In this model, a group 
of modules called “main route module” are first tested, 
and then the rest of the modules are tested. Even if the 
failure intensity of the faults in the main route mod- 
ule and faults in the other modules are the same, since 
the search for their detection starts at different points 
in time, the growth curve becomes an “S”-curve. The 
expected number of faults detected for the software as 
a whole can be expressed as follows: 

w = al[l - exp(-bt)] 

+ a2[1- ev(-&)I (9) 
where 

a2>a1 >O,b>O, (10) 

{ 

0 
Y 

t > to = 
t - to t > to 01) 

and 

al: The number of faults that are expected to be de- 
tected in the main route module 

as: The number of faults that are expected to be de- 
tected in modules other than the main route mod- 
ule 

b: The failure intensity 

to: The starting time for testing modules other than the 
main route module 

Littlewood Model 
Littlewood proposed a model which handles the time 
interval between the occurrences of failures as random 
variable, and focused on hazard rates. The hazard rate 
is a probability density where software does not fail for 
a certain time span and in the next moment fails. The 
probability density function pdf(!I”lXi) of random vari- 
able Ti which shows the time interval between detection 
of the (i - 1) th and i th failure is assumed to be: 

pdf(TilXi) = XiemxiTi 

where Xi is the software’s hazard rate between the 
(i - 1) th and i th failure, and is assumed to be the 
sum of the failure intensity of the faults remaining in 
the software (equation(15)). The model assumes that 
generally the failure intensity of faults Uj differs between 
each fault, and that it is a random variable which con- 
forms to the following probability density function: 

Pdf (4 = 
e-‘Ci-l “f(u) 

S,“e-“Ttjf(U)dU 

f(v) is the distribution function of hazard rate V, and 
for example takes the gamma distribution. Gamma dia- 
tribution takes two parameters (Y,@, and can be repre- 
sented as follows: 

The model is represented as follows: 
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(12) 

N-i+1 

Xi = C Uj (15) 
j=l 

where, 

Fi(z): The probability of a software failing within time 
z after the (i - 1)th failure 

ji(z): The probability density function of &(a) 

N: The total number of faults that exist within the soft- 
ware before testing 

tj: The measured time interval between the occurrence 
of the (j - 1)th failure and jth failure 

Xi: The hazard rate when the (i - 1)th failure occurred 

vj: The failure intensity of the jth fault remaining in 
the software 

ol,p: The parameters for the failure intensity distribu- 
tion (Gamma distribution) 



FAILURE INTENSITY EXPERIMENT 
The Gamma distribution which is used as the failure in- 
tensity distribution in Littlewood’s model is often used 

as a continuous distribution in Bayes statistics, and is 
also often used as the Bayesian model for software re- 
liability models. However, no experiments have been 
done to confirm or refute if in fact actual failure inten- 
sity conforms to the Gamma distribution. This section 
reports on such an experiment and gives its results. 

Experiment Goal and Hypothesis 
An experiment has been carried out to find out if the 
failure intensity in actual software conforms to the fail- 
ure intensity assumed in conventional SRGMs. The hy- 
pothesis of the experiment is as follows: 

Hl The failure intensity of faults in the software are 
the same. 

H2 The failure intensity of faults in the same module 
are the same. 

H3 The failure intensity conforms to the Gamma dis- 
tribution. 

Experiment Strategy 
The experiment is carried out in the following three 
steps: 

1. Test and debug the target program. 

We first test and debug the target program using 
test data T. The target program does not include 

any errors which result in compilation errors. Dur- 
ing this step, the fault and modifications to the pro- 
gram are recorded. This will result in a completed 
program P with little or no faults, and reports for 
faults Fl,F2,--- F ,,. 

2. Embed faults. 

In order to check the failure intensity of each fault, 
we use the debugged program and fault reports that 
were obtained in step 1. Each fault is embedded 
once into one version of the debugged program, re- 
sulting in n versions of the program each having 
one fault. 

3. Measure the failure intensity. 

Testing is done on each program, that was obtained 
in step 2, containing one fault. The number of 
times failure occurs within a time unit is checked, 
and we calculate the failure intensity of each fault 

bF~,,bFm--- ,bFy,. 

Failure intensity is also affected by the frequency of 
input (or more precisely, the number of inputs per 

time unit). However, when this is not available, we 

"0 0.5 1 1.5 2 2.5 3 3.5 4 
Failure inlemity 

Figure 1: Failure Intensity of Faults (Program 1) 

make a simple assumption where the frequency is 
1. The probability of fault F causing a failure in a 
time unit can then be shown as follows: 

(16) 

where NF is the number of possible inputs that 
results in F causing a failure and N is the total 
number of possible inputs. 

