
A Study on the Failure Intensity of Different Software
Faults

Kazuyuki Shima Shingo Takada Ken’ichi Matsumoto Koji Torii
Graduate School of Information Science

Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara, Japan 630-01

$81-7437-2-5312
shima@is.aist-nara.ac.jp

ABSTRACT
We describe an experiment investigating the distribu-

tion of failure intensity in software reliability growth
models. We found that the assumption of conventional
models that the failure intensity follows a gamma distri-
bution is not always true. Our new software reliability
model does not make this assumption; rather, the fail-
ure intensity is calculated from failure data. We show

that our new model predicts more accurately the num-
ber of detected faults for our study project than the
conventional models.

Keywords
Failure intensity, testing, software reliability growth
model, hyperexponential SRGM, Littlewood model,

gamma distribution

INTRODUCTION
Software reliability growth model (SRGM) is a model
which can be used for evaluating and/or estimating
software reliability. It is plotted on a graph with the
elapsed time on the X-axis and the cumulative number
of detected software faults on the Y-axis. The elapsed

time may be either calendar time or computer execu-
tion time, but normally calendar time is used. Thus,
SRGM is a formalization of the characteristics of this
growth curve and can be used to estimate the number
of remaining faults from data on detected faults and the

time needed to detect these remaining faults.

There are many types of SRGMs with different assump-
tions and preconditions. Some examples are: exponen-
tial SRGM [2], delayed S-shaped SRGM (71, hyperexpo-
nential SRGM (41, and connective exponential SRGM
[5]. When these models are applied to actual software

development projects, the corresponding assumptions

and preconditions must apply to the target project.

Pemkion to make digital/hard copies of all or part of this material for
Personal or classroom use is granted without fee provided that the copi=
ore not made or distributed for profit or commercial advonhge, the copy-
right notice. the title of the publication and its date nppe,ar, and notice is
given that mpyn’ght is by permission of the ACM, Inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires specific
permission and/or fee
/CT.%!? 97 Boston MA USA
Cqw-k$t 1997 ACM 0-89791-914-g/97/05 ..$3.50

86

In exponential SRGM, there is an assumption that the
failure intensity of all faults in a software, i.e. the prob-
ability of a fault actually causing failure, are the same,

This, however, has been found to be questionable from
an experiment at NASA [6].

Littlewood has proposed a model which assumes that

if faults in a software are chosen at random, the failure
intensity of the faults would have a probability distri-
bution such as the gamma distribution [3]. Although
gamma distribution has the characteristics of being easy
to handle from a mathematical standpoint, no evidence

has been shown that failure intensity actually takes the
shape of gamma distribution.

This paper shows a method for measuring the failure

intensity of software faults and applies it to a small pro-

gram. Furthermore, based on the results, we propose a
model where the failure intensity of faults have discrete
distribution, and evaluate the accuracy of the estima-
tion of cumulative number of faults. Hyperexponential
SRGM is an example of using discrete distribution as
the distribution of failure intensity. However, in hy

perexponential SRGM, the failure intensity of the same
module is assumed to be the same. In our proposed
model, it is possible for the failure intensity of the same
module to take different values.

FAILURE INTENSITY OF FAULTS
Software failure is the phenomena where software does
not function properly in terms of its requirements.
Faults are the defects found within a program that

causes one or more failures. The occurrence of a failure
depends on conditions such as input data. Just because
there is a fault, it doesn’t mean that it will cause a fail-
ure. So, we can think of the frequency of a fault causing
a failure. We define this frequency of fault F causing a

failure (average number of times per time unit) as the
failure intensity bF of fault F.

If we define the probability of fault F causing a failure

in a certain time unit as 4,~~ the average time interval
of fault F causing a failure can be shown as followa[l]:

-1

= log(l-4F)

30, the following relation holds:

bF = -log(l- '$F) (3)

Generally, different faults appear in different places
within the software, and the type of input data that
causes failure differs between faults. In other words,
the failure intensity of each fault is different. Further-
more, it is not known what sort of fault exists in the
software.

Therefore, when randomly choosing faults within soft-
ware, we can consider the failure intensity of the chosen
fault to be a random variable. The probability distri-
bution is called the failure intensity distribution of the
fault. In the rest of this paper, we will be referring to

this when we say failure intensity distribution.

FAILURJ?, INTENSITY IN CONVENTIONAL
SRGM

This section will describe the following five conventional
SRGMs with respect to failure intensity:

Exponential SRGM A model which assumes that

the failure intensity of all faults are the same.

