An Approach to Experimental Evaluation of Software Understandability

K. Shima', Y. Takemuraz, and K. Matsumoto'

'Nara Institute of Science and Technology 2Osaka University of Arts Junior College

8916-5 Takayama, Ikoma
Nara 630-0101, JAPAN

+81-743-72-5312
shima@computer.org

matumoto(@is.aist-nara.ac.jp

Abstract

Software understandability is one of important
characteristics of software quality because it can influence
cost or reliability at software evolution in reuse or
maintenance. However, it is difficult to evaluate software
understandability in practice because understanding is an
internal process of humans. This paper proposes
“software overhaul” as a method for externalizing the
process of understanding and presents a probability model
to use process data of overhaul to estimate software
understandability. An example describes an overhaul tool
and an application of it.

Keywords: measurement, experimentation, human factors,
reuse, maintenance, and evolution.

1. Introduction

Software reuse is promoted by object orientated
technology or component-ware technology [1]. However,
when developers try to reusc a software system developed
by other developers, the difficulty of understanding the
system limits reuse [3]. Even if the developers of the
original system were in the same organization at first, they
may be transferred, or may change their jobs or retire. It is

Software Hardware

Human

Developer 1

Version 2

Developer 2

Fig. 1. Communications between human,
software, and hardware in software evolution

0-7695-1796-X/02 $17.00 © 2002 IEEE

48

2-14-19 Yata, Higashi-sumiyosi-ku,
Osaka 546-0023, Japan

takemura@mxw.mesh.ne.jp

not rare that changes to reused software systems will be
needed for enhancing functions, correcting faults, or
adapting them to new circumstances. If the developers of
the original system were absent, the developers reusing it
need to understand it. If it is difficult to understand,
changes to it may cause serious faults and a chain reaction
of changes. Such changes may cost more time than
remaking the software system.

Boehm defined software understandability as a
characteristic of software quality which means ease of
understanding software systems [2]. In his model,
understandability is placed as a factor of software
maintenance. Although developers of the original software
system usually maintain it, they may be transferred, or
change their jobs or retire. Software maintenance staffs
need to understand and change it for enhancing functions,
correcting faults, or adapting it to new circumstances.
Changes to software systems are called software evolution
in the research field of software maintenance. Changes to
reused software systems can be considered as evolution of
reused software systems. Therefore, software
understandability can be placed as a factor of software
evolution in reuse or maintenance. In an experiment of
code inspection, 60% of issues which professional
reviewers reported were soft maintenance issues related to
understandability [6]. It means that professional reviewers
regarded understandability as important.

However, it is not easy to measure software
understandability because understanding is an internal
process of humans. Fig. 1 shows communications among
humans, software, and hardware in software evolution.
Developer 1 writes version 1 of a software system.
Developer 2 evolves the software system from version |
into version 2. Software can be considered as the media of
communications from the developers to the computer.
Developer 2 reads version 1 in order to write version 2.
Therefore, software can be considered as the media of
communications from developer 1 to developer 2.

Understanding a software system can be considered to be
“reading necessary information via the software system to
evolve it”. Developer 2 may feel that he/she understood
version 1 when he/she finished reading it. However,
developer 2 might misunderstand version 1 and thus
introduce faults into version 2. Therefore, we usually
consider that developer 2 understands version | when
he/she could correctly write version 2. In order to measure
understandability, we need to observe an external process

(like writing the version 2) which externalize
understanding.
This paper proposes “software overhaul™ as a method

for externalizing process of understanding software
systems. Overhaul itself does not change software systems.
However, data from the overhaul process can be used to
measure software understandability. This paper presents a
probability model to use the process data to estimate

understandability. An example describes an overhaul tool
for source code and an application of it.

2. Software Overhaul

“Software overhaul” consists of deconstruction and
reconstruction like overhaul of hardware systems e.g.
engines, clocks, etc. Deconstruction is to take a software
system apart to components. Reconstruction is to
reproduce the software system by putting the components
together again. Reconstruction simulates the construction
which is to produce the original software system by
selecting or making the necessary components and putting
them together. In reconstruction, workers are given the
same components of the original software system so that
workers need not to select or make components. This
constraint reduces the time needed for reconstruction.

needed for correct reconstruct
M : the number of components
original

[T
intT=20
Component [] components =
do {

++ T

reconstruct (M , components ;

return T ;

Component [] deconstruct

Components [] components

shuffle (M , components) ;
return components ;

differences */

int k L d1fferences 0 ;
for (k k<M o+ k) {
if (reconstructed [k1 !=
if (reconstructed [
reconstructed [k]
else ++ differences ;

NULL)

NULL ;

return differences ;

/* overhaul the original software system and return the number of attempts

components of the original software system */
int overhaul (int M , Component [] original) {
the number of attempts to reconstruct */

/* deconstruct the original software system and get components.
deconstruct (M , original) ;
/* reconstruct the software system from components */

} while (check (M , components , original)) ;
}
/* deconstruct the software system and return removed components */
(int M, Component [] software) {
/* make a clone of the software system */

clone (M , software) ;
/* shuffle the components in order to hide the original arrangement.

