A Practical Method for Watermarking Java Programs

Akito Monden Hajimu lida Ken-ichi Matsumoto
Graduate School of Information Technology Graduate School of
Information Science, Center, Information Science, Nara
Nara Institute of Science and Nara Institute of Science and Institute of Science and
Technology Technology Technology

akito-m(@jis.aist-nara.ac.jp

Katsuro Inoue
Graduate School of Engineering and Science,
Osaka University
inoue(@ics.es.osaka-u.ac.jp

Abstract

Java programs distributed through Internet are now
suffering from program theft. It is because Java
programs can be easily decomposed into reusable class
files and even decompiled into source code by program
users. In this paper we propose a practical method that
discourages program theft by embedding Java programs
with a digital watermark. FEmbedding a program
developer’s copyright notation as a watermark in Java
class files will ensure the legal ownership of class files.
Our embedding method is indiscernible by program
users, yet enables us to identify an illegal program that
contains stolen class files. The result of the experiment to
evaluate our method showed most of the watermarks (20
out of 23) embedded in class files survived two kinds of
attacks that attempt to erase watermarks: an obfuscactor
attack, and a decompile-recompile attack.

1. Introduction

Java technology is widely regarded as revolutionary by
means of its portability: an idea that the same program
should run on many different kinds of computers and
electric devices. Java enables us to let computers and
devices communicate with one another much more easily
than ever before.

However, this revolutionary property of Java brought
us a security problem against program theft[18]. Java
applets put on Internet sites and Java applications sold to
users are now suffering from program theft. It is because
the Java program can be casily decomposed into reusable
components (called class files), and analyzed with class

iida(@is.aist-nara.ac.jp

matumoto(@jis.aist-nara.ac.jp

Koji Torii
Nara Institute of Science and Technology
torii(@jis.aist-nara.ac.jp

viewers[6][22]. As shown in figure 1, class viewers
expose the internals of a class file, displaying class
structure (fields and methods), thus, program users may
know how to use that class file without asking to the
original programmer. To make matters worse, program
users can obtain source codes of a class file by using Java
decompilers[15], such as SourceAgain[2], Jad[14],
Mocha[24], etc. In this situation, the Java program
developer's intellectual property will be infringed if a
program user steals anyone else’s class file and builds it
into his/her own program without the original
programmer's permission. We call this copyright
infringement a program theft, which is one of the reasons
why many companies hesitate to use Java in the real
software development. Although we have copyright law
to prohibit the program theft, it is still very important for
us to protect our Java program by ourselves [3].

This paper proposes a technique that discourages
program theft by embedding Java programs with a digital
watermark. Embedding a program developer's copyright
notation as a watermark into Java class files will ensure
the legal ownership of each class file. Below we describe
major features of our watermarking method:

public class MouseTrack extendsMouseMotionListener {
int mx;
int my;
public MouseTrack();
public java.lang.String getAppletInfo();
public void init();
public void keyDown(int);
public void mouseClicked(java.awt.event. MouseEvent);
public void mouseDragged (java.awt.event. MouseEvent);

Classfile -
\-
N

Executable

Java program
Figure 1. Cl ass informat ion obtained by class
viewer

1. Watermarks in Java program do not reduce the
execution efficiency.

2. Watermarks in Java program is exposed only when
original program developer uses the watermark-
decoding tool.

3. Program users can hardly know the location of
watermark, thus, erasing and/or tampering with the
watermark is very hard for them.

4. Even in case only a part of a program was stolen and
was built into other program, the watermark is easily
decoded wherever it may exist in that program.

5. Most of the watermarks embedded in class files
survive two kinds of attacks that attempt to crase
watermarks: an obfuscactor attack, and a decompile-
recompile attack.

The remainder of the paper first describes cases where
watermark is needed (Section 2). Next, describes related
works concerning the program theft, and also introduces
some present watermarking techniques for computer
programs (Section 3). Then we propose a watermarking
method for Java programs including the watermark
encoding procedure and the decoding procedure (Section
4). Afterwards, we describe an experiment to evaluate
our method (Section 5); and in the end, conclusions and
future topics will be shown (Section 6).

2. Cases where watermark is needed

2.1 Proving the fact of program theft

Even in case a suspicious program was found, it is
often not easy to say who is the true developer of that
program. A program thief who stole anyone else’s class
file may insist, “I have originally developed this
program.” In this case, we need a proof to explode the
thief’s claim.

