A Recommendation System for Software Function Discovery

Naoki Ohsugi, Akito Monden, Ken-ichi Matsumoto
Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0101, Japan
+81743725312
{ naoki-o, akito-m, matumoto } @is.aist-nara.ac.jp

Abstract

Since many of today’s application software provide
users with too many functions, the users sometimes cannot
find the useful functions. This paper proposes a
recommendation system based on a collaborative filtering
approach to let users discover useful functions at low cost
for the purpose of improving the user’s productivity in
using application software. The proposed system
automatically collects histories of software function
execution (usage histories) from many users through the
Internet. Based on the collaborative filtering approach,
collected histories are used to recommend the user a set
of candidate functions that may be useful to the individual
user. This paper illustrates conventional filtering
algorithms and proposes a new algorithm suitable for
recommendation of software functions. The result of an
experiment with a prototype recommendation system
showed that the average ndpm of our algorithm was
smaller than that of the conventional algorithms; and, it
also showed that the standard deviation of ndpm of our
algorithm was smaller than that of the conventional
algorithms. Furthermore, while every conventional
. algorithm had a case whose recommendation was worse
than the random algorithm, our algorithm did not.
Interfaces,

Keywords: Software Usability, User

CSCW, Collaborative Filtering.

1. Introduction

Today, application software like word processing
software and spreadsheet software are getting more
complicated and providing more functions. For example,
Microsoft Office applications have the following total
number of menu items and buttons on toolbars: MS-Word

1530-1362/02 $17.00 © 2002 IEEE

248

2000 has 663, and MS-Word 2002 has 782. MS-Excel
2000 has 694, and MS-Excel 2002 has 812. These facts
indicate that the number of software functions in
application software is rapidly growing year by year.

The growth of software functions is a bad influence on
software usability in that the useful functions are hidden
among many other functions. All users do not learn
eagerly the new functions even if these functions are
useful for them and improve their productivity in using
application software [1][2]. It is because costs to find and
learn new functions of the application software and to
support it are very large for both users and developers.

This paper proposes a recommendation system based
on a collaborative filtering approach to let users discover
useful functions at low cost for the purpose of improving
the user’s productivity in using application software. The
proposed system automatically collects histories of
software function execution (usage histories) from many
users through the Internet. Based on the collaborative
filtering approach, collected histories are used to
recommend the user a set of candidate functions that may
be useful to the individual user.

However, since conventional collaborative filtering
algorithms are not designed for discovering useful
functions from usage histories of application software, the
usefulness of the algorithms are not clear if we apply
them to our recommendation system. This paper firstly
illustrates some well-known conventional filtering
algorithms, which have been proposed for different
targets such as music items and e-commerce goods.
Afterward we describe their problems arising when we
apply them to the software functions. Finally, we propose
a new algorithm suitable for recommendation of software
functions, and show the result of an experiment to
evaluate the algorithm.

In what follows, Section 2 introduces related works.
Section 3 shows the current status of a prototype
implementation of the proposed system for Microsoft
Office 2000 applications. Section 4 describes
conventional filtering algorithms and their problems
arising when we apply them to the software functions.
Section 5 proposes a new algorithm that solves their
problems. Section 6 describes an empirical evaluation of
the proposed algorithm. Section 7 discusses the usefulness
of the proposed algorithm. In the end, Section 8 shows
conclusions and future topics.

2. Related Work
2.1. Collecting Software Usage Histories

For the various purposes, systems that collect software
usage histories have been developed [5]. According the
person who users the history, such systems can be
classified into the following two types.

- Systems for software developers: This type of system
helps developers in enhancing the usability of
software they developed.

- Systems for software users: This type of system helps
users in enhancing the usability of software they are
using.

Finlay and Harrison [3] proposed a system for
software developers. 1t collects software usage histories,
to improve usability of the user interface of software.
Improvement procedure is as follows. At first, the
developer of the software inputs “a correct software usage
procedure”, to the system. Next, the system collects
“actual software usage histories” from users of that
software. Next, in order to detect bad parts in the user
interface, their system compares “a correct software usage
procedure” and “practical software usage histories,” and
detects the users' erroneous usages. At last, the developer
improves the detected bad parts so that the users will not
give erroneous usages.

