A Multiple-View Analysis Model of Debugging Processes

Shinji Uchida', Akito Monden'", Hajimu Iida", Ken-ichi Matsumoto'" and Hideo Kudo™"*
"Electrical and Information Engineering, Kinki University Technical College,
"'Graduate School of Information Science, Nara Institute of Science and Technology,

it

Information Engineering, Nara National College of Technology

uchida@ktc.ac.jp,{akito-m@is,iida@itc,matumoto @is } .aist-nara.ac.jp,kudoh @info.nara-k.ac.jp

Abstract

This paper proposes a model for analyzing the reading
strategies in software debugging. The model provides
quantitative and objective visions to a human’s
debugging activity, and provides the framework for
clarifying good- and/or bad-strategies for program
reading. We have conducted a case study to observe the
debugging processes under a controlled environment.
The observation includes: Both novice debugger and
expert debugger could correctly locate an area that seems
to have a bug, however, only the expert subject could
quickly narrow down that area, reading the faulty (or
most suspicious) module only will not generally lead to a
shorter debugging time, and the most well-performed
subjects read the module that seems to be a key to find a
fault. This case study suggested that explicit and
quantitative evaluation of the debugging process
becomes possible by using the proposed model.

1. Introduction

Recently, software maintenance groups often need to
debug a program that was not originally developed by
them because many of today’s engineers move rapidly
between companies and job assignments [12]. If a critical
failure has occurred in a program after its release,
engineers must quickly find a bug (fault) that has caused
the failure even in a case where the program is new to the
engineers. In addition, reuse activities in modern
software development also force engineers to read and
find bugs in a reused code that is unfamiliar to them.
Therefore, it is getting more and more important for
software engineers to be able to quickly find and remove
bugs in unfamiliar programs [13].

‘Unlike debugging familiar programs, debugging
unfamiliar programs requires engineers to use some

special expertise in program reading. In order to start
finding bugs in an unfamiliar program, engineers must

0-7695-1796-X/02 $17.00 © 2002 IEEE

139

read and comprehend the program, however, engineers
usually do not have enough time to comprehend the
entire program because they must detect the bugs within
the scheduled time. Hence, engineers should somehow
select the area that seems to lead to the bug detection,
and engineers should not read the area that is unrelated to
the bug detection. Here, the strategies of area selection
seem to greatly affect the efficiency of debugging.
Therefore, engineers should somehow decide the area
that seems to lead to the bug detection.

The goal of our research is to clarify both the good- and

bad-
programs. Our approach is to analyze debugging tasks

reading strategies for debugging unfamiliar
under controlled environments, and to find and/or to
verify patterns peculiar to experts’ (and novices’) reading
processes. Yet, observing subjects’ external reading
processes (such as “Which area did they read?” and
“When did they read?”) is not sufficient. We need to
“Why did they

read?” In our previous researches [13][14], we have

investigate the subjects’ intentions —

observed that strategies to select a module (= an area that
should be comprehended) strongly relates to the
engineers’ impressions of each module - either the
module is faulty, not faulty, or uncertain. Therefore, in
order to clarify reading strategies, we need to follow up
on the engineer’s cognitive image of a program that
represents a faulty area, unfaulty area, and uncertain area.
Moreover, the structural properties of the target program
should be taken in account as well. Some past research
states that the static slice of a program should be
considered in debugging [3][16][8].

We propose a new modeling schema: Multiple-View
Analysis Model of Debugging Process. This model
provides two kinds of view to program reading in the
debugging process: Product view and Cognitive view.
The Product view represents a target program’s module



structure and properties, while the Cognitive view
presents the property of a human’s activity. In order to
analyze the unclear part of a human’s activities in a clear
and well-defined way, the target program structure is set
as a basement of analysis framework. Human activities
such as movement of a reading target or module
classification are, then, cast over the Product view. The
Cognitive view actually consists of the following two
views:
- Decision view: Human’s cognitive image of the
possible location of the bug.
- Behavior view: Externally observed human’s
action.
By using the three views (Product view, Decision view,
and Behavior view), the analysis of the debugging
processes may be done in clear way, by examining the
interactions and relationships among these views.
In order to get some insights concerning the good- and
bad- reading strategies for debugging, we actually carried
out an experiment to observe the debugging processes
using video recordings and periodical interviews; and,
we analyzed the collected data based on our model.
In the rest of this paper, Section 2 describes the details of
our analysis model. Section 3 describes a case study to
analyze the debugging processes based on the proposed
model. Section 4 describes the results and discussion of
the experiments. Finally, Section 5 summarizes this

paper.

