‘7695-1796-X/02 $17.00 © 2002 IEEE

The Detection of Faulty Code Violating Implicit Coding Rules

Tomoko MATSUMURA

Akito MONDEN

Ken-icht MATSUMOTO

Graduate School of Information Science, Nara Institute of Science and Technology
E-mail: {tomoko-m, akito-m, matumoto}@is.aist-nara.ac.jp

Abstract

In the field of legacy software maintenance, there
unexpectedly arises a large number of implicit coding
rules, which we regard as a cancer in software evolution.
Since such rules are usually undocumented and each of
them is recognized only by a few members in a
maintenance team, a person who is not aware of a rule
often violates it while doing various maintenance
activities such as adding a new functionality or repairing
faults. The problem here is not only such a violation
introduces a new fault but also the same kind of fault will
be generated again and again in the future by different
maintainers.

This paper proposes a method for detecting code
fragments that violate implicit coding rules. In the
method, an expert maintainer, firstly, investigates the
cause of each failure, described in the past failure
reports, and identifies all the implicit coding rules that
lie behind the faults. Then, the code patterns violating
the rules (which we call “faulty code patterns”) are
described in a pattern description language. Finally, the
potential faulty code fragments are automatically
detected by a pattern matching technique.

The result of a case study with large legacy software
showed that 32.7% of the failures, which have been
reported during a maintenance process, were due to the
violation of implicit coding rules. Moreover, 152 faults
existed in 772 code fragments detected by the prototype
matching system, while 111 of them were not reported.

1. Introduction

Nowadays, many organizations have problems in
keeping up the reliability and lowering the maintenance
cost of large legacy software, which had been developed
more than a decade ago and are still performing nucleus
tasks for organizations [10][15]. During the long-term
maintenance process of such old software, program code
becomes more and more complicated than it used to be,
and it becomes increasingly difficult to add a new
functionality and repair its faults. This phenomenon is

173

known as code decay, which is an inevitable part of
software evolution [2]. In addition, the long-term
maintenance also causes a lost of the maintainers’
knowledge and experience of the aged software because
many of today’s engineers move rapidly between
companies and job assignments[11][14].

We approach the phenomenon of code decay and the
loss of maintenance knowledge from a point of implicit
coding rule[9] -, which we regard as a cancer in
software evolution. For example, the typical rules may
informally be described as “In order to handle the
function A, the global variable B should be initialized
before calling the function C”, “The function X and Y
should not be used at the same time”, and so on. These
rules are different from the “Coding Standard” and
“Coding Rules”(as normally said), and were generated
unexpectedly and implicitly during a long-term
maintenance process. So, usually these rules are not
explicitly described in the specification documents and
design documents. Moreover, even if someone tried to
redesign the program for dissolving these rules,
sometimes the new rules would be implicitly generated.

These implicit rules cause an increase of the
maintenance cost and deterioration in the reliability of
the software. If there are many implicit coding rules in
the system, maintainers have to change the source code
while paying attention to all the implicit coding rules,
thus, the maintenance cost will increase. On the other
side, maintainers who do not know these rules will inject
faults to their changed code as a result of a violation of
the rules as long as the rules exist. Moreover, it is
difficult to detect these violations through a generic tool
because the patterns of the rules and violations are
usually highly dependent on each software system.
Actually, we investigated certain legacy software and
found that 32.7% of the failures were due to a violation of
implicit coding rules and some of them have been caused
by the same rule.

In this paper, we propose a method for detecting faulty
code violating implicit coding rules. The method will be
useful in lowering the maintenance cost because

maintainers do not have to manually check all the
implicit coding rules after changing code, and is useful in
decreasing the number of faults made by maintainers who
are not aware of the implicit coding rules. In addition,
this method is very powerful in practical use because it
can directly detect the line number of a faulty code area
with detailed instructions, while previous methods for
predicting fault-prone modules using software metrics
only say which modules are faulty [4][7].

In the proposed method, the code patterns violating the
rules (which we call “faulty code patterns”) are described
in a pattern description language. Then, the fault
detecting system matches the source code of legacy
software with the faulty code patterns, and it shows the
matched code fragments to the maintainers. These faulty
code patterns are extracted from past failure reports. In
the failure reports, various information about the faults
are written, such as the phenomena of the failures, causes
of the failures, positions of the faults in program code,
solutions for repairing faults, and so on. Many software
companies make this kind of document during the
development and maintenance process. The implicit
coding rules can be mainly derived from the causes of the
failures. Moreover, maintainers can check if the matched
code fragments have a fault or not and repair it easily
with the information from the past failure report.