Yano et al. [9] developed the Sharlok that was a
system for software users. It collects software usage
histories in order to provide opportunities to begin
collaboration among users. The Sharlok automatically
collects each user’s usage histories in the background
process. And then, it provides each user with other users’
usage histories so that the user can recognize other users’

operations and can begin discussion about their operations.

Like the Sharlok, our system also collects usage histories
from many users, and feedbacks them to each user.

249

2.2. Collaborative Filtering

The Collaborative Filtering is considered as a key
technology of recommendation systems, which provide
the user a set of candidate items that may be useful or
preferable to the individual user, from a large amount of
items [6].

Huberman [7] developed the Beehive. Each user of
the Beehive joins to some group associated with a certain
topic so that the wuser can receive information
recommended by other users in that group. The user who
receives the recommended information also must
recommend information to other users in order to keep on
joining the group. If the user does not recommend any
information for a certain period, that user will be removed
from the group. One of the related researches is the
Tapestry, developed by Goldberg et al. [4].

It is said that the first recommendation system that
automatically selects the items to be recommended is the
GroupLens [10][11]. The GroupLens recommends the
user a set of candidate Netnews articles that may be
preferred by the individual user, from a large amount of
Usenet news articles. Each user of GroupLens explicitly
rates each recommended Netnews article after reading it,
with using a scale of one (bad) to five (good). Based on
the user ratings, the GroupLens compute similarity among
tendencies of users' preferences. Then, high-rated article
by a particular user is recommended to other user who has
the high similarity with that user. This recommendation
procedure is a basis of today’s recommendation systems.
Based on the GroupLens’ approach, many filtering
algorithms have been proposed [13]. However, all these
conventional algorithms are not designed for
recommending software functions. In this paper, also
based on GroupLens’ approach, we propose an algorithm
suitable for software functions.

3. Recommendation for Software Functions

In this section, recommendation system for software
functions is described as follows; subsection 3.1 describes
about usage history format of our system. Subsection 3.2
illustrates about architecture of our system. And
subsection 3.3 describes about collaborative filtering
procedure on our system.

3.1. Usage History Format

An instance of the usage history in our system is
shown in Figure 1. In the usage history, each line has
captions of clicked menu items and buttons on toolbars,

2002/02/03 18:50:41 Formatting->Font(&F)...
2002/02/03 18:50:45 Formatting->Font Size(&F)
2002/02/03 18:50:48 Standard->Centering(&C)
2002/02/03 18:51:16 File->Save As(&S)...
2002/02/03 18:51:23 File->Exit(&X)

Figure 1. An example of the usage history

with the time of the clicking. And the lines are ordered in
time series. In addition, each caption of item in each line
has a parent menu caption to represent the position of
clicked place. Such parent menu caption is recorded in the
left of “->”. For example, the first line of usage history of
Figure 1, clicked menu item “Font(&F)...” is put as a
submenu of parent menu “Formatting”. Meanwhile, each
caption of clicked button in each line has a name of
toolbar that owns the button. For example, the third line
of the usage history in Figure 1, clicked button
“Centering(&C)” is put upon the toolbar “Standard”.

3.2. Architecture of the Recommendation System

Figure 2 shows a summarized architecture of the
recommendation system. Our system consists of Usage
History Server and some User’s Computers connected
with the server via the Internet. Usage History Server has
a database to receive and store usage histories sent from
User’s Computers. Each User’s Computer has three
software components, Usage History Collector, Usage
History Receiver and Functions Recommender, which are
described below.

- Usage History Collector: Software component that
collects each user’s usage history of particular
application software, and send it to the Usage History
Server. Usage History Collector works automatically,
as a background process, and does not disturb user’s
work.

- Usage History Receiver: Software component that
receives all users’ usage histories sent from Usage
History Server. Usage History Receiver passes them
to the Functions Recommender.

- Functions Recommender: Software component that
applies collaborative filtering to all users’ usage
histories to find useful functions for individual user.
Such collaborative filtering procedure is described in
the next subsection.