For that situation, a signature previously embedded in
the program as a watermark authenticates original
program developer’s ownership and protects the
proprictary interests. The watermark in the program has
an effect of proving the fact of program theft. Decoding
the watermark from a suspicious program will clarify,
who is the original developer of that program.

2.2 Finding Stolen Programs

It is not casy for Java program developers to find an
illegal program that contains stolen class files. For
example, we may not be able to find out whether it is an
illegal program or not by executing the program, because
illegal programs often do not resemble original programs
in their specifications if the stolen piece is small. This

difficulty in finding the illegal program is a crucial
problem for Java program developers.

However, we claim that watermark is effective to find
the illegal program especially in Internet situation.
Illegal programs may be easily detected by employing a
watermark-decoding agent (robot) that investigates
through Internet. This agent goes through Internet and
finds any Java program, then checks the watermark in it.
If that program turned out to be an illegal program that
contains a watermark of an original program developer,
the agent will inform it to the developer. By using such
an agent, program developers can automatically find the
illegal program on Internet, thus they can protect their
programs from program thieves.

3. Related works

3.1 Current solutions for program theft

There are two current solutions for program theft: (1)
using NET (native executable translation) compilers, and
(2) using obfuscators. Both of these solutions make Java
programs difficult to be analyzed, and discourages
program thieves in using someone else’s class file.

In the first solution, we use NET compilers, such as
Symantec Visual Café, Microsoft Visual J++, Asymetrix
SuperCede, etc. While common Java compilers compile
Java source code into class file, these NET compilers
compile source code into machine-specific binary code,
which is not reusable. This means, when we use NET
compilers, there will be no class file to be stolen.
However, this will render the Java program nonportable.
An executable code created by NET compiler runs only
on the specific computer environment, such as Microsoft
Windows. Therefore, this solution is not always useful
for software developers.

In the second solution, we use obfuscators — tools that
scramble the wvariable and method names so that
decompiled source code is unintelligible gibberish[20].
There are many obfuscators available such as Source-
Guard[1], Jshrink[10], DashOJ[21], etc. To some extent,
it is effective to protect Java programs from program
thieves by using those obfuscators. However, obfuscated
or not, the resultant decompiled code is still source code,
which helps thieves to understand the usage of that
program.

Although above two solutions have an effect of
discouraging the program theft, they are not enough
strong for the protection of Java programs.

3.2 Digital Certificate for Java Applet

SN~

watermark

0011010
1011100

0011010
1011100

Original Java @ —2—p —3—p
source program » | e o 110110 o11011
Compilation Watermark
Dummy method " 0101001 injection 0101001
injection
Java Java Java
Dummy method source program classfile classfile

Figure 2. O verview of watermark enc oding procedure

Java security model provides us an authentication
mechanism known as a concept of signed applet|16][23].
A sign (called digital certificate) related with an applet
indicates, who is the true developer of that applet, just
like a watermark does. A user who has downloaded a
signed applet can know whether it is worthy reliable or
not by checking the sign. The sign also guarantees that
the applet is an original one, and has never been
tampered with by anyone else.

However, this signed applet does not make any sense
for the purpose of protecting class files contained in the
applet. It is because the sign is not embedded in the class
files, i.c., separated from the class files. The sign is just
an encrypted file that can be correctly decrypted only
when the applet is an original one. In order to protect a
class file, the sign should be embedded in the class file,
and never be separated from the class file.

3.3 Other Watermarking methods for computer
programs

There were many studies done for watermarking
images, sounds, texts, etc [4][7]. On the other hand, a
few methods for watermarking computer programs have
been proposed [S][8][11][13].

Hirose et al. proposed a method for embedding C
source programs with user identification number[11]. In
their method, one single change in the target program
represents one bit information. This change in the
program includes addition of dummy variables,
rearrangement of variable declaration statements,
changes in coding style (such as ‘n=n+1" to ‘n++’), and
so on. In the decoding phase, the original program and
the marked program are compared so that the changes in
the program will be identified. However, watermark in
the program is undecodable if only a part of the program
was stolen. Moreover, if program thieves applied the
same method to the already watermarked program,
original watermark will be easily erased.