This automatic detection of faulty code will be
repeatedly performed by different maintainers once a
pattern set is built. When maintainers change source code,
they use this system in the changed source code, find the
faulty code and can deal with them. By using this system,
even maintainers who do not know the pattern, like a
new member of the project, can keep the quality of their
code.

The remainder of this paper first describes what the
implicit coding rules and faulty code patterns are (Section
2), and our fault detecting system based on implicit
coding rules (Section 3). Then we will describe a case
study to evaluate our system (Section 4). Afterwards, we
will describe other related works (Section 5), and in the
end, conclusions and future topics will be shown (Section
6).

2. Implicit coding rules and faulty code
patterns

2.1 Characteristics of implicit coding rules

The “implicit coding rules” have the following
characteristics:

174

e These rules are seldom described in the specification
documents or design documents. They only exist in
the developers’ and maintainers’ mind.

e These rules are different from the “Coding rules”
which have been decided at the starting point of the
development process. These rules were generated
unexpectedly and implicitly during a long-term
maintenance process.

e These rules are quite specific to the particular
software. This means there are different implicit
coding rules to the different software. Therefore, it is
too difficult to detect code fragments violating
implicit coding rules by the existing checking tools
or checklists because the generic checking tools (such
as ‘lint’ and ‘purify’) and generic checklists detect
only the generic problems.

e It is difficult to redesign for eliminating these rules
due to the risk and the cost. If we are to redesign
software, it is necessary to exactly understand the
source code; however, the source code in an old
system is much too complicated and there are no
precise documents and no expert maintainers who
know the system very well. Hence, the redesigning
usually takes too much time, and sometimes it makes
a new rule. “Refactoring”[3], which is one of
methods for redesigning, also has the same problems
mentioned above.

The presence of implicit coding rules causes an
increase of maintenance cost and deterioration in the
reliability of the software. Violating implicit coding rules
causes an injection of faults, so maintainers have to
change the source code while paying attention to all the
implicit coding rules. Thus, the more rules there are in
the software, the more cost is needed. Furthermore, there
is always a risk of repeatedly injecting faults in the newly
changed code as a result of a violation of the rules as long
as the rules exist.

2.2 Detecting faulty code pattern and faults

We call the patterns of code violating implicit coding
rules, “faulty code patterns”. Here we show examples of
implicit coding rules and faulty code patterns in Table 1.

Formerly, faults based on faulty code patterns were
detected by the source code review and test, which are
often very expensive. There are two major ways for
detecting faulty code in the common software
development. One is finding a fault manually when an
implicit coding rule was found by seeking the cause of
the failures. After a rule was found, the engineers must
manually find all the other potential faulty code violating
the rule. However, some of the potential faulty code may
be overlooked. Furthermore, in the future, the

Table 1.

Implicit Coding Rules for Faulty Code Pattern

Implicit Coding Rules

Faulty Code Pattern

A page number must be set to the global variable A before calling the | Call the function B without setting a
function B for recovering screens after interrupting with a specific key.

value to the global variable A

function Y at the same time.

Certain functionality does not work if we use the function X and the | Call the function X and the function

Y continuously

maintainers will not try to find the faults from their
newly changed code because they may not be aware of the
previously found rules. The other one is a code review. In
the code review process, the reviewers need knowledge
on the faulty code patterns or a listing of these patterns,
yet, these rules are rarely described in the specification
documents or design documents. Moreover, the
knowledge and experience of the maintainers often
disappears because many of today’s engineers move
rapidly between companies and job assignments. In
addition, in a large-software development, it is difficult to
share the knowledge with multiple working groups.
Besides, it is difficult to review a whole source code of
large legacy software because it is just too great in
content to completely read and understand. Furthermore,
when some different groups or maintainers are updating
different files at the same time, it is impossible to check
the violations of rules completely.