2. Multi-View Analysis Model of Debugging

Process

Fig. 1 shows the overview of the model. In this model,
we set the recognition granularity of the target program
to the module-level. E.g., the target program is abstracted
as a set of multiple modules . Consider we have n
modules, and the target program P is represented as a set
of modules {ml ... mn} .

P={ml, m2, ..., mn}

To make the following discussion simple, we assume that
there is only one bug in the program. This assumption is
natural to present a situation that we have one failure
observed and an engineer must find a bug (fault)
concerning to that failure. We also assume that the
location of the bug is module ml in the following
discussion.
The Product view provides the structural characteristics
of the target program, which is independent from the

140

actual debugging process. The Cognitive view provides
the view of the actual human activity in the debugging
process. The Cognitive view consists of the Decision
view and the Behavior view, presenting the internal and
external action of a debugger (=

a person who debugs a

Execution
race

Data
dependence

i

Controtl

depe n?encc ;

sdiysuone|ai-0)

@ @
O

putq

Fig.1 Multi-View Analysis Model for Debugging Process

2.1. Product view

The Product view expresses the abstract characteristics

of the target program. The following four characteristics

are presented:

- Control dependence between modules (in this case,
this is equivalent to a module call structure) (Fig. 2-
(a)),

- Data dependence between modules (Fig. 2-(b)),

- Static slice [13][14] calculated from the wrong
output value (Fig. 2-(c)), and

- Faulty execution path (Fig. 2-(d)).

The program slice is the set of program statements

possibly influencing the value of a particular variable in a

particular statement (i.e. slicing point). [3] and [7] report

that static slicing is useful for software maintenance. In

our approach, we don’t use a slice for the actual

debugging. We use the static slice just for the process

analysis.

As a summarization of the Product view, modules are

categorized in the following four areas: S, E, SE, and O.

Area S is the set of modules included in the static slice.

Area E is the set of modules included in the path of the

faulty execution (Fig. 2-(d)). Area E naturally contains

the faulty module where the bug exists. Area SE is the set



of modules included in both of area S and area E. Area O
is the set of the modules not belonging to any of above.
In this area, there is naturally no faulty module.

(a)Control Dependence (b)Data Dependence

OO

(d)Faulty execution path

(c)Static Slice
Fig.2 Product View

2.2. Decision view

The Decision view presents the internal action of the
debugger. Here, we set a fundamental assumption that
the debugging process is essentially expressed as a
sequence of two kinds of actions: expanding the trusted
region of the program while narrowing down the
suspicious region [1]. These actions are essentially
influenced by the debugger’s subjective suspicion about
the bug’s location.

In the Decision view, modules are continuously and
subjectively classified into three regions (set of modules)
during the debugging process. The first region is the
suspicious region (shown as B+), which is the set of
modules that might contain a bug. The second region is
the trusted region (shown as B-), which is the set of
modules that seems to have no bug. The third region is
the neutral region (shown as BO), which is the set of
modules that are uncertain whether they contain the bug
or not (Fig 3). The occasional movement of modules
over these three regions can explicitly express the change
of human internal impression of the bug location.

Hence, the debugging process in this view is observed as
the transitions of the status of the human internal
impression S(t), which is represented with actual
assignments to B+, B0, and B-.

141

@,

Suspicious region

B+

—_——
~

@ N

///
\

Fig.3 Decision View
At the beginning of the unfamiliar program debugging
(t=0), the debugger does not understand any modules.
Therefore, the initial state S(0) should be expressed as
follows:

S(0)=[B+=f, BO= {ml, m2, ..., mn}, B-=f ].