/* reconstruct the software system from components */
void reconstruct (int M , Component [] components) {
The worker rearranges the components.

}
/* check the reconstructed software system with the original,
components from the reconstructed software system, and return the number of

int check (int M, Component [] reconstructed , Component [] original) {

k]=-= origgna1 [k1)

~.’:/

+/

removed correct

Table 1. A procedure of software overhaul

49

Workers use a tool to “overhaul”. The tool deconstructs
the original software system and checks the software
system reconstructed by workers. When the tool checks
the reconstructed software system, it fixes components in
the same place with the original so that the workers use
only remaining components at the next reconstruction.
Therefore, workers can overhaul by trial and error. Table 1
shows a procedure of software overhaul written in a
language like C.

Software overhaul is a new method for externalizing
process of understanding software systems. Dunsmore and
Roper reviewed many papers and listed maintenance task,
recall (memorization), subjective rating, label/group code,
fill-in-blank (cloze), code overage/optimization, and call
graph as techniques used to measure comprehension [4].
Most of them (except subjective rating) can be considered
as methods for externalizing process of understanding
software systems. Maintenance task are easy to be

believed because the task represents what programmers do.

However, this method requires costs of preparation,
execution, and analysis. In the other methods, researchers
suppose some knowledge which subjects who understood
the software system should have or can infer. Subjects
execute a task which requires such knowledge in order to
achieve it. Software overhaul is a method of the latter
group. Experiments which show the link between various
maintenance tasks and software overhaul are needed.
However, this paper focuses on the theoretical part.
Another paper [10] presents experiments which show the
link between debug task and software overhaul.

3. Model

When a worker needed to reconstruct one software
system many times until he/she correctly reconstructs it, it
can be considered the software system is difficult for
him/her to understand. Needless to say, understanding
depends on not only understandability of the software
system, but also comprehension of the worker. If many
workers overhauled many software systems, the average
number of attempts needed for correct reconstruct can be a
metric .of understandability or comprehension. The
average number of attempts necded for correct
reconstruction that one worker reconstructed many
software systems means comprehension of the worker.
The average number of attempts needed for correct
reconstruction that many workers reconstructed one
software system means understandability of the software

system. However, if the amount of data is small, such

average number does not carry high confidence as an
estimator. This section presents probabilistic models to
estimate comprehension and understandability. The
followings are given.

L : the number of workers

N : the number of software systems

50

M

, : the number of components of the software
system n (n=1~N).

/T, : the number of attempts to reconstruct when the
worker / overhauled the software system n (/=I~L,

n=1~N).
3.1. Random Reconstruction

Some workers may randomly reconstruct just by trial
and error when they can not understand the software
system because the workers are not good at

comprehending or the software system is not well-
understandable. Let us define:

H, : the hypothesis that the worker randomly
rearranges all components of the software system in
reconstructing.

fu () the probability that

correctly rearranges M components at the T -attempts
under .

the worker

w P{=1C, X P, : the number of permutations of the

M components in which k components are different from
the original permutation and the other (M-k) components
are the same with the original permutation.

;=M PA; : the number of permutations in which all

M components are difterent from the original permutation.
The following equations can be derived.

fo(0)=1.

f1,(0)=0 when M >0.

Jo(T)=0 when T >0.

w by =F= Py =1.

’ ”

b= G X Py

When the worker rearranged M components and k of M
components are difterent from the original sottware

system, he/she rearranges k components at the next
attempt to reconstruct. Therefore,

1 ¥ ,
fM<T)=M§MPkfk<T—1)

when M >0 and T >0.

M P,: and PA; can be calculated as follows:

M
D P =M.
k=0

M-l
w By =M= P when M >0.

k=0

M-l
Py =M=),,C,xP when M >0.
k=0

3.2. Significance Test of Understanding

In order to confirm that the worker did not randomly
reconstruct the software system, f},(7) can be used to

statistically test H , as follow:

T : the observed number of attempts to reconstruct.