In this paper, however, a code fragment that matches a
faulty code pattern does not mean the fragment definitely
has a fault, i.e., violating an implicit coding rule may
introduce a fault, but not always. It is because the pattern
in this paper is a static one and does not consider the
dynamic relations between the code fragments. We
regard that a faulty code pattern is a pattern of code that
significantly contains a fault. Therefore, if a maintainer
finds code that matches a faulty code pattern in their
changed code, they must check if there is a fault or not in

5 Target Code of%
. Failure l Sheck Favlts i
| Reports |} B pReR T
A P ;

1. Extract implicit
coding rules and
make faulty
code patterns

3. Match Faulty
Code Patterns

E * Phenomenon,
3 : Ty Cause and
aulty C N
Pdll’lati’ci:g ‘ Violation Code| - Solution of
A s e Failure et
2. Describe faulty code P —— 4. Check fault

patterns formally

Figure 1. Procedure of Fault Detecting System

existence

175

fact. For checking, the maintainer needs some
information about the pattern, for example, what failure
the pattern had caused in the past, how to reproduce the
failure, and so on.

2.3 Faulty code patterns in industry software

We have investigated implicit coding rules and faulty
code patterns in a subsystem of large legacy software (see
detailed information in Section 4.2). In this investigation,
we have found that 54 failures out of 165 failures
described in failure reports were due to the violation of
implicit coding rules. We could extract 45 implicit
coding rules from these 54 failures. 9 failures have been
caused by the same rule. 2 of these 45 rules were
dissolved in the maintenance process, but 43 still
remained in this software, thus, these rules may cause
fault injections by other maintainers in the future.

Some faults have been introduced by oversight during
the code review, and another caused by violating the
same implicit coding rule have been introduced by
different working groups. Moreover, one rule caused a
failure in another version of the system. We realized that
since it is quite difficult to manually detect all the faults
based on the implicit coding rules, the faults were
repeatedly generated in the long-term maintenance.

3. Fault detecting system

3.1 Procedure of the fault detecting system

In this paper, we propose a method for detecting code
fragments that match faulty code patterns. We call the
implementation of this method, “Fault Detecting System”.
The procedure of our method is the following (see Figure
1):

1. Experts investigate failure reports and extract
implicit coding rules that have caused the faults.
Next, they extract the faulty code patterns based on
these rules.

2. Experts formally describe the faulty code patterns in
a pattern description language (explained in Section
3.3), and store them in the system.

3. The system matches the faulty code patterns with the
input program code. If the system finds some

matched code fragments, it detailed
information about them.
Maintainers check the output code fragments with
the failure information to discover whether they are
faults or not.
In addition, the set of faulty code patterns will be
updated every time someone finds a new implicit coding
rule in the system or if he/she dissolves one of the rules
through reengineering work.
We will discuss about each phase in detail from next

subsection.

outputs

3.2 Extracting implicit coding rules and make
faulty code patterns

Implicit coding rules can be extracted from the failure
reports, which are one aspect of process data. Many
organizations make such documents when failures occur,
faults are repaired, or the fixed code is released.

In this paper, we used 3 types of failure reports; failure
occurrence reports, fault solution reports, and file update
reports. In these reports, there are information about the
situation in which the failures have occurred, works and
results of the solution process, and releases. Some
important information in this method is a phenomenon,
cause, and solution of the faults (see Figure 2). Implicit
coding rules are mainly extracted from the causes of the
failures. However, they are very useful not only for
extracting implicit coding rules but also for confirming
the failure occurrences, to check for the faults existence,
and to repair them.

Conditions for extracting implicit coding rules are the
following:

e A cause of failure is clear on the program code.
There is a possibility of injecting other faults caused
by the same rules in the future.

The global knowledge and prospect of the target
software are necessary to make the faulty code patterns
from implicit coding rules. The maintainers have to
judge whether the patterns are important or not and also
have to extract the “appropriate” faulty code pattern. In
case the derived faulty code patterns are inappropriate,
we cannot detect the proper code fragments that should
be checked, or we may detect too many code fragments
that do not need to be checked.

From a failure described in Figure 2, we can extract a
rule like “The page number must be set to CtrINo before
calling ChangeView() ”, and make a faulty code pattern
like “Absence of a statement setting a value to CtrlNo
before calling ChangeView()”.

Phenomenon : A certain screen is interrupted with a
certain particular key, after that, the screen can not
. recover correctly the former one.

F.()i) Cause : Call the function

'c'lof’ ChangeView() without setting page
for(; ; c+4){ number to the global variable CtriNo.

if(F2(c)==0) . .
break; Solution : Add statement of setting

} / page number to the variable CtriNo
ChangeView(); before calling the function
return(RET_OK); ChangeView().