User 's Computer
Appl Software

%/\ Usage History Coflector

| Usage History Receiver |

*{Functions Recommende]

userA

— Each user’s usage History

usage history A
usage history B
usage history C
usage history D

= All users’ usage histories

------- > Recommendation of software functions Usage History Server

Figure 2. Recommendation system for software
functions

3.3. Collaborative Filtering Procedure

Figure 3 illustrates an instance of collaborative
filtering procedure of our system. Here the situation is
that the user A and the user B use the system, and the
system is applying collaborative filtering to make a
recommendation to the user A. In Figure 3, “Name”
columns show names of clicked menu items or buttons.
“Frequency” columns show those ratios in total times.
Each process in collaborative filtering procedure is
illustrated as a white arrow that has a number like “P1”.
More details of the processes are described below, which
correspond to the numbers in white arrows.

P1: The system counts the number of clicks and
frequency of each function in “Each user's usage
history” to make “Each user’s summarized usage
history”.

P2: The system counts clicked number and frequency of
each function in all users, in order to make “All
users’ summarized usage history”.

P3: The system applies collaborative filtering algorithm
described in section 4 and 5 to “All users’
summarized usage history”, in order to compute
rating for each function in making
“Recommendation for user A”. The rating shows
how useful the function is for the individual user. A
function having higher value is more useful than that
having lower value in the rating. Let r, denotes a
rating for the user A on the function K.

Functions in “Recommendation for user A” are
presented to the user A, depending on ratings. High rated
function is presented preferentially if it has not been used
by the user.

Each user’s usage history

User A’s usage history Each user’s summarized usage history
2002/05/12 15:21:56 Function D Name Frequency
2002/05/12 15:25:32 Function G Function A 1(17%) All users’ summarized usage history
2002/05/12 15:27:55 Function D Function C| 2(33%)
. Frequency Recommendation for user A
2002/05/12 15:30:37 Function C Function D | 2(33%)
2002/05/12 15:37:12 Function E Function E | 1(17%) Name User A User B | All Users Name Rating
2002/05/12 15:38:59 Function A Total 6 (100%) Function A| 1(17%) | 3(50%) | 4(33%) Function A| r,,
FunctionB | 0 (0%) 2(33%) | 2(16%) Function B ,
User B’s usage history r ol 2¢3m) L C17%) 3(25%) ®
unction i
2002/04/01 11:10:01 Function A . ol 2053 | 0 oy | 2 cren) Function C| e
N Fi unction .
2002/04/01 11:12:21 Funtion B ame | Treauency . el 1cm | ooy | 1 cen Function D s
Function A | 3 (50%) unction .
2002/04/01 11:18:13 Function B et Function E| 7w
Function B | 2(33%) Total 6(100%) | 6(100%) |12(100%)
2002/04/01 11:21:45 Function C
Function C| 1(17%)
2002/04/01 11:24:54 Function A
Total 6 (100%)
2002/04/01 11:26:33 Function A

Figure 3. An example of collaborative filtering procedure on the recommendation system

4. Collaborative Filtering Algorithms

In what follows, subsection 4.1 describes some
conventional collaborative filtering algorithms.
Subsection 4.2 explains problems in applying them to the
usage history of our system.

4.1. Conventional Algorithms

Today, many collaborative filtering algorithms are
proposed by many researches. In this section, some
typical algorithms are described. They are employed in
the experiment in section 6.

4.1.1.

Matsumoto et al. [8] employed a simple algorithm
called the User Count Algorithm in developing the CLAS
system, which is a prototype of our system. Let U and E
denote the set of all users and all functions, and e; is the
number of executions of function j by the user i. The
rating r for the user a on function £ is:

Zem

User Count Algorithm

Py = Zt.k b 1)
R B Zze,j
ieU jek
where t; is calculated by the following equation.
0(e, =0)
W=, @
1(e, 21)

The equation (2) denotes #; is O if the user / has never

251

use the function k. Otherwise it is 1. So, the first term of
the equation (1) equals to the number of users who has
executed the function k. And the range of the value of the
second term is [0, 1), cotresponding to the number of
executions of all users. As a result, “Recommendation for
user” will be a list of functions in descending order that
are sorted by the number of users who has executed the
function at first, and by the number of executions of all
users in the second.

4.1.2.

The Base Case Algorithm is commonly used in
previous collaborative filtering researches as a basis of
evaluating the performance of new algorithms. This
algorithm was first used by Shardanand and Maes [14], to
evaluate their music recommendation system Ringo. Each
user of the Ringo explicitly votes music that the user has
heard, with using a scale of 1 (bad) to 7 (good). Let U
denotes the set of all users, and v is a voting of user / on
music k. The rating r, for user a on music & is:

2. Vi

_ iel

“ T

In the equation (3), r is the average value of votes to
music k among all users.