As the bug localization activity proceeds, the modules in
BO will be moved to either B+ or to B-. At the final stage
of the debugging process (t=T), the bug has been
localized, and the final state S(T) should always be as
follows:

S(T)=[B+={ml }, BO=f, B-={m2,...,mn} |.

The transition process from the initial state S(0) to the
final state S(T) may greatly differ according to the
debugger's capability and strategy. By using the Decision
view, the transition of the human decision can be
formally expressed, and individual differences of the
decisional transitions can be observed.
Since transitions are performed inside the debugger's
mind, the actual decision movements cannot be observed
externally. We use periodical simple interviews of the
developer to get an impression of each module. During
the experiment, the subjects had to answer the periodical
interviews, answering a questionnaire every 5 minutes
until the end of the experiment (Fig. 4). In every
interview, the probability of the bug existence for each
module was scored. If the subject thought that no bug
exists in the module, he/she marks ‘-’ (minus) in the
questionnaire. If the subject thinks that a bug may be
included in the module, he/she marks ‘+’(plus.) If the
subject has no confidence of the bug existence, he/she
marks ‘0’(zero.)



o 0 0

The bug may be in this
module.

The bug may not be
in this module

213[4(5]6(7/8[91/10

1
Modulel +
Module2 O

Module3 -

Module4 -

Fig. 4 Interview sheet

2.3. Behavior view

The behavior view can represent the external reading
action of a debugger. In this view, the human’s behavior
is represented as a sequence of module reading activity
that is expressed as a pair of target module name and the
reading duration, such as <m3,0:40>, <m2,0:30>, ... ,
<ml,1:50> (Fig 5). This information can be captured in
several ways such as video monitoring, command
execution history, or eye gaze tracking. The order and
the frequency of the module readings clarify how the
debugger read the program.

The Behavior view can be used to see each debugger’s
way of limiting the referenced module set. People usually
do not read all of the modules for debugging, and
sometimes there is an implicit or explicit strategy for the
module choice [5]. Moreover, a skilled programmer’s
patterns of movement over the modules might be
significantly different from a novice programmer’s
patterns. This view is also capable of investigating such
skills differences [4].

0:40 0:30 2:10 2:20 1:50
O SORL N O Rl

1;40 0:20
e — @
3:50

2:10 0:50 2:10 2:20
OO Rl OBl O Rl )
Fig.5 Behavior View

2.4. The advantage of the proposed model

The main advantage of this model is that the activities
of the debugger, both internal and external, become
clear, and a quantitative and objective analysis can be
applied to it. Generally speaking, observation and
explanation of the debugger’s internal activity are very
hard. Many existing analyses mainly depend on

142

subjective statements from debuggers, and the resulting
analysis is also highly subjective. For example, in
Araki’s model, the debugging process is explained as
iterations of the debugger’s hypothesis evolution, which
cannot be observed quantitatively [1]. In Vessey's
model, the debugging process is expressed based on the
debugger’s chunking ability [15]. However, these models
cannot illustrate the objective activities of debuggers’.

In our model, the multiple-view architecture is provided
for analyzing the debuggers’ activities. Combining these
three views over the module set, just like transparent
sheets, enables various analyses. By placing the Decision
view over the Product view, we can analyze the co-
relation between the debugger’s internal recognition and
the program structure. For example, we can evaluate the
debugger's strategy better by knowing the characteristic
of the module belonging to each region of B+, B-, and
BO0. This may lead to finding good- or bad-strategies for
judgment of the faultiness in the module based on the
program structure. By placing the Behavior view over the
Product view, we can also analyze the debugger's
program reading process better. For example, we can
know whether the debugger’s reading strategy is top-
down or bottom-up, by examining the order of the
module reading along the program structure. This may
lead to finding good- or bad-strategies for giving a
priority of reading to each module.

For years, many studies have tried to understand how
engineers comprehend programs during software
maintenance [2][6][7][12]. In their studies, there is an
assumption that engineers must comprehend the program
wholly and in detail. However, this assumption does not
fit with usual debugging situations — debugging in the
scheduled time. Comprehending the whole program can
be regarded as the worst strategy for program reading in
a limited time. On the other hand, we focus on strategies
of reading only the necessary part for the bug detection.
In addition, [9] reported that their experiment showed the
programmers’ skill level and existence of a line number
in the Pascal program are the factors that affect the
debugging performance, and programmers could almost
always correct an error once it is located. While their
approach uses a large number of subjects but does not
analyze the debugging processes, our approach uses
fewer subjects but analyzes the debugging processes in
detail.