S-shaped SRGM A model where the failure intensity
changes with time.

Hyperexponential SRGM A model which assumes
that the failure intensity of faults within the same
module are the same.

Connective Exponential SRGM A model which
assumes that the failure intensity of all faults are
the same.

Littlewood model A model where the failure inten-
sity takes a certain distribution.

Exponential SRGM
Exponential SRGM assumes that the number of faults
found at time t is proportionate to the number of faults
left in the software. This means that the probability
of the failures for faults actually occurring, i.e. being
found, is constant. This can be shown as the following

differential equation:

dW) - = b(a- El(t))
dt

where

&: the expected total number of faults that exist in a
software before testing

87

b: the failure intensity of a fault

H(t): the expected number of faults at time t

This can be solved as follows:

H(t) = a(1 -Cat)

b is also called the detection rate, the rate of incident
or the appearance rate, but this paper will refer to this
as failure intensity.

S-shaped SRGM
In the delayed S-shaped SRGM, the reliability growth
curve is an “S” curve. The detection rate of faults be-
come greatest at a certain amount of time after test-
ing begins, after which it decreases exponentially. So,
since the detection rate of faults as well as the remaining
number of faults changes with time, we can say that this
SRGM assumes that the failure intensity differs among
faults.

Hyperexponential SRGM
Hyperexponential SRGM extends exponential SRGM
by dividing software into modules using 0 such as new
parts and reused parts. The failure intensity of faults
within different modules are assumed to be different,

while the failure intensity of faults within the same mod-
ule are assumed to be the same. The expected number
of faults detected for each module are exponential. So,
the expected number of faults detected for the software
as a whole can be expressed as follows:

H(t) = a&(1 - Chit) (6)
i=l

where

a>0) 0 < pi < 1, (7)

and

a: the expected total number of faults existing in soft-
ware before testing

bi: the failure intensity of one fault within the ith mod-
ule

pi: the density of faults for the ith module

Connective Exponential SRGM
Nakagawa analyzed the characteristics of the growth
curve using the number of faults detected per time unit.

From his analysis, he postulated that the basic shape of
the growth curve is exponential, and that an “S”-curve
forms due to the test. Based on this, he proposed the
Connective Exponential SRGM. In this model, a group
of modules called “main route module” are first tested,
and then the rest of the modules are tested. Even if the
failure intensity of the faults in the main route mod-
ule and faults in the other modules are the same, since
the search for their detection starts at different points
in time, the growth curve becomes an “S”-curve. The
expected number of faults detected for the software as
a whole can be expressed as follows:

w = al[l - exp(-bt)]

+ a2[1- ev(-&)I (9)
where

a2>a1 >O,b>O, (10)

{

0
Y

t > to =
t - to t > to 01)

and

al: The number of faults that are expected to be de-
tected in the main route module

as: The number of faults that are expected to be de-
tected in modules other than the main route mod-
ule

b: The failure intensity

to: The starting time for testing modules other than the
main route module

Littlewood Model
Littlewood proposed a model which handles the time
interval between the occurrences of failures as random
variable, and focused on hazard rates. The hazard rate
is a probability density where software does not fail for
a certain time span and in the next moment fails. The
probability density function pdf(!I”lXi) of random vari-
able Ti which shows the time interval between detection
of the (i - 1) th and i th failure is assumed to be:

pdf(TilXi) = XiemxiTi

where Xi is the software’s hazard rate between the
(i - 1) th and i th failure, and is assumed to be the
sum of the failure intensity of the faults remaining in
the software (equation(15)). The model assumes that
generally the failure intensity of faults Uj differs between
each fault, and that it is a random variable which con-
forms to the following probability density function:

Pdf (4 =
e-‘Ci-l “f(u)

S,“e-“Ttjf(U)dU

f(v) is the distribution function of hazard rate V, and
for example takes the gamma distribution. Gamma dia-
tribution takes two parameters (Y,@, and can be repre-
sented as follows:

The model is represented as follows:

88

(12)

N-i+1

Xi = C Uj (15)
j=l

where,

Fi(z): The probability of a software failing within time
z after the (i - 1)th failure

ji(z): The probability density function of &(a)

N: The total number of faults that exist within the soft-
ware before testing

tj: The measured time interval between the occurrence
of the (j - 1)th failure and jth failure

Xi: The hazard rate when the (i - 1)th failure occurred

vj: The failure intensity of the jth fault remaining in
the software

ol,p: The parameters for the failure intensity distribu-
tion (Gamma distribution)

FAILURE INTENSITY EXPERIMENT
The Gamma distribution which is used as the failure in-
tensity distribution in Littlewood’s model is often used

as a continuous distribution in Bayes statistics, and is
also often used as the Bayesian model for software re-
liability models. However, no experiments have been
done to confirm or refute if in fact actual failure inten-
sity conforms to the Gamma distribution. This section
reports on such an experiment and gives its results.