)

Figure 2. Example of Failure Report

176

declaration $d $*d $d_{name}
type $t $t_{name}
variable $v $*v $v_{name}
function $f $f_{name}
expression # #* #_{name}
statement @ @¥* @_{name}
$v Wildcard for Variables
$*v Wildcard for Collection of variables
$v_{name} Named Wildcard for a variable
@[stmt1] stmt2] Any of the specified statement
@<id_1> refers to/uses identifiers
% % Symbol for separating two sections
Figure 3. Pattern Description Symbols (from
[13])

Pattern) A Match

$f_1 = “*max*’ int find_max(int_arr, N)

%0 %0 int int_arr([];

$t_1 $f_1($*v) int N;

$*d {

{* int i, mixture;

@ [while|dowhile|for]{* maxstore = int_arr[0];
if(Sv_2[#]> $v_3) for(i=1;i<N;i++){
$v_3=9$v_2[#]; if(int_arr(i] > maxstore)
*} maxstore = int_arr{il;
*} }
return(maxstore);

}

Figure 4. Pattern for finding the maximum in an
array of integers. (from [13])

3.3 Describing patterns in formal description

In this system, we use a pattern description language
proposed by S. Paul and A. Prakash[13]. This pattern
description language has been developed for
reengineering code, understanding code, and so on. Users
can describe patterns using symbols that have syntactic
meanings on the source code, like “function”, “variable”,
and so on (see Figure 3 and 4), instead of a string search
(such as “grep”). So, it is possible to write code patterns

that the users exactly want. This language is an extended

version of the underlying programming language, thus,
learning to write patterns is easy and the scalability is
good. Figure 4 shows main syntactic entities for
describing patterns. Paul and Prakash selected these
entities “based on our perceptions of what maintainers
typically look for”, and they also say “if queries
requiring pattern matching on other syntactic entities
were required, such syntactic entities could be added
easily to the pattern language without changing the basic
design of the system”[13]. An example of a pattern in
this language is shown in Figure 4.

In this research, we will describe the faulty code
patterns in this language. Considering the actual faulty
code patterns extracted from real legacy software, we
extended their pattern description language (See Figure
5). Below we describe our extensions:

e Many faults are caused by the absence of a vital
statement. In turn, we need a symbol that expresses
the absence of a statement (this will be an
expression of the existence of any statement
excluding the target statement).

Global variables are more risky in causing faults
than local ones. For example, if one global variable
that is used in multiple modules has changed in a
certain module, this change often affects other
modules and thus causes faults. Therefore, it is
important to distinguish the “local” and *“global”
variable in the faulty code pattern, so we added a
symbol of the “global variable”.

In large software, there is a strict coding rule for
deciding the names of the functions and variables,
so if we can describe the naming rules in the pattern
language, it will be useful to describe the patterns
that the maintainers exactly want. We believe
that regular expressions (e.g. used in ‘“grep”
command) are very useful to express these rules.
Some of the faults in the complicated software
are caused by multiple code fragments, which
exist in multiple functions and/or multiple files.
Therefore, in order to represent one faulty code
pattern in one pattern description, it is necessary
to match multiple chain patterns.

3.4 Matching with faulty code patterns

The matching system architecture SCRUPLE from
the paper[13], is shown in the Figure 6. The source
code is transformed into an AST (Attributed Syntax
Trees; see Figure 7) by a code parser, and the faulty code
patterns written by users are transformed into a CPA
(Code Pattern Automata; see Figure 8). The CPA
interpreter runs the CPA with the AST as inputs. As the
CPA reaches the final state (e.g. g6 in Figure 8), the

Ex. 1) .7 A Global Variable
$vg 1=*CtriNo’ ~ : The Variable CtrINo is a Global Variable.
$f_1= ‘ChangeView, e
%% o Absence of Statement
A@Svg_1=#; " There are more than zero statements except of
@$f_1(#*); setting value to the Variable CtriNo.