Base Case Algorithm

3

4.1.3.

The User Similarity Computation Algorithm was
proposed by Resnick et al. [11] in GroupLens research,

User Similarity Computation Algorithm

which is one of the basic algorithms in collaborative
filtering researches. For example, Sarwar et al. [12]
proposed faster algorithm based on this algorithm, to
apply to their commodity recommendation system in
e-commerce.

Here the situation is that system computes rating of
item k for user a. At first, if J; is the set of item on which
user i has voted, then the mean vote for user / is calculated
as:

=3,

Jel,

Vi |] 4)

Next, the similarity c(a, i) between each user / and the
user a is calculated as:

Z (vaj - ;" Xvij

—Vi
_ jel,nl;
Clai) = = = ©)
Sy =vef Xl v
Jel,nli; jel,nl;

At last, rating r, of item £ for user a is calculated as:

Ty = Va + Zc(a, i)(v,k —;,)

iel

(6)

The equation (5) is a correlation coefficient between
user g and i. And its range of value is [-1, 1]. The first
term of the equation (6) is an average voting of user a and
the second term is a weighted sum of the votes of all users
except user a. Results of the equation (6) depend on the
votes of other users who are similar to user a, so that high
voted items by similar other users get high rating.

4.2. Problems in Applying Conventional
Algorithms to Usage History

4.2.1. User Count Algorithm

In the User Count Algorithm, functions used by many
users are recommended preferentially. So, the user who
has common tendency with many other users in using
functions can get useful recommendations. But otherwise
the user cannot get them since the similarity between
users is not considered. Furthermore, some useful
functions that are not used by many users are not
recommended in this algorithm.

Now, we assume a system recommends useful
functions of word processing software, and the functions
related to “creating and editing tables” are frequently used
by many users. Then, such functions are recommended to
the users even if they will never use word processing
software to edit tables.

252

4.2.2.

The Base Case Algorithm described in the subsection
4.1.2 cannot be applied to usage histories, since it was
designed for voting of a discrete numerical scale. So, we
transform it, as follows.

At first, the equation (3) is transformed by replacing
the voting vi; of user i on music k with the frequency fj of
user i on function k. If e; is the executed times of user i
on function k, and E is the set of all functions. The
frequency fy is:

e.
Ju = e
Zery

Jjek

Base Case Algorithm

(7

Then, the equation (3) is transformed to the following
equation:

2

iel/

®)
U]

rak

In this algorithm, functions frequently used by many
users are recommended preferentially. So, the
recommendation of this algorithm is similar to the User
Count Algorithm. And this algorithm has the same
problems with the User Count Algorithm.

4.2.3. User Similarity Computation Algorithm

The User Similarity Computation Algorithm described
in the subsection 4.1.3 also cannot be applied to usage
histories like the Base Case Algorithm. So, we transform
it, as follows.

At first, the equation (4) is transformed by replacing
the voting v; of user i on music j with the frequency f;; of
user i on function j given by the equation (7). Then, the
equation (4) is transformed to the equation (9) that

calculates the average frequency fi of user i as follows:

D 1= Y =10

JeE; JeE;

/i IE ®)

IEI

where E; is the set of functions used by user i. Next,
equation (5) is transformed to the following equation:

(faj - 7a X»/;j _?1)

jEI NI

S -7 S -7f

Jjel,nli; Jjel,nl;

c(a,i)

(10)

At last, equation (6) is transformed to following equation:

Fak =7a +Zc(a’i)(f;‘k _71‘)

ieU

an

In this algorithm, the functions that are frequently
used by other users who have similar tendency with the
user a, are recommended preferentially. This algorithm
does not have the same problem with the User Count
Algorithm and the Base Case Algorithm since the
similarity between users is considered.

However, there is another problem. The similarity
depends on the frequencies of the frequently executed
functions, excessively, because the similarity is calculated

from frequencies of executed functions as described in the .

equation (10). In our investigation, the most frequently
used functions in Microsoft Word 2000 were “Save”,
“Undo” and “Redo”. And the frequencies of their
executed counts in some users’ usage histories were 80%
or more. Therefore, the other functions did not affect the
similarity computation. This is one of the serious
problems in employing the User Similarity Computation
Algorithm because when we use application software, this
situation will happen in many cases. So, we propose a
new algorithm to solve this problem, in Section 5.