Kitagawa also proposed a method for watermarking
Java programs[13]. In this method, new variables are
appended to a program; and, watermark codewords
(values) are set to those variables. In decoding phase,
program developers need to replace a specific class file in
the program with a special class file (called detection
class file), and execute the program. This detection class
file outputs the values of the variable in which watermark
was embedded. However, this method is not useful from
the purpose of defending class files from program thieves.
Because, when we want to check whether a target
program contains a stolen program or not, we must find
out which class file is to be replaced with the detection
class file. If we couldn’t find the class file that should be
replaced, or simply there is no class file that should be
replaced, we can not decode the watermark even if a
watermark exists in the target program. It is natural that
program developers want to easily check whether a target
program contains a stolen program or not. From this
viewpoint, watermarks should be automatically decodable
from a target program by using a decoding tool. Also, we
insist that watermarks should survive various program
translations. Program thieves may disassemble and re-
assemble the program, decompile and re-compile the
program, optimize the program, or use other program
translation tools such as obfuscator, scrambler, etc[15].
Watermarks should be reliably decodable even after these
program transformations were applied.

Collberg and Thomborson proposed a software
watermarking technique in which a dynamic watermark
is stored in the execution state of a program[5]. Dynamic
watermarks are stored in a program’s execution state,
rather than in the program code itself. Their method is
casy to tamperproof against various program
transformations. However, they watermark complete
applications, not individual modules (such as class files).
Hence, cropping a particularly valuable class file from a
Java application for illegal reuse is likely to be a
successful attack against this method.

Davidson and Myhrvold proposed a method for
generating and auditing a signature for executable
program modules[8]. A signature is a means that
uniquely identifies an authorized copy of the executable
module delivered to each wuser. The signature
(identification number) of ecach authorized copy is
encoded within the order of instructions of the executable
module. However, this method is not suitable for
watermarking a sentence, such as a copyright notification,
into each Java class file because encodable codeword in
this method is quite short. This method is also highly
susceptible to additive attack: inserting a new watermark
overrides original mark so that it can no longer be
extracted.

4. Watermarking method

4.1 Encoding procedure

Our watermark encoding procedure consists of the
following three phases (see Figure 2):

(Phase 1) Dummy method injection

In the first phase of watermarking, a dummy method
(of a class), which will never be executed, is appended to
a target Java source program. This dummy method is a
space for watermark codeword. This dummy method
should have enough size for watermark injection.

Next thing we should do is to append a dummy
method invocation to the source program. Below we
show an example of the invocation statement:

if (Condition) Dummy Method();

‘Condition’ is an expression that will never become
true. So, actually, dummy method is never invoked. If
this expression (formula) is complex ecnough, it is
difficult for program users to become aware of the
dummy method[12]. Since large programs originally
contain many methods that are rarely executed, it is not
easy for program users to locate the dummy method.

Although this phase can be automated, the developer
of a class file should manually inject a dummy method

Bytecode
verifier

Dummy
method | Watermark
injection

—» execution

Java classfile Java classfile

Syntax checking
Type checking

| 010010000110010000110... |

Watermark (bit sequence) JVM(Java Virtual Machine)

Figure 3. Consid eration in the wat ermark injection
phase

and its dummy invocation statement by his/her hand.
Since program thieves might decompile and read the
class file, the developer should carefully write a dummy
method that does not seem to be a dummy. This is why
we inject a dummy method into the source program, not
in the compiled class file. However, if the developer does
not care about the possibility of decompilation, or he/she
just prefers casy watermarking, he/she may use an
automatic dummy method injection rather than a manual
injection.

(Phase 2) Compilation

In the second phase, the Java source program, in
which dummy method was injected, is compiled with a
Java compiler. We use common Java compiler for this
compilation.

(Phase 3) Watermark injection

In this phase, we need to take account of the byfecode
verifier[17]. As shown in figure 3, when we execute a
Java applet, bytecode wverifier checks the syntactical
rightness and type consistency of the class file. If we
simply overwrite a bit sequence into the dummy method,
we will not be able to execute the program because it will
not pass the check of bytecode verifier. Therefore,
watermark injection should keep the syntactical
correctness and type consistency.

In order to keep the syntactical correctness and type
consistency, we use following two approaches:
(1) Overwriting numerical operands

One simple way to keep syntactical correctness is to
limit the place to overwrite. A numerical operand of an
opcode that pushes a value to the stack, and of an opcode

001101 Address Instruction .qumonic
101110 1000 03 %f:onst 0
1001 84 01 iinc 01 21
1101101 1004 1C iload 2
0101001 1007 10 bipush 90
100B 80 ior
Java classfile
N

Can be overwritten into any
1 byte(8bits).

Figure 4. O verwrit ing nu merical operands

Can be replaced into 02, 04 or 05.