3. Case study

In order to get some insights concerning a good- and
bad- reading strategy for debugging, we actually carried
out a case study to observe debugging processes under a
controlled environment. Based on the proposed model,
we collected quantitative data for each model view
(product, decision, behavior).



3.1. Environment

The case study was conducted using the Ginger2 CAESE
environment [12]. This environment can record the
debugger’s various activities such as the eye-gaze point
on the computer display, voice, key typing, and screen
image. We also manually conducted periodical
interviews in order to trace the debugger’s cognitive
impression on the potential location of the bug.

3.2. Subjects

Ten subjects participated in the experiment and were
assigned to debug the same program independently. All
subjects are graduate school students. They can use C
programming language. They have 3~4 years experience
of programming and at least 2 years experience of C
programming.

3.3. Target Programs and bugs

Two computer programs written in C language were
prepared for this experiment:

- Program X(Calendar)

This program consists of about 300 lines/ 20 modules.
This program is designed and coded to take the input of a
date and to show a calendar of the date. There is a bug in
module m17 (“ymd2rd2”) that produce the wrong out put
of the date of a calendar.

- Program Y (Tick-Tack-Toe)

This program consists of about 300lines/15modules. This
program is designed and coded to play a game known as
“tick-tack-toe”. This game uses 3x3 matrix where the
computer and the user put marks by turns. The player,
who succeeds to make three of his/her marks in a
vertical/horizontal/slant line first, wins. There is a bug in
module m9 (“‘check2moku3”) that the program fails to
recognize two of opponent’s marks that are already in
line, and therefore, it cannot prevent the opponent from
winning.

As a summary of the Product view of each program, the
modules of the target programs can be classified into
four sets using static slicing as shown in Fig.6-(a),(b). In
Program X, nine modules are contained in the slice
(indicated as area S). Ten modules are contained in the
execution trace (area E). Eight modules belong to both of
the slice and the trace. Nine m odules d o not belong to
any of them (area O). The bug is located in one of the 8
modules in the “Slice & Execution” (area SE.) Program
Y is classified into area SE and area E. Fourteen modules
compose area SE. Area E consists of only one module.

3.4. Procedure and Collected Data

The subjects were given the documentation and source
code. At first, they were shown the program execution
with the error symptom to be fully understood. Then,
they started to debug the program, but no directions
about the debugging method were given. The experiment

was performed until the bug was located and actually
corrected. We define some metric values by interview

Program Modules

Frogtam Modules

L MEdnles e
/8 See]

e
09) 0 ()

(a)Program X(calendar) (b)Program Y(tick-tack-toe)

Fig. 6 Product view summary of target programs
data. These metric values are supposed to have a relation
to the debugging efficiency. Fig.7 summarizes the
collected data from subject X1 through the entire
debugging process. In the leftmost row of the table, the
module names are enumerated. From the left to right,
Product Views, Behavior View, and Decision View are
indicated corresponding to each module.

T e TR

s E%r
i E%
el i s

Fig.7 Example of detailed debﬁgging process

4. Results and Discussion

4.1. Overview of result

4.1.1. Debugging time

All the subjects successfully located the position of the
bug and the correction was completed. Table 1 and 2
show the debugging time (the time required for finding a
bug) of each subject and program. In program X, subject
X5 required more than 4 times as much debugging time
as X1. In Program Y, subject Y5 required about twice as
much time as Y1. One of our concerns here is why X5
required so much time to locate the bug (and why X1
was so fast).

Tablel Debugging time of ProgramX
X1 X2 X3 X4 X5

Debugging Time(T minutes 23 27 84 86 106
Interviews(N) 4 5 16 16 19

Table2 Debugging time of ProgramY
vi 2

Y3 Y4 Y5
Debugging Time(T minutes)] 21 29 R k3 4
Interviews(N) 4 6 6 6 8

4.1.2. Decision View

Here we define some metrics concerning decision view.
These metric values are supposed to have a relation to
the debugging efficiency.