5. Proposed Algorithm

We propose the Distance-based User Similarity
Computation Algorithm, to solve the problem described in
4.2.3. In the proposed algorithm, the similarity between
users is calculated by the similarity of the order of
functions sorted by execution frequency. In fact, the
similarity c(a, i) in equation (10), is replaced with:

Z Zdi“(f(y’fak,fy’fik)

1) = 1 =2 x —JLaUE keE,UE,
c(a,i) X ZdiszNormalizer(S falr)

jeE,UE; keE,UE;

(12)

where, E, and E; are the sets of all executed functions by
user a and user i respectively. And, the following
functional equations are used.

(fq,-> ak)’\(fij
0 \' aj =‘fnk A
Y, f‘,j< ak N
dist(./;zj’f:zk’f;j’f;k)z 1 (\,({;{%;tfak,?;\/\ (:;7%=f;3)J(13)
((faj >fak)’\(fu < i")]
V(faj< ak)/\(fif> ik)

253

] (aj =fak)
2 (£, # fu)

where in the equation (13), x Ay denotes “x AND y”
of the logical operator, and x Vv y denotes “x OR y”.

distNormalizer(-)={ (14)

In this algorithm, the similarities between users are
calculated from the distance function dist defined by Yao
[15]. The numerator in the second term of the equation
(12) is the sum of results of the distance function dist on
the set of executed functions £, and E; by user i and user a.
We assume that frequencies fj; of user i on functions j that
are(jeE,)a(jeE,), and frequencies f; of the user a on
functions j that are(; ¢ £)a(j ¢ £,), are 0.

The denominator in the second term of the equation
(12) normalizes the numerator to the range [0, 1]. So the
expression (12) is normalized to the range [-1, 1], just like
the expression (5) and (10).

In this algorithm, the similarity between users is
considered like the User Similarity Computation
Algorithm. And this algorithm does not have the same
problem with the User Similarity Algorithm since
frequencies of executions are not directly used in the user
similarity calculation.

6. Experiment for Performance Evaluation
6.1. Outline of Experiment

We have conducted an experiment to evaluate the
performance of algorithms described in Section 4 and S.
We used software usage histories of Microsoft Word 2000
collected by the system described in Figure 2. The usage
histories were collected from 6 users for 3 to 22 months
(the average is 11 months). Each user used 62 to 108 kind
of functions (the average is 90), and the 209 kind of
functions were used 6 users in total.

We employed the Yao’s ndpm measure [15] that is an
evaluation metrics to measure the system performance.
Ndpm is calculated by comparing the difference between
“order of items in ideal recommendation for the user” and
“order of items in system’s recommendation for the user”.
The lower number of ndpm denotes that system provides
better recommendation.

6.2. Experiment Protocol

Figure 4 shows an experiment protocol of evaluating
the performance of the recommendation for user 4. Each
process in the experiment is illustrated as a white arrow
that has a number like “E1”. More details of the processes

S, w9IsAs JO 19s Ay} pue °J UOIBPUSUIWIOIAI
[eap! JO 39S ay) uo wdp uondun} dy) JO S)nsal
Jo wmns ay3 st (91) uonenbs ayy jo JojeIOWNU Y],

(=) 7]

(81) Ata _ .emJ 0 A%m:ivgmN:cSSZE%
A«:\ < .:d(AeQ > \ch> .
("> ") v("d < "d)
W) | (Me="v(rd="d) | 1p=("0"erd Pdyudp
(2> (>0 |
A%x < axv<A%Q < EQV
alyMm
A,.ilivgmﬁusgozsnwmﬂ ,xww.\ o
(o1 WNd>Y ANd>! =("y ')udpu

A o op .\QVS%N N

‘uonjenbs Juimoj[oj ay1 £4q . 1asn 10j
by UOHEPUAWIWIOdIY S WINSAS,, pue F 1asn 10J

UOIIEPUSWIWIODAI [BOP],, WOIJ PIIR[NO[RD SI udpu 3], :¢H
(sD [+ 0—u="d
" JJ 1asn 10} °4 uonepuaWI0ddl
[e9p],, aew 03 ‘uonenbs Fuimo[[oj ay) Aq paje[nojed
SI p Jasn ayj Joj 1 uonouny jo ’d unes [eapl yoeqg :pg