Experiment Goal and Hypothesis
An experiment has been carried out to find out if the
failure intensity in actual software conforms to the fail-
ure intensity assumed in conventional SRGMs. The hy-
pothesis of the experiment is as follows:

Hl The failure intensity of faults in the software are
the same.

H2 The failure intensity of faults in the same module
are the same.

H3 The failure intensity conforms to the Gamma dis-
tribution.

Experiment Strategy
The experiment is carried out in the following three
steps:

1. Test and debug the target program.

We first test and debug the target program using
test data T. The target program does not include

any errors which result in compilation errors. Dur-
ing this step, the fault and modifications to the pro-
gram are recorded. This will result in a completed
program P with little or no faults, and reports for
faults Fl,F2,--- F ,,.

2. Embed faults.

In order to check the failure intensity of each fault,
we use the debugged program and fault reports that
were obtained in step 1. Each fault is embedded
once into one version of the debugged program, re-
sulting in n versions of the program each having
one fault.

3. Measure the failure intensity.

Testing is done on each program, that was obtained
in step 2, containing one fault. The number of
times failure occurs within a time unit is checked,
and we calculate the failure intensity of each fault

bF~,,bFm--- ,bFy,.

Failure intensity is also affected by the frequency of
input (or more precisely, the number of inputs per

time unit). However, when this is not available, we

"0 0.5 1 1.5 2 2.5 3 3.5 4
Failure inlemity

Figure 1: Failure Intensity of Faults (Program 1)

make a simple assumption where the frequency is
1. The probability of fault F causing a failure in a
time unit can then be shown as follows:

(16)

where NF is the number of possible inputs that
results in F causing a failure and N is the total
number of possible inputs.

In reality, the total possible number of inputs is too
large, making it very difficult to test all possible
inputs. In such cases, testing is done on as much

input as possible, and the equation is approximated
as follows:

(17)

where Nk is the number of test cases that results
in F causing a failure and N’ is the total number
of test cases.

In this way, the probability of each fault causing a
failure within a time interval f$&, c$&, - . . c$F, can

be calculated, and through equation (3), the failure
intensity bF, , b&, . - - bp,, can be obtained.

Experimental Design and Results
Four programs were used for this experiment. Three of
them had the same requirements (A: program for stock
management), and the other one (B) was a subprogram
for numerical analysis. The size of the programs were
each about 300 lines.

To avoid failure happening on purpose, test data was
randomly generated. 100 such sets for each program
were used in step 1 (test and debug). This resulted
in 21, 13, 13, and 25 faults for each of the programsl.

Then, steps 2 and 3 were carried out to calculate the
failure intensity distribution of faults for each program.

1 Note that some of the data sets may not cause a failure, so the
number of test data is greater than the number of faults found.

89

4

3
2
1
E2

I
1

0 LL- 0.5 1 1.5 2 25 3 3.5
Failure inlensty

Figure 2: Failure Intensity of Faults (Program 2) Figure 3: Failure Intensity of Faults (Program 3)

The resulting distribution for each program are given in
Figures 1 to 4.

We now turn to threats to external validity. Such
threats limit our ability to generalize the results of our
experiment to other real programs. We identified three
such threats:

l The subjects carrying out step 1 in our experiment,
i.e. testing and debugging, may not be represen-
tative of professional software programmers. The
subjects were undergraduate level students, and
none had any industrial experience.

l The target program may not be representative of
industrial software. The program we used was
small, each about 300 lines long.

a The testing process in our experiment may not be
representative of processes used in industry. Our
test data was generated randomly, which would
normally not be used in industry.

Although such threats exist, we feel that our experi-
ment is a necessary step towards finding out about the
hypothesis we have stated. Of course, replication of
our experiment would greatly reduce the risk of these
threats, and hence would confirm our analysis results.

Analysis of Hypothesis Hl
First we check the first hypothesis, i.e. “the failure in-
tensity of faults in the software are the same.”