In reality, the total possible number of inputs is too 
large, making it very difficult to test all possible 
inputs. In such cases, testing is done on as much 

input as possible, and the equation is approximated 
as follows: 

(17) 

where Nk is the number of test cases that results 
in F causing a failure and N’ is the total number 
of test cases. 

In this way, the probability of each fault causing a 
failure within a time interval f$&, c$&, - . . c$F, can 

be calculated, and through equation (3), the failure 
intensity bF, , b&, . - - bp,, can be obtained. 

Experimental Design and Results 
Four programs were used for this experiment. Three of 
them had the same requirements (A: program for stock 
management), and the other one (B) was a subprogram 
for numerical analysis. The size of the programs were 
each about 300 lines. 

To avoid failure happening on purpose, test data was 
randomly generated. 100 such sets for each program 
were used in step 1 (test and debug). This resulted 
in 21, 13, 13, and 25 faults for each of the programsl. 

Then, steps 2 and 3 were carried out to calculate the 
failure intensity distribution of faults for each program. 

1 Note that some of the data sets may not cause a failure, so the 
number of test data is greater than the number of faults found. 

89 

--- 



4 

3 
2 
1 
E2 

I 
1 

0 LL- 0.5 1 1.5 2 25 3 3.5 
Failure inlensty 

Figure 2: Failure Intensity of Faults (Program 2) Figure 3: Failure Intensity of Faults (Program 3) 

The resulting distribution for each program are given in 
Figures 1 to 4. 

We now turn to threats to external validity. Such 
threats limit our ability to generalize the results of our 
experiment to other real programs. We identified three 
such threats: 

l The subjects carrying out step 1 in our experiment, 
i.e. testing and debugging, may not be represen- 
tative of professional software programmers. The 
subjects were undergraduate level students, and 
none had any industrial experience. 

l The target program may not be representative of 
industrial software. The program we used was 
small, each about 300 lines long. 

a The testing process in our experiment may not be 
representative of processes used in industry. Our 
test data was generated randomly, which would 
normally not be used in industry. 

Although such threats exist, we feel that our experi- 
ment is a necessary step towards finding out about the 
hypothesis we have stated. Of course, replication of 
our experiment would greatly reduce the risk of these 
threats, and hence would confirm our analysis results. 

Analysis of Hypothesis Hl 
First we check the first hypothesis, i.e. “the failure in- 
tensity of faults in the software are the same.” 

The failure intensity was clearly different between faults. 
This means that there is a problem if the failure inten- 
sity of faults only has one parameter. On the other 
hand, there are plenty of examples where the failure in- 
tensity of different faults are the same, and the failure 
intensity distribution can be seen as a discrete distribu- 
tion. The fact that the target program was small may 
have enhanced this trend, but we think that this can be 
said for most software since this is caused by the control 
structure of computer software. 
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Figure 4: Failure Intensity of Faults (Program 4) 

The control structure that is used most often in current 
software development is procedural. Procedural control 
structure is composed of sequential construct, condi- 
tional branching, and looping. In conditional branching, 
one of two possible branches are chosen depending on 
the condition. Suppose a fault resides in both branches 
and that these faults have the same conditional proba- 
bility for causing a failure. If the probability of execut- 
ing either of the branches is the same, then the failure 
intensity of the faults in each branch would also be the 
same. But in most cases, the probability of the branch 
being executed differs. If this is so, the failure intensity 
of the faults in each branch would also differ. So, we 
can say that the failure intensity for different faults will 
not always be the same. 

Next, we take an example where there are two faults in 
a sequential construct that does not have a conditional 
branch. We assume that failure always occurs when 
executing this sequential construct. So, the failure in- 
tensity for these two faults are the same. Thus, there 
exists cases where the failure intensity of two faults do 
not differ. Since no two cases are the same in an ideal 
continuous distribution, this means that the failure in- 
tensity distribution is approximately continuous, i.e. in 
reality it is discrete. 



Analysis of Hypothesis H2 
Next, we check the second hypothesis, i.e. “the failure 
intensity of faults in the same module are the same.” 

Ryperexponential SRGM assumes that the failure in- 
t,ensity for each module differs, but that the failure in- 
tensity for different faults within the same module are 

the same. Although our experiment results are only for 
a small program consisting of one module, we could not 
conclude the failure intensity of different faults to be 
the same. If the program was larger, since there would 
be more faults, it would become very difficult to assume 
that the failure intensity are the same. 