“yuel swes 9y} ojul padeld ale sajeWIIS

14°14

Ie[luIlS SABY Jey) suonounj ‘suopounj Yyl uisn
Jo sarouanbayy oy Jo sajewnsd ayy 03 Surpuodsariod
“uel Ise] paYy) Sy} pue Muel IsIj Yl UIIMISQ
paoe|d a1e mouy| jou PIp p JI9sn 3y} Jey) suorounj
‘4S] 1V "POPUSWIWIONAI SI I JI USAD F/ 1asn AQ pasn
2q 10U [[IM 9S3Y)} 9SNED3q | — ¥ URI JSB] PUOIIS JY)
ojur paoe[d a1e pasn J0u Inq UMO| Apealje aIdMm Jey)
SUOIOUTY “JX3N "UOIJEPUIILIODAI dY) Ul SsjFurueaw
are Aoy) osneoaq u uel jse] ay} u padseid aue
SMouy Apealje p 1osn ayj jey) suonouny Isiy 1y

‘U S1 Yuel Ise|
dY) PUY "UO OS pue ‘¢ SI pIiYy) Yy ‘7 SI JI9PIO puOI3s
Ay} 0§ “1s1] pasapdo ay) ut aoe|d ayj 03 Suipuodsariod
paseaioul SI pue ‘[SI duel sl 9yl ‘' Iosn
AQ pauluLIdIap 7 uoIdUNy I JO YUkl 3Y) SI 0 dwnsse
9M “.F J1asn 10} UOIRPUIWIWIONAI JO I9pIO [BdP],,
ayeul 03 ‘BLIdLID ZuIMO[[0] Y) JO JOpIO dY) Ul Jasn
10} papuUaWIWIOdl 3q AeW JBy) SuoduUny ajepipue),,

ur soweu uorouny ay) ugije o} payse sI p Jasn Yyl €9
* [1asn 10} papuawiiodal aq Aeul Jey) suorouny

ajepipue),, aew 03 ‘ AI0)SIy dFesn pazureWWNS

(S19SN [[V,, WO} INO USXE} 918 Sdweu uonounj syl :zq

‘p Jasn 10j y uonouny

Jo Sunelr ay) sajousp ¥4 ‘4 231 uj * p J9sn 10} %y

UOIIBpUAWILIONY S, WISAS,, axew 0} AIoisiy adesn

pazulewwins SI3sn [[y,, 03 paijdde s1 ¢ pue ¢ uoidas

ur paquosep wiyjLiod[e SuLdly dA1RIOqR[[0d Yoed :[F
"'SMOLIR 3}1yMm dY)

ul s1aquinu Yy} 0} puodsaLiod Yorym ‘Mo[aq paquLIdSap e

V 19SN 10} uoljepuUdWWOo93. 8y} Buijenjeas ui |020j0.d juawiiadxe uy “p ainbig

| =°d |3 uonoduny =0 |3 uonouny 3 uonouny
| ="d | g uonouny =0 | Qg uonoung @ uonouny
="d |y uonouny g="0 |v uonouny 0 uonoung
=°d | uoipouny 2="0 |D uonouny g uonouny
(%001)21 | (%001)9 | (%001)9 [e30)
=%g | g uonoung 1 =%0 | g uonouny v uonouny
(%8) 1 (%) 0 (%L1) 1 |3 uonouny
julog aweN Sunjuey aweN aweN
(%91) 2 (%) 0 (%€€) 2 | Quonduny
v dasn V 49sn uoy (%62)¢€ (%L1) 1 (%€)2 |0 uonouny
wdpu ., V 4asn Joj 404 UOIIEPUBIWIODIDI papuUsWIWIODaL 3q Aew
'/ UOI}epUAWILI0D3 [eDp] 40 4apJo [eap] ey} suonouny ajepipuen (%91)2 (%ee)e (%) 0 | g uonouny
(%) ¥ (%05)¢€ (%L1) 1 |V uonouny
2\ 3 uordung siasq) |IY g 4980 v d9sn aweN
] uonoun,
63 @ uordund Aouanbaig
> 0 uonouny
e, g uonouny Auo3siy a8esn paziewwns S4asn ||y
] v uoi3oung
3uney aweN

198N 104 "y UOIIEPUBWWODIY S WIYSA
v 4’y uoniep Y s, S

X Each user's ndpm
= Average ndpm

Figure 5. Ndpm of each algorithm

recommendation R,. We assume that system’s
ratings r,; for the user 4 on functions j that are
(e Pn)/\(je R,), and ideal ratings p,; of the user A
on functions j that are(j & P,)A(j€R,), are 0. The
denominator of the equation (16) normalizes the
numerator to the range [0, 1].