Address E% Mnemonic
ol ol 1000 iconst O
Loniie 1001 840121 iinc01 21
1101101 1004 1C iload 2
1007 1090 bipush 90
0101001 L00B @\ @
Java classfile

Figure 5. Replacing opcodes

Instruction assigned bits Instruction assigned bits

60iadd ... 000 9B iflt ... 00
641isub . 001 9Cifge ... 01
68 imul ... 010 9D ifgt ... 10
6Cidiv ... 011 9E ifle ... 11
70irem ... 100 Rule 2
E 1 and ... 101 Instruction assigned bits
8ior ... 110 Coimull ... O
62 szor L] C7 inonnull - 1
Rule 1 Rule 3
Figure 6. E xample of bit assignment rules for
opcodes

| (C) AKITO MONDEN | —> | 010010000110010000110.... |

Watermark (character sequence) Watermark (bit sequence)

Address Instruction Mnemonic Watermark
O0TIOL} 10 iconst 0 01
I0TTI0F 1 1001 8401 F dinc0121 00100001
1101101} 1004 1C iload 2 ;
ool 1007 10B8 bipush90 10010000
100B ior 110

Java classfile

Figure 7. E xample of encoded watermark

that increases a value on a stack, can be overwritten
without syntactical incorrectness and type inconsistency.
For example, an operand “xx’ of the opcode ‘iinc xx” and
‘hipush xx’ can be overwritten into any single byte.
Figure 4 shows an example of numerical operands that
can be overwritten. Please note that overwriting the
numerical operand does not change the specification of a
class file because operands to be overwritten are in the
dummy method, which will never be executed.

However, most of other operands that indicate a
position or an index of class tables or local variables of a
method cannot be overwritten because of violating
syntactical correctness. For example, an operand such as
‘getfield xx’ and ‘putfield xx* cannot be overwritten. This
limitation in operands drastically reduces the place that
can be overwritten.

(i1) Replacing opcodes

methodl: S(LSK HIU5S A7G AKDS ...
method2: AOP)JSEW SAGFIIA4SS ...
method3: U2W ERRES SAFG ASIGS ...
method4: (C) AKITO MONDEN 1999 ...
method5: BN SIGD15KSS OQPSISN ...
method6: UET UIERT

method7: Q1ETE AUST)U IOXZZ ...

_>
Decoding

Java classfile

Watermark derived from method 4.
Figure 8. E xample of decoded watermark

In order to increase the place for watermark injection,
we replace some of the opcodes, such as iadd, ifirull, and
iflt, into other kind of opcode. For example, an opcode
replacement from iadd to isub does not violate syntactical
correctness and type consistency. Moreover, the opcode
iadd can be replaced to anything among isub, imul, idiv,
irem, iand, ior, and ixor. This indicates that above eight
opcodes iadd, isub, ..., and ixor can be replaced mutually.
By using this ability of mutual replacement, we can
encode 3 bits information into these opcodes. For
example, we may assign 000, to add, 001, to isub, 010,
to imul, ..., and 111, to ixor..Whichever the above opcode
appeared in the dummy method, we will replace them
into one of the above eight opcodes according to the bits
we want to encode. Figure 5 shows an example of
opecodes that can be replaced mutually. Such a bit
assignment and an opcode replacement can be also
applied in other opcodes. Figure 6 shows an example of
bit assignment rules for opcodes.

In case we want to encode a sentence, such as *(C)
AKITO MONDEN’, first we need to translate the
sentence into a bit sequence, then we encode the bit
sequence into the program. Figure 7 shows an example of
watermark encoding.

4.2 Decoding Procedure

In the watermark-decoding phase, there is an
assumption that we know the relation between bytecodes
and their assigned bits, and also the relation between bit
sequences and alphabets. The decoding algorithm is very
simple. We simply do the exactly opposite procedure of
watermark injection procedure, from top of every method,
i.e., we replace operands and opcodes in each method
into bit sequence followed by bit assignment rules, then
replace bit sequence into character sequence. After that,
watermark will appear from the dummy method (Figure
8). This decoding procedure can be automated, so that
even in case only a part of a program was stolen and was
built into other program, the watermark is easily decoded
wherever it may exist in the program.