Nb:Time duration from the start time until the first time
subject decided that the faulty module is actually
suspicious to have a bug.

max|B+|:Maximum number of modules in B+ (suspicious
region) through entire the process.

avg|B+|:Average number of modules belonging to B+
(suspicious region) per interval.

[B+n:Final number of modules belonging to B+
(suspicious region) just before the bug is located and
fixed.

max|B-:Maximum number of module in B- (trusted
region) through entire the process.

avg|B-|:Average number of modules belonging to B-
(trusted region) per interval.

[B-|n:Final number of modules belonging to B- (trusted
region) just before the bug is located and fixed.
m+—-:Total number of modules, which were judged to
be suspicious at once, and then judged again to be
innocent through the entire process.

avgN+—-|:Average time duration of misjudgement of
non-faulty module to be suspicious.

m-—+:Total number of modules, which were judged to
be innocent at once, and then judged again to be
suspicious through the entire process.

Table3 and 4 summaries the decision view of the
debugging process collected by interviews. Subjects who
have a longer debugging time have a larger avg|B+|.
Especially, the worst subjects in both Program X and
Program Y have the largest values. This data suggests
that novice debuggers take a longer time to narrow down
the suspicious region (i.e. they have difficulty locating
the bug position).

Table3 Result of the Interviews(ProgramX)

X1 X2 X3 X4 X5
Interviews(N) 4 5 16 16 19
Nb 4 4 5 5 4
max|B+| 2 3 4 3 5
avgB+| 1 1.4 1.8 1.5 3.9
|B+|n 1 1 2 1 4
max|B-| 9 19 19 19 15
avg[B-| 4 9.6 9.6 9.5 9.7
[B-n 9 19 18 9 15
m+0 ° 3 2 7 3 2
avgN+0 7 1 3 5 7.9 11.6
m-0 % 0 0 4 14 2

144

Table4 Result of the Interviews(ProgramY)

YI Y2 Y3 Y4 Y5

Interviews(N) 4 5 6 6 8
Nb 3 5 6 5 4
max|B+ 2 1 1 5 7
avg|B+| 1.25 0.33 0.17 1.3 44
[B+jn 2 1 1 2 6
max|B-| 13 10 14 10 10
avg[B-| 9.5 6.8 9.5 4. 7.5
[B-ln 13 10 14 10 9
m+(J = 0 0 0 1 2
avg[N+0 | - - - 1.2 5
m-0 + 0 0 0 0 2

It is a little surprising to us that there is no tendency that
the subjects who have a longer debugging time have
large values of Nb. Indeed, the values of Nb are almost
the same in Program X. This indicates that both the
novice debugger and expert debugger can correctly
locate an area that seems to have a bug, however, only
the expert subject can narrow down that area.

4.1.3. Behavior View
Table 5 shows the reading time and its ratio to the total
debugging time, summarized and based on the Product
views. All the subjects spent more time in reading area
SE than area S, E, and O. In Table 5, ymd2rd2 in
program X and check2moku3 in program Y are the bug-
located modules. Subject X5, who required the longest
time to find a bug, 46% of his time in reading ymd2rd2
(containing a bug) while X1 spent only 14% of his time.
Therefore, reading the faulty (or most suspicious)
module only will not generally lead to the shorter
debugging time.
In both of the programs (X and Y), the most well-
performed subject (X1 and Y1) read the module that
seems to be a key to finding a fault (ymd2rdl and
check3moku3). Actually, Subject X1 spent 131 sec. in
reading ymd2rd1, while the other subjects spent at most
94 sec. in reading this module though they had more time
in the total debugging time. Similarly, subject Y1 spent
209 sec. in reading check3moku3, while the other
subjects spent at most 64 sec. in reading check3moku3.
These key modules (ymd2rd1 and check3moku3) do not
contain a bug, but both of them have similar
characteristics as below:
- The name of these modules (functions) resembles
that of the bug-included module.
Actually, ymd2rd]1 and ymd2rd2 have a similar function.
Also, check2moku3 and check3moku3 have a similar
function.
- These modules refer to the global variable that is
also referred in the bug-included module.
One possible interpretation is that reading these key
modules helped in understanding the functionality of the
bug-included modules.