6.3. Result of Experiment

Figure 5 shows the result of the experiment in a
scatter graph. The y-axis of the graph indicates the values
of ndpm. And the x-axis of the graph indicates each
algorithm described in section 4 and 5. The values of
ndpm were calculated from “Ideal recommendation P; for
each user /” and “System’s recommendation R; for user i’
made by each algorithm. The lower ndpm value denotes

that the algorithm provides better recommendation. A
symbol “ x” is each user’s ndpm value on each algorithm.

And symbol “- is the average ndpm of 6 users in each
algorithm.
The result for each algorithm is as follows.

- Random: In this paper, randomly calculated
recommendations are used for showing the worst case
of the recommendation. The theoretical value of
ndpm of random algorithm is 0.5. In our experiment,

255

the average value of ndpm was 0.514. It was nearly
equal to the theoretical value. The standard deviation
of ndpm was very small (0.014).

User Count: The average value of ndpm was 0.403.
And the standard deviation of ndpm was 0.109. One
user had worse recommendation than the Random
Algorithm.

Base Case: The average value of ndpm was 0.355.
And the standard deviation of ndpm values was 0.109.
One user had worse recommendation than the
Random Algorithm.

User Similarity Computation: The average value of
ndpm was 0.383. And the standard deviation of ndpm
was 0.099. One user had worse recommendation than
the Random Algorithm.

Distance-based User Similarity Computation: The
average value of ndpm was 0.355. And the standard
deviation of ndpm was 0.049. All of users had better
recommendations than the Random Algorithm.
Furthermore, 4 out of 6 users had better
recommendations than all the other algorithms.

7. Discussion

Although we have collected function execution
histories for a long time in our experiment, the number of
subjects may not be sufficient to generalize the result.
However, from the following viewpoints, the result of the
experiment suggests that the proposed filtering algorithm
solves the problems of conventional algorithms, and that
it is useful for the reccommendation of software functions:

- The average ndpm of the proposed algorithm was
smaller than that of the conventional algorithms. This
indicates that our algorithm has a potential to provide
better recommendation than the conventional
algorithms.

- The standard deviation of ndpm of the proposed
algorithm was smaller than that of the conventional
algorithms (excluding random algorithms). This
indicates that our algorithm has a potential to
constantly provide good recommendation to every
users.

- While every conventional algorithm had a case
whose recommendation was worse than the random
algorithm, our algorithm did not. This suggests that
our algorithm is superior to the conventional
algorithms in providing better recommendation than
the random algorithm.

8. Conclusion

In this paper we proposed a recommendation system
based on a collaborative filtering approach to let users
discover useful functions at low cost for the purpose of
improving the user’s productivity in using application
software. We firstly illustrated some well-known
conventional filtering algorithms, which have been
proposed for different targets such as music items and
e-commerce goods. Next we described their problems
arising when we apply them to the software functions.
Finally, we proposed a new algorithm suitable for
recommendation of software functions, and conducted an
experiment to evaluate the algorithm.

The result of the experiment showed that the average
ndpm of the proposed algorithm was smaller than that of
the conventional algorithms. And, it also showed that the
standard deviation of ndpm of the proposed algorithm was
smaller than that of the conventional algorithms.
Furthermore, while every conventional algorithm had a
case whose recommendation was worse than the random
algorithm, our algorithm did not. These results suggest

256

that our filtering algorithm has a potential to provide
better recommendation of software functions than the
conventional algorithms.

Although we have collected function execution
histories for a long time (from 3 months up to 22 months)
in our experiment, the number of subjects (6 users) may
not be sufficient for the evaluation. Further experiments
are needed to confirm the usefulness of our algorithms.