-4nalysis of Hypothesis H3 
We now check the third hypothesis, i.e. “the failure in- 
tensity of faults conform to the Gamma distribution.” 
The parameters for Gamma distribution are first esti- 
mated using maximum likelihood estimation. Assuming 
i he measured failure intensity data are xl, x:2,. . - , x,,, 
then parameter a! can be obtained using the following 
equation: 

r(Q)’ 
LXk 

--loga = 
JW 

+gfiXk --,Og+ (18) 
kc1 

Then, parameter p can be obtained by: 

P 
na 

= 
21+x2 +*--+% 

(19) 

There are cases where a fault may cause failure for any 

input which would result in the failure intensity to be 
infinity. This can be problematic. Such cases can be 

nandled in one of two ways: 

Method 1 Instead of the failure intensity being infin- 
ity, give it a very large number (such as 10000). 
This will allow us to check the effects of faults 
whose failure intensity is infmity. 

Method 2 Ignore faults whose failure intensity is in- 
finity. Faults whose failure intensity is large can be 
detected easily, making the possibility of them re- 
maining to be low. So, such faults can be ignored 
even if they are detected, and the cumulative num- 

ber of faults is not increased. 

VJe now test if the Gamma distribution using the above 

estimated parameters matches actual data. We use 
Kolmogorov-Smirnov test of goodness of fit. 

We calculated the parameters for the Gamma distribu- 

tion and the Kolmogorov distance for the four programs, 
and then tested at the significance level of 2.5 %. Pro- 
grams 1 and 3 both did not have any failure intensity of 
infinity, so there was no need to apply the above meth- 
ods 1 or 2. Table 1 shows the results for programs 1 

and 3. 

Table 1: Goodness of Fit of Gamma Distribution to 
Failure Intensity (Programs 1 and 3) 

Program I prowl I Prog3 
Parameter Q! 1 0.6499 1 2.0711 

Table 2: Goodness of Fit of Gamma Distribution to 
Failure Intensity (Programs 2 and 4) 

Program I pro@ I Pro& 
Parameter Q 1 0.6499 1 0.1036 

Parameter p 1 0.1072 1 4.351 x 1O-5 

Kolmogorov distance 1 0.2449 1 0.5152 

result of test I accept reject 

Programs 2 and 4 both contained faults whose failure 
intensity was infinity, so methods 1 and 2 were applied 
for parameter estimation and test of goodness of fit. 
Table 2 shows the results using method 1, and table 3 
shows the results using method 2. 

We can summarize our findings as follows: 

l The failure intensity distribution can be considered 

as discrete distribution, because there are many 
cases where different faults have the same failure 

intensity. 

a It was not possible to conclude whether or not 
the distribution was Gamma distribution from the 
shape of the distribution resulting from the mea- 
surement. There are both accepted cases and re- 
jected cases on test of goodness of fit of Gamma 

distribution. 

l Even for small programs (modules), it can be said 
that cases where all faults have the same failure 
intensity are rare. 

PROPOSED MODEL 

Table 3: Goodness of Fit of Gamma Distribution to 
Failure Intensity Using Method 2 (Programs 2 and 4) 

Program Pro@ prod 
Parameter (Y 0.2366 0.3833 
Parameter 0 0.6250 1.3123 

Kolmogorov distance 0.1637 0.1470 

result of test accent accent 
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The Model 
Although hyperexponential SRGM only assumes that 
the failure intensity differs between modules, it still has 
the assumption that different faults will have different 
failure intensity. Also, it does not consider the fail- 
ure intensity distribution to be continuous distribution. 
Rather it considers it to be discrete distribution which 
matches our experiment results. So, we extend the hy- 

perexponential SRGM so that each fault will have dif- 
ferent failure intensity. 

II(t) = c Q(l - f?‘Yi) 
i=l 

Yi = 

{ 

0, t < ti 
t - tiy t 2 ti 

(20) 

(21) 

,where, 

H(t) The expected number of faults to be detected by 
time t 

n The number of times that testing was done to debug 
all faults 

b; The failure intensity of a fault 

ti The time when faults were introduced 

ci The number of faults which were introduced at time 
ti with failure intensity bi 

This is similar to hyperexponential SRGM, except defi- 
nitions in hyperexponential SRGM for bi, ti, and initial 
number of faults are based on modules. Our proposed 
model assumes that even the failure intensity of faults 
in the same module are different. So, we cannot use 

the method for determining parameters by identifying 
faults for each module as was the case in hyperexpo- 
nential SRGM. Also, it is not possible to apply our ex- 
periment method of embedding faults and testing in an 
actual development environment. 

Estimating Parameters 
We now propose a method which will allow an estima- 
tion of the necessary parameters in our model from data 
concerning detection time for faults and the number of 
detected faults. The parameters are determined so that 

ihe estimated data fits the observed data, so they do 
not show the actual time when faults were introduced 
and the actual failure intensity of faults. This, however, 
can also be said for parameters in conventional SRGMs, 
and is essential to make actual use of the model. 

Since our model has many parameters, numerical anal- 
ysis is needed for estimating them. But, we do not 
use maximum likelihood estimation since the calcula- 

tion cost will become very large. We will instead use an 
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Figure 5: Estimation of Reliability Growth Curve Based 
on the Proposed Model 

estimation method based on an algorithm that is simple 
and needs little computation. 