The failure intensity was clearly different between faults.
This means that there is a problem if the failure inten-
sity of faults only has one parameter. On the other
hand, there are plenty of examples where the failure in-
tensity of different faults are the same, and the failure
intensity distribution can be seen as a discrete distribu-
tion. The fact that the target program was small may
have enhanced this trend, but we think that this can be
said for most software since this is caused by the control
structure of computer software.

0.5 1 1.5 2 2.6 3 3.6 4
Failure IdamIty

5

4-

2
B 3.
a L

1 2.

1

0
0 0.5 1 1.5 2 2.5 3 3.6 4

Falfum Irdmiiy

Figure 4: Failure Intensity of Faults (Program 4)

The control structure that is used most often in current
software development is procedural. Procedural control
structure is composed of sequential construct, condi-
tional branching, and looping. In conditional branching,
one of two possible branches are chosen depending on
the condition. Suppose a fault resides in both branches
and that these faults have the same conditional proba-
bility for causing a failure. If the probability of execut-
ing either of the branches is the same, then the failure
intensity of the faults in each branch would also be the
same. But in most cases, the probability of the branch
being executed differs. If this is so, the failure intensity
of the faults in each branch would also differ. So, we
can say that the failure intensity for different faults will
not always be the same.

Next, we take an example where there are two faults in
a sequential construct that does not have a conditional
branch. We assume that failure always occurs when
executing this sequential construct. So, the failure in-
tensity for these two faults are the same. Thus, there
exists cases where the failure intensity of two faults do
not differ. Since no two cases are the same in an ideal
continuous distribution, this means that the failure in-
tensity distribution is approximately continuous, i.e. in
reality it is discrete.

Analysis of Hypothesis H2
Next, we check the second hypothesis, i.e. “the failure
intensity of faults in the same module are the same.”

Ryperexponential SRGM assumes that the failure in-
t,ensity for each module differs, but that the failure in-
tensity for different faults within the same module are

the same. Although our experiment results are only for
a small program consisting of one module, we could not
conclude the failure intensity of different faults to be
the same. If the program was larger, since there would
be more faults, it would become very difficult to assume
that the failure intensity are the same.

-4nalysis of Hypothesis H3
We now check the third hypothesis, i.e. “the failure in-
tensity of faults conform to the Gamma distribution.”
The parameters for Gamma distribution are first esti-
mated using maximum likelihood estimation. Assuming
i he measured failure intensity data are xl, x:2,. . - , x,,,
then parameter a! can be obtained using the following
equation:

r(Q)’
LXk

--loga =
JW

+gfiXk --,Og+ (18)
kc1

Then, parameter p can be obtained by:

P
na

=
21+x2 +*--+%

(19)

There are cases where a fault may cause failure for any

input which would result in the failure intensity to be
infinity. This can be problematic. Such cases can be

nandled in one of two ways:

Method 1 Instead of the failure intensity being infin-
ity, give it a very large number (such as 10000).
This will allow us to check the effects of faults
whose failure intensity is infmity.

Method 2 Ignore faults whose failure intensity is in-
finity. Faults whose failure intensity is large can be
detected easily, making the possibility of them re-
maining to be low. So, such faults can be ignored
even if they are detected, and the cumulative num-

ber of faults is not increased.

VJe now test if the Gamma distribution using the above

estimated parameters matches actual data. We use
Kolmogorov-Smirnov test of goodness of fit.

We calculated the parameters for the Gamma distribu-

tion and the Kolmogorov distance for the four programs,
and then tested at the significance level of 2.5 %. Pro-
grams 1 and 3 both did not have any failure intensity of
infinity, so there was no need to apply the above meth-
ods 1 or 2. Table 1 shows the results for programs 1

and 3.

Table 1: Goodness of Fit of Gamma Distribution to
Failure Intensity (Programs 1 and 3)

Program I prowl I Prog3
Parameter Q! 1 0.6499 1 2.0711

Table 2: Goodness of Fit of Gamma Distribution to
Failure Intensity (Programs 2 and 4)

Program I pro@ I Pro&
Parameter Q 1 0.6499 1 0.1036

Parameter p 1 0.1072 1 4.351 x 1O-5

Kolmogorov distance 1 0.2449 1 0.5152

result of test I accept reject

Programs 2 and 4 both contained faults whose failure
intensity was infinity, so methods 1 and 2 were applied
for parameter estimation and test of goodness of fit.
Table 2 shows the results using method 1, and table 3
shows the results using method 2.