In the future we must consider about collecting
execution histories of short-cut keys. In this paper, we
have collected the executions of menu items and short-cut
icons. However, in much application software, we can
also execute functions by pressing short-cut keys.
Typically, short-cut keys enable us to execute
commonly-used functions such as “copy”, “cut”, and
“paste.” Since these functions are usually executed by
short-cut keys, we are planning to collect the executions
of them in the future.

Another future topic is about the criterion to
distinguish non-recommended functions. In this paper, we
regarded that “a user already knows a function if that
function has been executed once in the past by that user.”
Such functions are not recommended to the user in our
system. However, this criterion may not be valid in case a
user randomly executes unknown functions but he/she
does not learn their usage. In the future, we are to change
this criterion to more valid ones to enhance the
performance of our recommendation system.

References

[11 J.M. Carroll, and M.B. Rosson, “Paradox of the Active

User”, Interfacing Thought: Cognitive Aspect of
Human-Computer Interaction, MIT Press, Cambridge,

MA, 1987.

[2] A. Cypher, “Eager: Programming Repetitive Tasks by
Example”, In Proc. of the ACM Conference on Human
Factors in Computing Systems, April 1991, pp.33-39.

[3]1 J. Finlay, and M. Harrison, “Pattern Recognition and
Interaction Models”, In Proc. of the INTERACT '90,
pp.149-154, August 1990.

[4] D. Goldberg, D. Nichols, B.M. Oki, and D. Terry, “Using
Collaborative Filtering to Weave an Information Tapestry”,
Communications of the ACM, Vol.35, No.12, December
1992, pp.61-70.

[S] D.M. Hilbert, and D. F. Redmiles, “Extracting Usability

(6]

7

(8]

19

(10]

(11}

[12]

(13]

(14]

Information from User Interface Events”, ACM Computing
Surveys, Vol.32, No.4, December 2000, pp.384-421.

W. Hill, L. Stead, M. Rosenstein, and G. Furnas,
“Recommending and Evaluating Choices in a Virtual
Community of Use”, In Proc. of the 1995 Conference on
Human Factors in Computing Systems (CHI'95), 1995,
pp.194-201.

B. A. Huberman, and M. Kaminsky, “Beehive: A System
for Cooperative Filtering and Sharing of Information”,
Computer Human Interaction, 1996, pp.210-217.

K. Matsumoto, S. Morisaki, A. Monden, K. Torii, “CLAS:
An Approach for Full Use of Application Software”,
Nara Institute of Science and Technology, Information
Science Technical Report: TR2001002, 2001.

Y. Yano, H. Ogata, and J. Qun, “Sharlok: Combining a
Collaborative Learning Environment and an Active
Database”, Advanced Database Systems for Integration of
Media and User Environments ‘98, Advanced Database
Research and Development Series, World Scientific, Vol.9,
pp-329-332, 1998.

D. M. Pennock, E. Horvitz, S. Lawrence, and C.L. Giles,
“Collaborative Filtering by Personality Diagnosis: A
Hybrid Memory- and Model-Based Approach”, In Proc. of
the Sixteenth Conference on Uncertainty in Artificial
Intelligence (UAI-2000), 2000, pp.473-480.

P. Resnick, N. lacovou, M. Suchak, P. Bergstrom, and J.
Riedl, “GroupLens: An Open Architecture for
Collaborative Filtering of Netnews”, In Proc. of
CSCW ’94, 1994, pp.175-186.

B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Riedl,
“Analysis of Recommendation Algorithms for
E-Commerce”, In Proc. of the ACM Conference on
ECommerce (EC00), Minneapolis, MN, 2000, pp.
158-167.

B.M. Sarwar, G. Karypis, J.A. Konstan, and J. Riedl,
“Item-Based Collaborative Filtering Recommendation
Algorithms”, In Proc. of the 10th International World
Wide Web Conference (WWW10), Hong Kong, May 2001,
pp. 285-295.

U. Shardanand, and P. Maes, “Social information
Filtering: Algorithms for Automating ‘Word of Mouth’”,

In Proc. of the 1995 Conference on Human Factors in

257

Computing Systems (CHI'95), 1995, pp. 210-217.

[15] Y.Y. Yao, “Measuring Retrieval Effectiveness Based on

User Preference of Documents”, Journal of the American
Society for Information Science, Vol.46, No.2, February
1995, pp.133-145.