¢ : the random variable of attempts to reconstruct.

r

FM(T):P(tST|HR)=ZfM(f) : the
=0

probability that the worker correctly rearranges M

components within 7 attempts.

a : the significance level such as 0.05, 0.01, 0.005, or
0.001.

For example, when F, (T) < &, H is significantly
rejected.and it means probably E When Fy, (T) >,
H , is accepted. However, it is not significant. That is, it

does notimean that H , is proved. This relationship is

described as follows:

PH,Nt<T)=P(H,|t<T)Pt<T)
=P <T|H)P(H,)

F,(D)P(H,)

PH,|t<T)= PG<T)

If a worker could overhaul a software system within 7’

attempts, he/she can usually overhaul the same software
system within 7 attempts at the next time because he/she
can remember the original software system. Therefore, it

can be considered P(t <T)=1. When the worker

overhaul the software system many times, P(H) will
decrease because he/she remembers the original software
system. However, it is difficult to estimate P(H) at the

first overhaul. Therefore, we use P(H) <1 to derive
the following inequality.

P(H,|t<T)<F,(T).
P(H, |t ST)=1-P(H, |t<T)>1-F, (T).

Therefore, it F},(T) is small, the probability of 17,‘, is
large. It means that the worker could understand the
software system at least a little. However, even if F,, (T

is large, maybe H , or H,,.

14 e -

o 12

D [— R

£~ | i=6=0.05

< g .

5 E 8 001

o= |

E5 gL 2 0005 .

3 = i X 0.001

2 = (L 0001

2 4 o -

= 2 . _
0 1 1 1 1 L L ! 1 I ' Lo i

6 7 8 9

10 11

12 13 14 15 .16 17 18 19 20

M : the number of components

Fig. 2 The maximum number of attempts to reconstruct with significance

51

0.9 - 2

0.8 A—A—X%

A X f _

07 r X ——M=10]_
£ " XL
:_S 0.6 A ¢ 3 +M=20_
LY pox £ A M=30
2 0. ? A] f L
o 04 A X 7 X M=40] |
2 N ——=M=50

- 4 Al x | f ——M=60| |

0.2 PR =60 |

0.1 1)(x f

0

0 10 20 30 40 50 60 70 8 90 10

T : the number of attempts to reconstruct

Fig. 3 The number of attempts to reconstruct vs the probability

T (M)=max{"T|F, (T)<c} : The
maximum number of attempts to reconstruct of which
F,, (T) is less than the significance level o

Fig. 2 shows T, . (M) when r=0.05, 0.01, 0.005, or

0.001. The horizontal axis shows the number of
components. The vertical axis shows the number of

attempts to reconstruct. If 7, (M) = 0, the results of
overhaul can never be significant because the number of
attempts to reconstruct is one at least. If T, (M) =1,

the comparison of results is meaningless because the
number of attempts to reconstruct is always one when it is

significant. Therefore, T, (M) should two at least. It

means that 6, 7, 8, or 9 components are required for the
significance levels 0.05, 0.01, 0.005, or 0.001, respectively.

If workers needed to rearrange all components in every
attempts, the probability that workers succeed to correctly
reconstruct is 1/M! in every attempts, and then, it is too
difficult for them to succeed to correctly reconstruct
within practical attempts. However, even if the workers
randomly rearrange the components, the number of
components that they need to rearrange will decrease
because the tool fixes components in the same place with
the original in each attempt. Fig. 3 shows the feasibility of
overhaul. The horizontal axis means 7. The vertical axis

means F,,(T). F,,(T) is more than 0.9 at =14, 26, 37,
48, 59, or 70 when M=10, 20, 30, 40, 50, or 60,

52

respectively. Although workers may be tired if they
repeated to reconstruct in such number of times, they can
succeed at final.

3.3. Significance Test for Multiple Overhauls

Needless to say, the question whether the worker can
understand the software system depends on not only
understandability of the software system, but also
comprehension of the worker. Therefore, experimenters
may assign one software system to multiple workers for
accurate measurement. Suppose the result of only one

worker rejected H , and the results of others accepted

H, . The experimenter can logically think that H is

rejected when the number of workers is small. However, if
20 workers randomly reconstructed the software system,

one lucky worker may reject H , with the significance

level 0.05.