Table5 Reading time of each module

TableS Reading time of each module

(a)l;rogram%X - - (b)ProgramY
X1 X X:
p—p 241 o 421 Iy 324 s lell 1‘;29 ‘9(]3 ;;‘ 1Y159
Q%)  9%)  (11%)  (12%)  (8%) M%) 2% (%) (5%) (6%)
mechk 0 0 49 26 13 St 69 209 35 240 270
0% O%) (%) (% __(0%) 6%) (8% (%)  (13%)  (13%)
dehk o1 14 140 388 25 battle 2 8 47 5T 299
(%)  (1%) 0.037684 0.111631 0.005876 @ 1% @%) &%) (12%)
getdofm 95 15 356 172 116 — T3 =) 7 % 75
M%) %) (10%)  (5%) (3%) %) %) (1%) (5%) (1%)
getdofy 0 0 12 27 0 computer 112 157 267 144 443
0%) O% 0% (1% 0% (10%)  (14%)  (20%)  (8%) _ (22%)
isulu 0 35 22 71 187 check2moku 70 55 61 96 61
0%) G% (1% Q2% (%) 6% (%) % (5% (3%
ymd2rd 38 1 18 165 304 check2mokul 71 8 318 226 284
(4%) (1%) (0%) (5%) (71%) (6%) (1%) (24%)  (12%)  (14%)
getdt 0 0 0 45 42 check2moku?2 106 62 68 46 97
(0%) (0%) (0%) (1%) (1%) (9%) (5%) (5%) (2%) (5%)
rd2ymd 33 526 912 243 786 check2moku3 | 136 182 337 326 237
(4%) (4%) (4% (%) (19%) (12%)  (16%) (3%) (18%) (12%)
ymd2rdl 131 55 26 94 28 check3moku 7 14 11 115 12
(15%) (%) (1%) (%) (%) (8%) (1%) (2%) (6%) (3%)
getdby 0 0 45 174 11 check3moku | 90 13 22 111 52
(0%) (0%) (1%) (5%) (0%) (1%) (1%) (1%) (6%) (1%)
getdbm 0 0 0 0 25 check3moku2 48 0 0 95 5
(0%) (0%) (0%) (0%) (1%) (4%) (0%) (0%) (5%) (0%)
getnumop 0 0 0 0 0 check3moku3 209 0 63 64 10
0%)  (0%) (0%) (0%) (0%) ‘ (18%)  (0%) (5%) (3%)  (0%)
setcal 0 W 121 ) 0 printbord 27 32 4 3 23
0% (%) (% Q%) (0% — 2%) Q%) %) (0% (%
romd 3 0 0 0 0 initialize 9 30 4 42 Il
0% (%) (0%) (0%) (0%) (1%) (2%) (0%) (2%) (1%)
yemd 0 0 175 229 133
(0%) (0%) (5%) (7%) (3%)
ymd2rd2 124 268 668 779 1910
(14%)  (22%) (18%) (22%)  (46%)
printdt 39 46 358 63 94
(4%) (4%)  (10%) (%) (2%)
semd 104 113 400 467 173
(12%)  (10%) (11%)  (13%)  (4%) , 5 .
usage 0 0 0 54 0 )
0% (0% (0% 0015612  (0%) Inervevs
(a)Decision View (b)Behavior View

4.2. Individual processes

In this subsection, we pickup some subject and analyze
their process in detail.