We can summarize our findings as follows:

l The failure intensity distribution can be considered

as discrete distribution, because there are many
cases where different faults have the same failure

intensity.

a It was not possible to conclude whether or not
the distribution was Gamma distribution from the
shape of the distribution resulting from the mea-
surement. There are both accepted cases and re-
jected cases on test of goodness of fit of Gamma

distribution.

l Even for small programs (modules), it can be said
that cases where all faults have the same failure
intensity are rare.

PROPOSED MODEL

Table 3: Goodness of Fit of Gamma Distribution to
Failure Intensity Using Method 2 (Programs 2 and 4)

Program Pro@ prod
Parameter (Y 0.2366 0.3833
Parameter 0 0.6250 1.3123

Kolmogorov distance 0.1637 0.1470

result of test accent accent

91

--- ___-

The Model
Although hyperexponential SRGM only assumes that
the failure intensity differs between modules, it still has
the assumption that different faults will have different
failure intensity. Also, it does not consider the fail-
ure intensity distribution to be continuous distribution.
Rather it considers it to be discrete distribution which
matches our experiment results. So, we extend the hy-

perexponential SRGM so that each fault will have dif-
ferent failure intensity.

II(t) = c Q(l - f?‘Yi)
i=l

Yi =

{

0, t < ti
t - tiy t 2 ti

(20)

(21)

,where,

H(t) The expected number of faults to be detected by
time t

n The number of times that testing was done to debug
all faults

b; The failure intensity of a fault

ti The time when faults were introduced

ci The number of faults which were introduced at time
ti with failure intensity bi

This is similar to hyperexponential SRGM, except defi-
nitions in hyperexponential SRGM for bi, ti, and initial
number of faults are based on modules. Our proposed
model assumes that even the failure intensity of faults
in the same module are different. So, we cannot use

the method for determining parameters by identifying
faults for each module as was the case in hyperexpo-
nential SRGM. Also, it is not possible to apply our ex-
periment method of embedding faults and testing in an
actual development environment.

Estimating Parameters
We now propose a method which will allow an estima-
tion of the necessary parameters in our model from data
concerning detection time for faults and the number of
detected faults. The parameters are determined so that

ihe estimated data fits the observed data, so they do
not show the actual time when faults were introduced
and the actual failure intensity of faults. This, however,
can also be said for parameters in conventional SRGMs,
and is essential to make actual use of the model.

Since our model has many parameters, numerical anal-
ysis is needed for estimating them. But, we do not
use maximum likelihood estimation since the calcula-

tion cost will become very large. We will instead use an

92

4000

3500

3000

2500 .

2000

1500 .

“0 5 10 15 20 25 30 35 40 45
Time (month)

Figure 5: Estimation of Reliability Growth Curve Based
on the Proposed Model

estimation method based on an algorithm that is simple
and needs little computation.

The failure intensity and initial number of faults are
determined by taking faults in the order in which they
were introduced. To determine the parameters, the fol-
lowing two procedures are repeated as one step for every
time point that was deemed to have been the time when
a fault was introduced:

l The time when faults were introduced is deter-
mined, and only such faults are assumed to be de-
tected up to that time.

Under the constraint that the cumulative number
of further faults do not go over the total cumula-
tive number of faults, the failure intensity is deter-

mined.

We now show an example of how our model is ap-
plied. Figure 5 shows the result of applying our pro-
posed method in determining the time when faults were
introduced and failure intensity of faults. The X-axis
shows the time (with months as the unit), and the Y-

axis shows the number of detected faults. The “Ob-
served” points show the actual measured values, and the
“Estimated” points show the values estimated from the
proposed model. “First” shows the results of the first
step in the parameter estimation method. By “step”

we mean the step noted previously to determine the pa-
rameters, or i in equation 20 and 21. Since there is a
constraint where the curve must not go over the actual
value, the estimated value is far below the measured
value. “Second” shows the results of the second step.
The number of faults from the second step is actually
added on to the number of faults from the first step. By

the tenth step (“Tenth”), the estimated value gets quite

4000

3500

3ooo

2500

2ooa

1500

1000

500

n
Integration test System test Operation

-0 Jl J2
Time

Figure 6: Estimation of the Cumulative Number of Figure 7: Comparison of the Estimation Precision of the

Faults Based on the Proposed Model Number of Cumulative Faults (Actual value = 4142)

>lear to the actual value. This is repeated until the 20th

step which is “Estimated” in the figure.