The failure intensity and initial number of faults are 
determined by taking faults in the order in which they 
were introduced. To determine the parameters, the fol- 
lowing two procedures are repeated as one step for every 
time point that was deemed to have been the time when 
a fault was introduced: 

l The time when faults were introduced is deter- 
mined, and only such faults are assumed to be de- 
tected up to that time. 

Under the constraint that the cumulative number 
of further faults do not go over the total cumula- 
tive number of faults, the failure intensity is deter- 

mined. 

We now show an example of how our model is ap- 
plied. Figure 5 shows the result of applying our pro- 
posed method in determining the time when faults were 
introduced and failure intensity of faults. The X-axis 
shows the time (with months as the unit), and the Y- 

axis shows the number of detected faults. The “Ob- 
served” points show the actual measured values, and the 
“Estimated” points show the values estimated from the 
proposed model. “First” shows the results of the first 
step in the parameter estimation method. By “step” 

we mean the step noted previously to determine the pa- 
rameters, or i in equation 20 and 21. Since there is a 
constraint where the curve must not go over the actual 
value, the estimated value is far below the measured 
value. “Second” shows the results of the second step. 
The number of faults from the second step is actually 
added on to the number of faults from the first step. By 

the tenth step (“Tenth”), the estimated value gets quite 
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Figure 6: Estimation of the Cumulative Number of Figure 7: Comparison of the Estimation Precision of the 

Faults Based on the Proposed Model Number of Cumulative Faults (Actual value = 4142) 

>lear to the actual value. This is repeated until the 20th 

step which is “Estimated” in the figure. 

Application of Proposed Model 
Figure 6 shows the results of estimating actual fault 

data [5] based on our proposed model. The X-axis is 
time, and the Y-axis is the number of detected faults. 
Jl denotes the end of integration testing, and 52 denotes 
the end of system testing. The integration testing oc- 
lurs between 0 and Jl, system testing between Jl and 

62, and operation is from J2. “Observed” points are 
the actual values. “Predicted at Jl” and “Predicted at 
J2” show the estimated results at the end of integration 
t.esting and at the end of system testing, respectively. 
;Is can be seen, the prediction at J2 is very near to the 
final actual number of faults. But, this is not so for the 
prediction at Jl. Our model does not take into account 
differences in phases. So, for the prediction at Jl, it did 
not take into account that system testing may result 
in an increased rate in detecting the number of faults. 
This is one shortcoming of our model, and we need to 
address this in the future. 

l’igure 7 also uses the data in 151, and shows a com- 
parison between the results for our proposed model 
rrnd other conventional SRGMs (exponential, delayed 

S-shaped, connective exponential) at the end of system 
testing. The 90% confidence bounds for each estima- 
iion is shown by the vertical line protruding from each 
estimate. For example, the confidence bound for our 
proposed model shows that it would be between 4097 
and 4311. Since our model was the only one whose con- 
fidence bound included the actual value, we can con- 
clude that our model was more accurate than the other 
models for the data that was used. 

Figure 7 does not show the results for hyperexponential 
SRGM and Littlewood Model. In order to estimate hy- 
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perexponential SRGM, we would need data concerning 

the classification of the modules which contains faults, 
and their number. As for Littlewood model, it is an 
interfailure time model and we would need data on the 
time that the failure 0. Since we did not have such 

data, we did not include hyperexponential SRGM and 
Littlewood Model. 

CONCLUSION 
This paper examined the failure intensity of different 

faults, and proposed an SRGM which assumes that the 
failure intensity distribution is discrete. We also showed 

a method for estimating the parameters in the method. 
Conventional SRGMs were based on assumptions such 
as the failure intensity of faults within the same soft- 
ware/module are the same, or that the failure intensity 
distribution takes the form of Gamma distribution. Our 
proposed model allows for different failure intensities for 
different faults, and assumes that its distribution takes 
the form of discrete distribution. 

We used a small program consisting of one module, and 
through the examination of the failure intensity for each 
fault, we determined that the failure intensity is not the 
same, and that its distribution does not necessarily take 
the form of Gamma distribution. Our proposed model 
is based on these results. We also compared the ac- 
curacy of estimating fault data using our model and 
conventional SRGMs (exponential, delayed S-shaped, 
connective exponential). In the examples used in our 
comparison, our model was found to be more accurate 
in estimating the the number of faults than the more 
conventional models. 

For future work, we plan on incorporating the merits 
of other SRGMs so that we can achieve an even higher 
accuracy in estimating fault data. Furthermore, we need 
to take into account how changes in phases, such as 

- -- 1 ~.--- 



going from integration testing to system testing, may 

affect the estimation. 
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