Ex.2) /" Keywords based on Regular
$f_1 = ‘func_[A-Z]*{0-9][0-9"" Exprggigng
$vg 1 ="‘glVal’ $f_1 matched func_ABCO00, func_Z21,
% o and so on.

gsf—l("v”r@ - First Pattern

{

\ ‘@%;
" Second Patte

@Svg_1=0;

@*""" Symbol for separating two chain patterns
The 2nd pattern is searched in the Function $f 2
extracted from the third parameter of the $f_1]

Figure 5. Extension of Pattern Description

Symbols
- PARSER || PARSER §<———§PATTERN
| & —
Vo

B """‘“;;!pdnte()
fetch(ON S

| Interpreter
new_bindin tecord()
) Bindl;lg " theck_binding() Match
.. Tables Set

chuk_sy/m"
P change_state()

Figure 6. The Architecture of the SCRUPLE
System. (from [13])

!<assign|call>

“I[CtrINo]

@SLI;

§<call> A .
! ~ J[ChangeView]

v . <funcname> [ChangeView]

L qd /,;

" g5

Final State
q3/End input alphabet
q6

:No Matched Code
:Detected Matched Code

Figure 8. Example of transition diagram by Fig. 5

interpreter saves the code fragment into a match set. Also,
the interpreter maintains the information about bindings
of the named wildcards (e.g. $f 2 in Figure 5) in the
binding tables.

We have implemented a system based on this
architecture for C language. The system makes an AST

177

CtriNo = PageNo;

Chglnit();

size = 100;

d = ChangeView(l, 2, Calc(size));

stegary

Value |

Figure 7. Example of AST(Attributed Syntax Trees)

for each function in the program code and matches the
faulty code patterns. The system has some additional
handlings in the AST parser for addressing the extension
of the pattern description language as follows:

® The source code parser checks if the declaration of
each variable in the statement exists in the same
function or not, and adds the information of “local”
or “global” to each variable on the AST.

The AST parser normally analyzes in each step of
code; however, the code fragments that matched the
faulty code patterns sometimes exist while stepping
over several functions called from a certain function.
Therefore, when we extract an AST from a function
in source code, we also go through the functions that
are called from a target function. This function trace
was done by the preceding depth search. In this
search, it is necessary to make sure that a function
that has been visited once must not be visited again.

3.5 Presentation and application of result

The result of the detection of the faulty code patterns
will be presented to the maintainer with the code
fragment and the detailed information about the fault.
Figure 9 shows an example of the resulting matched
faulty code patterns in Ex.1 of Fig. 6. Since the fragments
that match the faulty code patterns are not always the
faults, the maintainers must check the fragments and find
the faults with the detailed information of the matched
faulty code patterns. If there is a fault found in a matched
fragment, the maintainers can repair it at a low cost
because they can refer to some additional detailed
information and learn how to test and solve it.

3.6 Usage of the method

This proposed method is used in the following two
situations:

178

A Match Code Fault Information
FO ; } n . —
ulGlblconNo2 “Not find a statement of setting value to
=f2(a, b, c); “the variable CtriNo.
ChangeView(0, : e T
ulGlblconNo2, ~Addition:
i f(iTi)g) ?" . If you call the function ChangeView()

return(RET_NG); | wntl.lout setting page number to the

} . " variable CtriNo, the screen can not

retum(RET_OK); recover from interruption by a certain
) B _particular key.....

Figure 9. Example of Presentation of result
from the Fault Detecting System.

For code review: When developers and maintainers
change program code, the proposed method can be
used before a code review by a third person. They can
check the changed code using all the faulty code
patterns that have been found in the past. In this case,
if a fault was found, the maintainers can correct it
before going to next phase.

When a new rule is found: When a maintainer finds
a new implicit coding rule, the maintainer can check
the whole program code using a faulty code pattern
based on the newly found rule. In this case, the
maintainer can find implicit faults injected in the
past maintenance activities.

4. Case study

4.1 Objective

In this case study we will evaluate the effectiveness of
the method for the detection of faulty code from two
points of view.

[Usefulness of this method]

We will evaluate whether the detection of any faulty

code fragments that match the faulty code patterns is

actually beneficial for the maintenance process. As
mentioned in Section 2.3, the rate of failures caused by
the violation of implicit coding rules is 32.7%. However,
not all of the code fragments detected by the system are
the faults, so if there are too few faults in the detected
code fragments, it will only cause the increase of
maintenance cost for checking the detected code
fragments. Moreover, if these failures/faults can be easily
detected by other methods, such as testing, it is not clear
that our method is beneficial. From these points, we will
investigate the following data:

e Ratio of faults to all of the detected code fragments

e Ratio of faults, which have not been reported as
failures in the testing or running phase, to all of the
detected faults.