5. Experiment

In this section, we are to evaluate the strength of
watermarks against program translation attacks that
attempt to erase the watermark. We assume that program
thieves use two kinds of attacks, (1) obfuscator attack,
and (2) decompile-recompile attack (Figure 9). In the
experiment, we try to decode the watermark after those
two attacks were applied. Both the watermark encoding
tool and the decoding tool we have developed are open in
our web site [19].

(1) Obfuscator attack

Translation Watermark

......... by obfuscator decoding
Classfile Classfile

with watermark

(2) decompile-recompile attack
....... De-. Re-. Watermark
......... compilg, compile, decoding
Classfile Source code Classfile

with watermark

Figure 9. Two kinds of att acks in the experiment

5.1 Experiment Procedure

(Step 1) Preparing the Java source code

We randomly chose 10 source files from sample Java
applets in JDK 1.2. The number of methods that have
enough size for the watermark injection was 23 in sum
total. Here, we assumed these 23 methods are the dummy
methods.

(Step 2) Encoding the watermark

We injected a character sequence ‘(C) AKITO
MONDEN’ into each 23 dummy methods. Then, we
compiled all source files and got 10 class files in which
watermarks are injected.

(Step 3) Attacking the class files

Two kinds of attacks as follows were applied to each
10 class files:

(i) Obfuscator attack

We applied the 4thpass’s SourceGuard version 2.0[1],
that is widely used as one of the strong obfuscators, to
each class file.

(i1) Decompile-recompile attack

We applied Hanpeter van Vliet’s Mocha[24], the first
and most widely known decompiler, to each class file,
and got the source codes of them. As compared among
mocha and other decompilers in the Dave Dyer’s
article[9], Mocha shows pretty good performance in
decompilation.

Then, we applied javac, a common compiler in JDK,
to each source code, and got the class files again. In this
compilation, we used optimization option.

(step 4) Decoding the watermark

Watermark-decoding procedure was applied to each

classfile after the attacks.

5.2 Result of experiment
(1) Result of obfuscator attack

After applying the obfuscator, we tried to decode
watermarks. Consequently, all watermarks were decoded

10 classfiles Decompile-recompile succeeded
23 watermarks 5 classfiles
7 - 8 watermarks
De-. Re-. Watermark
compilg compile decoding
Classfiles Source code Classfiles
with watermark N N

Decompile failed

3 watermarks are decoded
incorrectly.

5 classfiles
15 watermarks

Figure 10. Result of decompile- recom pile attack

correctly. Generally, obfuscators translate symbols such
as variable name and method name, but they do not affect
operands and opcodes in the method.
(i1) Result of decompile-recompile attack

Figure 10 shows the result of decompile-recompile
attack. We have 10 class files and 23 watermarks in them
at first. When we tried to decompile them, 5 classfiles
were failed in decompiling (decompiler crushed), i.c., we
got only 5 source files. Next, we recompiled them. The
syntax errors occurred in recompilation were fixed
manually. We finally obtained 5 classfiles with 8
watermarks in them. Then, we applied decoding
procedure to these 5 classfiles. As a result, 3 watermarks
are decoded incorrectly. So, the number of watermarks
erased by decompile-recompile attack was 3 out of 23.

The result showed that the decompile-recompile attack
does not always succeed; and, even if it was succeeded,
more than half of the watermarks (5 out of 8) was not
erased. By injecting more than two watermarks into each
class file, we will be able to protect our class files from
decompile-recompile attack.

In addition, class files that arec succeeded in
decompiling were of small size. This indicates that the
decompiler is not practical for the large class file.

6. Conclusions and future topics

We have described the problem of program theft in
current Java environment, and have proposed a
watermarking method applicable to Java programs. Our
method is practical in protecting Java class files and
superior to conventional methods because:

(1) A copyright notification message can be encoded into
each class file as a watermark to protect each of class
file. On the other hand, Kitagawa’s method[13] and
Collberg and Thomborson’s method[5] watermark
complete applications.

(2) Program thieves can not ecrase the watermark by
additive attacks that insert new bogus watermarks
into an already watermarked program, while
Davidson and Nyhrvold’s method[5] is not.

(3) Most of watermarks (20 out of 23) encoded into class
files survived two kinds of attacks that attempt to
erasc watermarks: an obfuscactor attack, and a
decompile-recompile attack, while conventional
method of Hirose et al.[11] is highly susceptible to
these kind of attacks.

(4) Anyone can use our watermarking tool. Both
encoding and decoding a watermark is easily done by
using tools that we have released in our web site[19].
In addition, the encoded watermark is decodable ,
from the suspicious program wherever the stolen class
file was built in.