4.2.1. Program X

Subject X1:

This subject has the shortest debugging time in program
X. Fig.8-(a) shows the Decision view of subject X1. The
number of modules belong to B+(Suspicious region) is
few in all the interviews. Moreover, the number of
modules belong to B-(Innocent region) is increasing
gradually. Fig.8-(b) shows the Behavior view
(accumulated reading time) of subject X1. This subject
reads the modules belonging to BO(Neutral region) in the
first half of the debugging. Then, he reads the modules
belonging to B+(Suspicious region) in the second half of

145

Fig. 8 Subject X1

the debugging. So, we may be able to say that this
subject could narrow down the area containing a bug.
Subject X5:

This subject has the longest debugging time in program
X. Fig.9-(a) shows the Decision view of subject X5. The
number of the modules in B+(Suspicious region) could
not be lessened. The number of the modules in B-
(Certified region) is increasing gradually as the
debugging process progresses. Fig.9-(b) shows the
Behavior view of subject XS5. This subject reads the
modules belonging to BO(Neutral region) until the fifth
interview. Then, he mostly reads the modules belonging
to B+(Suspicious region) in the second half of the



debugging. He persists in reading the modules belonging
to B+(Suspicious region) too much.

350
2 A"l. 3000 "'n
B g, 2500 P o
'g ..“" a-:n-«-ﬁ-ll g 2000 BH
gn R WA & 15m J v BO|
= ’ ,{ " s .’.- B
5 10w AhhpEhkhkhbhbhbdbhd
0 . hddj S(I(; oo
0 5 10 15 . EE—
I 0246802141618
Interviews
(a)Decision View (b)Behavior View
Fig. 9 Subject X5
4.2.2. Program Y
Subject Y1:

This subject has the shortest debugging in program Y.
Fig.10-(a) shows the Decision view of subject Y1. The
number of modules belong to B+(Suspicious region) is
few in all interviews. Moreover, the number of modules
belong to B-(Innocent region) is increasing gradually.
Fig.10-(b) shows the Behavior view of subject Y1. This
subject reads the modules belonging to BO(Neutral
region) until the second interview. Then, he reads only
the modules belonging to B+(Suspicious region) and B-
(Innocent region) until the third interview. So, we may be
able to say that this subject could narrow down the area
containing a bug.

R — e im0 -
\ . /»,..---"" .
20 A pa g 800 - B4|
E] ool L3 p e BO
2 5 A = 400 f—" p!
,/ «"'x & s
NN SR 0 e nd
0 1 2 3 4 0 1 2 3 4
Interviews Interviews
(a)Decision View (b)Behavior View
Fig. 10 Subject Y1

Subject Y5:

This subject has the longest debugging time in program
Y. Fig.11-(a) shows the Decision view of subject Y5. He
classifies the modules belonging to BO(Neutral region)
into B+(Suspicious region) and B-(Certified region) at
the fourth interview. Then, the number of the modules in
B+(Suspicious region ) could not be made small. Fig.11-
(b) shows the Behavior view of subject Y5. This subject
reads the modules belonging to BO(Newtral region) until
the second interview. Then, he reads only the modules
belonging to B+(Suspicious region). He persists in
reading the modules belonging to B+(Suspicious region)
too much.

146

15[ A 1200
Y /S
M 10 '-A\‘\ e P CMi 800 .“!‘....-.. LI } & ep,
od )-’_y N & - e
5 P : ’ i p,
‘./ \ 400 & » N
/ //’ | o & . M",»- -~
0 > A
01 23 45 6 7 0
) 001 2 3 4 5 6 1
Interviews
Interviews
(a)Decision View (b)Behavior View

Fig. 11 Subject Y5

S. Conclusion

In this paper we proposed a model for analyzing the

program reading strategies in debugging. The model

provides three views for representing human activities:

Product view for presenting the structural properties of

the target program, Decision view for representing the

human’s cognitive image of the potential location of a

bug, and Behavior view for representing externally

observed human’s actions. By using the three views,

analysis of the debugging processes can be done in a

clear way, by examining the interactions and

relationships among these views.

We have conducted a case study to observe the

debugging processes and collected process data based on

the model. The observation includes:

- Subjects who have a longer debugging time have a
larger avg|B+|. This data suggests that novice
debuggers take a longer time to narrow down the
suspicious region.

- There is no tendency that subjects who have a
longer debugging time have large values of Nb
(Time duration from the start time until the first
time the subject decided that the faulty module is
actually suspicious to have a bug.) This indicates
that both the novice debugger and expert debugger
can correctly locate an area that seems to have a
bug, however, only expert subject can narrow down
that area.