[Performance of the system]

We will evaluate whether the fault detecting system
with the pattern description language and pattern
matching technique is useful for detecting code fragments
that match the faulty code patterns. It is important to
know how much ratio of the faulty code pattern can be
descriptable in the proposed language because the
patterns cannot be detected unless it is described.
Moreover, it must be confirmed that the known faults can
be definitely detected by the system. From these points,
we will measure following data:

e Ratio of descriptable faulty code patterns in the
original pattern description language to all of the
faulty code patterns.

e Ratio of descriptable faulty code patterns in the
extended pattern description language to all of the
faulty code patterns.

e Ratio of detected faults to all known faults.

4.2 Material and procedure

In this case study we used a subsystem of large legacy
embedded software, including hardware control modules
and user interface modules. This subsystem is written in
C language and the size is about 447,000 steps. It was
developed in 1991, and it is still running (see Figure 10).
The version we used for the case study was picked out of
many different versions, which had been developed and
maintained from April 1997 to May 1999.

In this case study, we used the system in the 2™ usage
in Section 3.6, i.e. we detected faults from the whole

program code by matching each of the faulty code
patterns. We used the program code as the starting point
of the maintenance (i.e. B=Dec.1, 1997). For making the
faulty code patterns, we used the failure reports that were
made between Dec.1, 1997 and May 1999 (B-C) because
we could not get the reports between A and B. We could
get the faulty code patterns, which have been created
between A and C, then, we extracted the faulty code
patterns which existed at point B for the matching in the
source code in B.

Originally we must conduct the experiment with the
source code at the point when each faulty code pattern
had been found. However, we did not have the whole
source code at each of the points, so we used only the
source code at the point of B. Therefore, we could not get
the faults which had been introduced between B and C.

4.3 Results

The results of the evaluation are shown in Table 2.
Also, the appendix shows some typical faulty code
patterns in the formal description.

We have manually counted the number of “failures”
and *“(implicit coding) rules”. There were 39 rules at the
starting point of the maintenance process, and only 17 of
them were descriptable in the original pattern description
language. However, by extending the language, 30 faulty
code patterns became descriptable. Then, the system
matched these 30 patterns and the causes of the 33
failures that were found in all of the detected code
fragments against the 38 failures due to 30 faulty code
patterns.

“Code fragments” is defined as the fragments of
program code that is automatically detected by the fault
detecting system. We manually checked 772 code
fragments outputted from the system, and found 152
faults, which possibly cause failures (we could not
confirm the failures happen on the running system).
Moreover, we checked whether these possible faults have
been reported as a failure or not and found that 111 of
them were unreported, i.e. potential faults.

We could recognize some problems in the results; we
could not describe 9 implicit coding rules in the pattern
description language (D-F in Table 2), and the system
could not detect 5 failures that have been caused by the
faulty code patterns used in the matching process (G-H in

Table 2). An example of the patterns, which were

1991 A(Apr. 1997) B(Dec. 1997) C(May 1999) not descriptable, is that if function A would be
, . changed, function B probably has to be changed.
Development Maintenance L In this case, we have to get the difference

| B K /I
~
Fault-reported Period

Figure 10. Schedule of the software used by case study.

179

Il

between the pre-changed code and post-changed
code and check whether a difference in the code
exists in function B. Therefore, we have to
extend not only the language but also the

Table 2. The Results of the Evaluation

Item Count | Ratio Notes

A | All the Failures 165 Failures whose cause had
been reported

B | Failures caused by a violation of the implicit coding rules in A 54 32.7% | =541/165

C [Implicit coding rules extracted from B 45 10 failures were caused by
the same rule

D | Rules that exist at the point of starting the maintenance 39 Point of Starting
maintenance = 1/12/1997

E | Descriptable Rules in the original Pattern Language 17 43.6% | =17/39

F | Descriptable Rules in the extended Pattern Language 30 76.9% | =30/39

G | Failures caused by the violation of the implicit coding rules in 38 Failures reported in the

F testing or running process

H | Failures detected by the Fault Detecting System in G 33 86.8% | =33/38

I | Detected Code Fragments by the Fault Detecting System 772 Detected by using Patterns
inE

J | Code Fragments whose faults were found in I 152 197% | =152/772

K | Code Fragments that were not reported as faults in J 111 73.0% | =111/152

matching system from a simple syntactic matching one.
Also, one of the reasons for the undetected failures is the
interruption of the matching process because of the lack
of memory or stack.

According to the problems mentioned above, it is
necessary to extend the pattern description language and
improve the matching system with the extension of
language. Moreover, it is important to improve the
matching algorism to become a practical system.