However, none of the watermarking methods, including
our methods, are immune to all types of attacks. Our
method is resilient against additive attack, obfuscator
attack and decompile-recompile attack, but, there may be
more strong transformation attacks. In the future, in
order to make watermarks more tamper-resistant, we are
to apply error correcting code to our watermarking
method.

Acknowledgments

The authors wish to acknowledge helpful suggestions
from Dr. Yuuji Ichisugi of Electrotechnical Laboratory.

References

[1] 4thpass LLC, SourceGuard, <http://www.4thpass.
com>,

[2] Ahpah Software, SourceAgain, <http://www.ahpah.
com/sourceagain/>,

[3] Behrens, B. C. and Levary, R. R., “Practical legal
aspects of software reverse engineering,” Com-
munications of the ACM, vol. 41, no. 2, Feb. 1998, pp.
27-29.

[4] Berghel, H., “Watermarking cyberspace,” Com-
munications of the ACM, vol. 40, no. 11, 1997, pp. 19-24.
[5] Collberg, C. and Thomborson, C., “Software
watermarking: Model and dynamic embeddings,” The
26™ ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL’99), San Antonio,
Texas, Jan. 1999.

[6] Comware Australia Pty. Ltd., ClassNavigator,
<http://www.comware.com.au/classnavigator/classnav.ht
m>.

[7] Craver, S., Memon, N., Yeo, B. and Yeung, M. M.,
“Resolving rightful ownerships with invisible
watermarking techniques: Limitations, attacks, and
implications,” IEEE Journal on Selected Areas in
Communications, vol. 16, no. 4, 1998, pp. 573-586.

[8] Davidson, R. L. and Myhrvold N., “Method and
system for generating and auditing a signature for a
computer program,” US Patent,,no. 5559884, Assignee:
Microsoft Corporation, Sep. 1996,

[9] Dyer, D., “Java decompilers compared,” in article of
JavaWorld, July 1997, <http://www.javaworld.com/
javaworld/jw-07-1997/jw-07-decompilers. htm1>

[10] Eastridge Technology, Jshrink, <http://www.e-
t.com/ jshrink htmi>.

[11] Hirose, N., Okamoto, E., Mambo, M., “A proposal
for software protection,” in Proc. 1998 Symposium on
Cryptography and Information Security, SCIS’98-9.2.C,
Jan. 1998. (in Japanese)

[12] Ichisugi, Y., “Watermark for software and its
insertion, attacking, evaluation and implementation
methods,” Summer Symposium on Programming,, IPSJ,
July 1997, pp. 57-64. (in Japanese)

[13] Kitagawa, T. “Digitalwatermarking method for Java
programs,” Master’s Thesis, Department of Information
Processing, Graduate School of Information Science,
Nara Institute of Science and Technology,, NAIST-IS-
MT9751041, Feb. 1999. (in Japanese)

[14] Kouznetsov, P., Jad — the fast Java Decompier,
<http://meurrens.ml.org/ip-Links/Java/codeEngineering/
jad15. Html>.

[15] Leininger, K.E., The Java developer’s tool Fkit,
McGraw-Hill, 1997

[16] McGraw, G. and Felten E., Java security: hostile
applets, holes, and antidotes,,John Wiley & Sons, 1997.
[17] Meyer, J. and Downing, T., Java virtual machine,
O’Reilly & Associates, 1997.

[18] Monden, A., Hajimu, 1., Matsumoto, K., Katsuro, 1.
and Torii, K., “Watermarking Java programs,” in Proc.
4" International ~Symposium on Future Software
Technology (ISFST’99),,Software Engineers Association,
Nanjing, China, Oct. 1999, pp. 119-124.

[19] Monden, A., Java watermarking tools,, <http://
tori.aist-nara.ac.jp/jmark/>.

[20] Nolan, G., “Decompile once, run anywhere:
protecting your Java source,” Web Techniques Magazine,
vol. 2, Issue 9, Sep. 1997.

[21] preEmptive Solutions,
preemptive.com/>,

[22] Raud, R., ClassViewer, <http://raud.net/robert/
classinfo/ClassViewer.html>.

[23] Sun Microsystems, Inc., “Security and signed
applet,” <http://www.javasoft.com/products/jdk/1.1/docs/
guide/security/>.

[24] Vliet, H., Mocha — the Java Decompiler,
<http://www.brouhaha.com/~eric/computers/mocha. html
>

DashO, <http://www.