- All the subjects spent more time in reading area SE
than area S, E, and O. This follows previous
research that program slicing is useful in debugging.

- Reading the faulty (or most suspicious) module
only will not generally lead to the shorter debugging
time.

- The most well-performed subject (X1 and Y1) read
the module that seems to be a key to finding a fault
(ymd2rd1 and check3moku3).

Although some of the above observations suggested the

candidates of good- and/or bad-reading strategies, we

have not clarified the useful strategies for actual
debugging yet. We need to employ more programs, bugs,
and subjects in future experiments to clarify the more
useful strategies. However, we believe our analysis
model is a powerful tool for seeking quantitative and



objective debugging strategies, which was very difficult
in past research.

6. Acknowledgment

This study was financially supported by the Proposal-
based New Industry Creative Type Technology R&D
Promotion Program from the New Energy and Industrial
Technology Development Organization (NEDO) of
Japan.

7. References

[1] K Araki, Z Furukawa and J Cheng, A general Framework
for Debugging, IEEE Software, 18 (1991) 14-20.

[2] T J Bigerstaff, B G Mitbander and D Webster, The
Concept Assignment Problem in Software Understanding,
Proceedings of 15th International Conference on Software
Engineering (1993) 482-497.

[3] K B Gallagher and J R Lyle, Using Program Slicing in
Software Maintenance, IEEE Transactions on Software
Engineering, 17 (1991) 751-761.

[4] K Tio, Y Arai and T Furuyama, Cognitive Process Analysis
based on the Tendency to the Module Programmers View,
Technical Report of JSAI, SIG-KBS-9402-2 (1994) 9-16 (in
Japanese)

[5] J Koenemann and S P Robertson, Expert problem solving
strategies for program comprehension, Proceedings of Human
Factors in Computing Systems (1992) 125-130.

[6] A Von Mayrhauser and M Vans, Program Comprehension
During Software Maintenance and Evolution, Computer, 28
(1995) 44-55.

[71 A Von Mayrhauser and M Vans, Program Understanding
Behavior During Debugging of Large Scale Software,
Empirical Studies of Programmers (1997) 157-179.

[8] A Nishimatsu, K Nishie, S Kusumoto and K Inoue, An
Experimental Evaluation of Program Slicing on Fault
Localization Process, IEICE Transactions, 582-D-I, (1999)
1336-1344.

[9] Paul W. Oman, Curtis, R. Cook, and Murthi Nanja, Effects
of programming experience in debugging semantic errors, The
Journal of Systems and Software 9, (1989), 197-207.

[10] E Regelson and A Anderson, Debugging practices for
complex legacy software systems. Proceedings of International
Conference on Software Maintenance, (September 1994) 137-
143.

[11] M A D Storey, K Wong and H A Muller, How Do
Program Understanding Tools Affect How Programmers
Understand Program, Proceedings of the Fourth Working
Conference on Reverse Engineering (1997) 12- 21. v
[12]) K Torii, K Matsumoto, K Nakakoji, Y Takada, S Takada
and K Shima, Ginger2: An Environment for Computer-Aided
Empirical Software Engineering, IEEE Transactions on
Software Engineering, 25 (July/August 1999) 474-492.

[13] S Uchida, H Kudo and A Monden, An experiment and an
Analysis of debugging process with periodic interviews,
Proceedings of Software Symposium ‘98, (1998) 53-58 (in
Japanese).

[14] S Uchida, A Monden, H Iida, K Matsumoto, K Inoue and
H Kudo, Debugging process models based on changes in

147

impressions of software modules, Proceedings of International
Symposium on Future Software Technology 2000, Guiyang,
China, (Aug. 2000), 57-62.

[15]1 Vessey, Expertise in debugging computer programmers :
A process analysis, International Journal of Man-Machine
Studies, 23 (1985) 459-494.

[16] M Weiser, Program slicing, Proceedings of 5th
International Conference on Software Engineering, (1981)
439-449.

[17] M Weiser, Programmers use slices when debugging,
Communications of the ACM, 25, (1982) 446-452.