4.4 Discussion

[Usefulness of this method]

19.7% of the detected code fragments were faults (J in
Table 2), and only 27.0% of them had been found as
failures (K). 73.0% of faults, which needed to be
manually reviewed for detecting, could be automatically
detected. Furthermore, only a part of the faults based on
the implicit coding rules were found as a failure, like a
tip of an iceberg, and these potential faults could be easily
found by this method.

From these results, this method makes it able to detect
not only the faults that have caused failures but also
potential faults that will cause failures in the future.
Therefore, it can improve the reliability of the software.
Moreover, the maintenance cost would also be lower
because it is possible to repair the potential faults before
becoming a failure in the testing or running process.
[Performance of the system]

180

The ratio of descriptable faulty code patterns was
improved from 43.6% to 76.9% by the extension of the
pattern description language (E and F in Table 2). This
data shows that the selection and extension of the pattern
language is appropriate because the ratio was widely
improved by slight extension and it was not necessary to
widely change the original architecture. It shows that the
scalability of the original language is very good.

The ratio of detected known faults (H) shows that most
of the faults, which we have expected to detect, could
really be detected.

From this result, we confirmed that the procedure of
detecting a violation code in our method is useful for
detecting real faults and the performance is appropriate.

5. Related works

5.1 Checklists

This is a method for detecting mistakes using a list
whose checking items are written for the coding and
design. There are many popular checklists for detecting
generally easy-mistaken items [5][6][12]. Also, there is
research being conducted to select the necessary check
items for each program [8].

These checklists have been created for applying
themselves to the general software, so they do not include
detailed check items for individual systems.

The faulty code patterns in our study can be included
in the checklists; however, checking manually requires a
lot of time and manpower if there are many patterns.
Thus, an automatic detection system is needed.

5.2 Predicting fault-prone modules

This is a method for predicting fault-prone modules by
using the software metrics data, e.g. lines of code, the
number of calling functions, the number of loops, and so
on. If the modules could be classified into a group of
fault-prone and non fault-prone, maintainers can review
or test the fault-prone modules intensively and find the
faults efficiently.

Khoshgoftaar et al. researched predictors using the
process data, e.g. number of new and changed lines of
code, number of updates in designers’ company careers
and deployment usage [7]. Graves et al. presented their
research that measures the number of changes and the
age of code from the software change history improved
the predicting accuracy [4]. Also, Andrews et al.
researched the predicting method using the defect history
and release data [1].

These methods can predict fault-prone code in a unit of
module. In that, it is actually expensive to find the faults
from the detected fault-prone modules.

6. Conclusion

This paper pointed out that the phenomenon of code
decay in software evolution could be explained as an
increase of the implicit coding rules. We found that a
considerable number of failures are due to the violation of
implicit coding rules (54 out of 165 failures). We
executed an experiment applying this method for fault
detection in the software. As a result, 76.9% of these
rules were descriptable in the pattern language; and
86.8% of the faults, which have been reported and
described, were extracted from the program code by the
prototype matching system. Moreover, many potential
faults based on some common faulty code patterns were
automatically detected; we have found 152 faults based
on 30 faulty code patterns. This result shows that the
maintainers have repeatedly generated similar faults
based on the same faulty code pattern. Moreover, 111
potential faults, which have not been reported, were also
detected. From this result, we believe that the method is
useful and practical in enhancing the reliability and
reducing the maintenance cost.

The related works have mainly analyzed the
complicated program code of legacy software at a
viewpoint of the phenomenon, such as “code
decay”([2][10]. However, it was difficult to give the

181

maintainers useful feedback from the result of these
works. In this paper, we analyzed the problem from a
viewpoint of the maintainers, and proposed a method to
directly solve it, i.e., we recognized the complexity of the
program code as a generation of implicit coding rules,
and summarized the significance and effectiveness of
detecting faulty code violating implicit coding rules.
Moreover, we proposed a concrete method for detecting
the faulty code and evaluated the effectiveness and
performance of the method through the case study.

In this paper, we have reported a case study for
detecting faults from the entire program code at the
starting point of the maintenance process; however, we
must go further and evaluate our method by detecting
from changed code during the maintenance process.

Finally, we have some future works for making the
method more effective and useful.
¢ Improvement of the pattern description-language.
Development of a matching system that is quicker
and more accurate.