Application of Proposed Model
Figure 6 shows the results of estimating actual fault

data [5] based on our proposed model. The X-axis is
time, and the Y-axis is the number of detected faults.
Jl denotes the end of integration testing, and 52 denotes
the end of system testing. The integration testing oc-
lurs between 0 and Jl, system testing between Jl and

62, and operation is from J2. “Observed” points are
the actual values. “Predicted at Jl” and “Predicted at
J2” show the estimated results at the end of integration
t.esting and at the end of system testing, respectively.
;Is can be seen, the prediction at J2 is very near to the
final actual number of faults. But, this is not so for the
prediction at Jl. Our model does not take into account
differences in phases. So, for the prediction at Jl, it did
not take into account that system testing may result
in an increased rate in detecting the number of faults.
This is one shortcoming of our model, and we need to
address this in the future.

l’igure 7 also uses the data in 151, and shows a com-
parison between the results for our proposed model
rrnd other conventional SRGMs (exponential, delayed

S-shaped, connective exponential) at the end of system
testing. The 90% confidence bounds for each estima-
iion is shown by the vertical line protruding from each
estimate. For example, the confidence bound for our
proposed model shows that it would be between 4097
and 4311. Since our model was the only one whose con-
fidence bound included the actual value, we can con-
clude that our model was more accurate than the other
models for the data that was used.

Figure 7 does not show the results for hyperexponential
SRGM and Littlewood Model. In order to estimate hy-

93

Connective Exponential

I
Proposed

1

I Delayed S-shaped

SRGM

perexponential SRGM, we would need data concerning

the classification of the modules which contains faults,
and their number. As for Littlewood model, it is an
interfailure time model and we would need data on the
time that the failure 0. Since we did not have such

data, we did not include hyperexponential SRGM and
Littlewood Model.

CONCLUSION
This paper examined the failure intensity of different

faults, and proposed an SRGM which assumes that the
failure intensity distribution is discrete. We also showed

a method for estimating the parameters in the method.
Conventional SRGMs were based on assumptions such
as the failure intensity of faults within the same soft-
ware/module are the same, or that the failure intensity
distribution takes the form of Gamma distribution. Our
proposed model allows for different failure intensities for
different faults, and assumes that its distribution takes
the form of discrete distribution.

We used a small program consisting of one module, and
through the examination of the failure intensity for each
fault, we determined that the failure intensity is not the
same, and that its distribution does not necessarily take
the form of Gamma distribution. Our proposed model
is based on these results. We also compared the ac-
curacy of estimating fault data using our model and
conventional SRGMs (exponential, delayed S-shaped,
connective exponential). In the examples used in our
comparison, our model was found to be more accurate
in estimating the the number of faults than the more
conventional models.

For future work, we plan on incorporating the merits
of other SRGMs so that we can achieve an even higher
accuracy in estimating fault data. Furthermore, we need
to take into account how changes in phases, such as

- -- 1 ~.---

going from integration testing to system testing, may

affect the estimation.

Acknowledgment
We are grateful to Larry Votta and the reviewers of the
paper for their valuable comments which have improved
the quality of the paper and our future works.

REFERENCES

[l] Richard E. Barlow and Frank Proschan, “Mathe-
matical Theory of Reliability,” John Wiley & Sons
publishers, pp. 65, 1965.

[2] A. L. Gael and K. Okumoto. Time-dependent
error-detection rate model for software reliability
and other performance measures. IEEE Trans. Rel.,
R-28, 3, pp. 206-211, Aug. 1979.

[3] Littlewood, B. . * “HOW good are they and how can

they be improved ?“, IEEE Trans. Software Eng.,
SE-6, 5, pp.489-500, (Sept. 1980).

[4] K. Matsumoto, K. Inoue, T. Kikuno, and K.
Torii. Experimental evaluation of software reliabil-
ity growth models. Proc. of 18th FTCS, pp. 148-
153, 1988.

[5] Y. Nakagawa. A connective exponential software
reliability growth model based on analysis of soft-
ware reliability growth curves. IEICE Trans., vol.
J77-D-I, no. 6, pp. 433-442, June 1994.

(61 J. R. Dunham. Software errors in experimental sys-
tems having ultra-reliable requirements. Digest of
FTCS-16, pp. 158-163, June 1986.

[7] S. Yamada, M. Ohba, and S. Osaki. S-shaped relia-
bility growth modeling for software error detection.
IEEE Trans. rel., R-32, 5, pp. 475478, Dec. 1983.

+’