Make a guideline to describe the faulty code patterns.

Acknowledgement

This study was supported by the Industrial Technology
Research Grant Program from the New Energy and
Industrial ~ Technology Development Organization
(NEDO) of Japan.

8. References

[1] A. A. Andrews, M. C. Ohlsson, and C. Wohlin,
“Deriving fault architectures from defect history,” J.
of Software Maintenance: Research and Practice,
Vol. 12, No. 5, pp. 287 - 304, Sept.-Oct. 2000.

S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus, “Does code decay? Assessing the
evidence from change management data,” [EEE
Trans. on Software Engineering, Vol. 27, No. 1, pp.
1 - 12, Jan. 2001.

M. Fowler, Refactoring: Improving the design of
existing code, Addison-Wesley, 1999.

T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting fault incidence using software change
history,” IEEE Trans. on Software Engineering, Vol.
26, No. 7, pp. 653 - 661, July 2000.

C. P. Hollocker, Software reviews and audit
handbook, p. 162, John Wiley & Sons, 1990.

W. S. Humphrey, A discipline for software
engineering, Addison-Wesley, 1995.

(2]

(3]

(5]

(6]

[7] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. $m_3 = 'SUBEVENT'
P. Hudepohl, “Data mining for predictors of software %0 %
quality,” Int’l J. of Software Engineering and struct $t_1 $v_1[] = {

Knowledge Engineering, Vol. 9, No. 5, pp. 547 - 563, *#,
1999. $m_2($m_1, #, #),
(8] F. Macdonald, and J. Miller, “A comparison of tool- i,
based and paper-based software inspection,” J;
Empirical Software Engineering, Vol. 3, No. 3, %
Autumn 1998, S"“Cl*f:_l $v[] = {
[9] T. Matsumura, A. Monden, and K. Matsumoto, “A $m’ 3(# $v 1)
Method for Detecting Faulty Code Violating Implicit * T
Co .din‘g Rules,” Proc, 5" [nterr.mtional Workshop on $m_2(#, $f 7, #),
Principles of Software Evolution (IWPSE2002), pp. 4
15-21, May 2002. b '

[10]A. Monden, S. Sato, K. Matsumoto, and K. Inoue, %
"Modeling and analysis of software aging process," F. $f.70
Bomarius and M. Oivo (Eds), Lecture Notes in {
Computer Science, Vol. 1840, pp. 140 - 153, 2000. *@;

[11]A. Monden, S. Sato, and K. Matsumoto, "Capturing @[$I_1|$f 2| $f 3 |$f 4 | $£_5 | $1_6]($*v);

industrial experiences of software maintenance using)
product metrics," Proc. 5" World Multi-Conference %

on Systemics, Cybernetics and Informatics, Vol. 2, * PatternB

pp. 394 - 399, July 2001. $f_1 = "SetKeyX_On’

. $f_2 ='ScreenInit’ *
[12]1G. J. Myers, The art of software testing, John Wiley, %%
New York, 1979. @$f_1($*v);
[13]S. Paul, and A. Prakash, “A framework for source *@;
code search using program patterns,” IEEE Trans. @$f_2;
on Software Engineering, Vol. 20, No. 6, pp. 463 - Jo
475, June 1994. e Pattern C

[14]E. Regelson and A. Anderson, “Debugging practices $f_1 ='func_rstuv' *

- ” =" -z]*
for complex legacy software systems,” Proc. $f.2 'nem__[a Z']
International Conference on Software Maintenance, $£_3 = func_draw

pp. 137-143, Sept. 1994 %%)
. . @Sf_1(#, #, #, $1_4);
[15]N. F. Schneidewind and C. Ebert, “Preserve or %

redesign legacy systems?” [EEE Software, Vol. 15, $f_40)

No. 4, pp. 14 - 17, July/Aug. 1998. {
*@:

Appendix @[$f 2| $f_31(#);
e Pattern A }
$f_1 ='GotoA' %
$f 2 ="'GotoB ' e Pattern D
$f 3 =" GotoC ' $f_1 ='disp_string' *
$f:4 =" GotoD' $f 2 = 'set_disp’ :
$f_5 ="' GotoE' Z/o% .
$f_6 ="' GotoAll' @$f_2(* #);
$m_1 ="'OPERATE_A' * @$f_1(*#);
$t_1 = 'EventTbl' %

$m_2 = 'EVENTPROC'

182