The Kolmogorov-Smirnov one-sample test is a test of
goodness-of-fit [8]. It is concerned with the degree of
agreement between the distribution of a set of sample
values (observed scores) and some specified theoretical
distribution. Therefore, it can be used to determine
whether results in overhaul by multiple workers can
reasonably be thought to have come from a population

having the theoretical distribution under H . The tested
hypothesis is that H , for all workers. The Kolmogorov-

Smirnov test focuses on the maximum deviation D as
follows:

D=max|F, (, ,,)— ~| where n=1,2,...N ,

[=12,...,L , and ,S,,
whose the number of attempts to reconstruct were equal
to or less than T, .

is the number of workers

The sampling distribution of D under the hypothesis is
known (for example, see [8]). If the observed D is more
than the sampling value, the hypothesis is rejected. It
means that some of workers can understand the software
system.

4. Example

Software systems consist of computer programs and
documents that describe planning, specifications, designs,
testing, etc. Programs written in programming languages
are called source code. This section describes “overhaul”
of source code as an example of “software overhaul”. In
overhaul of source code, workers need to understand
specifications or designs of the program written in
documents or comments in source code in order to
reconstruct source code. Therefore, overhaul of source
code evaluates not only the source code, but also such
documents.

Source code consists of characters. New line characters
separate other characters into lines. Although new line
characters mean white spaces in most of recent
programming languages, most developers choose new line
characters and white spaces to make source code easy to
read. Developers usually separate characters into lines by
statement that is a unit of executions. Therefore, we
selected executable lines as components of source code.

4.1 An Overhaul Tool

We developed an overhaul tool for source code. This
tool consists of a client and a server which are written in
Java. The server is one of WWW servers so that workers
can use WWW browsers to access it. At first, workers
open a home page on the server. The home page contains
the client as a Java applet so that the WWW browsers
download and execute it. Therefore, it does not need to
install the client into workers’ computers in advance.

Workers can access the server any time and any where
even when experimenters are absent. Therefore, this tool
has a simple login session in order to distinguish workers.
The client asks workers to register their personal data or to
enter their name and ID. The personal data are the name,
birth year, job, etc. which are needed to know the
characteristics of workers. When workers have registered,
the client sends the personal data to the server. The server
assigns an ID and replies it to the client. The client shows

53

N

[OmFEE SN - IDANRR o/

orisate alalic void tabelChange (B-Jlabel destination, WyJdlabel suum)(

fo pc M’NT’"I lﬁi‘hfl §m|2¢l’\1§ ?'J DENSEIRNEET o/

uum enmu)s
return null;

robuen Tt fidy
iw(!ni‘ﬁm 1<) angth: B

Fig. 4 An overhaul tool for source code

the ID. When workers entered their name and ID, the
client sends them to the server. The server checks them
with the registered data and replies the result. If the name
and ID are the same with the registered data, the client
starts overhaul session. If not, the client ask workers their
name and ID again.

At the first of overhaul session, the client asks the
server to send a file of source code. The server randomly
selects a file from files of the software system and sends it
to the client. The client shuffles lines of the file and shows
them, Fig. 4 shows a window of the client. This window
shows two blocks (Blockl and Block2). Each block
consists of executable lines in one function. Gray lines (of
which the background is gray) are shuffled in each block.
When workers click two of gray lines, the two lines are
exchanged. When workers click the ‘Answer Check’
button at the bottom of the window, the client checks gray
lines that workers rearranged with the original lines. The
client makes gray lines that are the same with the original
lines white. Gray lines that are different from the original
lines remain. The client sends the number of times when
workers clicked the ‘Answer Check’ button to the server.

4.2 Experiment

We conducted an experiment to apply our tool to a
program developed in an industry. The program provides a
language-oriented user interface which allows the user to
describe the configuration of an array of antennas using a
high level language. The program was developed for the
European Space Agency (ESA) in the C language within
Microsoft Visual C++ 1.5 environment. The program
consists of almost 10,000 lines of code (6,100
executables) and is organized in three subsystems of
parser, computation, and formatting. 21 files (11 files
without faults and 10 files with faults which detected in
testing) are randomly sampled from all 150 files. They
consist of 1801 lines of code (549 executables, 90 lines
per file). Subjects are five engineering students (one
graduate and four undergraduates). They studied syntax of
C++ programming language such as control statements,

50 50
45 45
2 e 1]\
o 40 a 40
a. q o
g 35 —| g 35
] B30 = B30
5 E 5
5 225 — 5 %25 7
2 8 t < 8
£ 020 E 020 .
E " f \ E L 4
o 15 o 15
..E 5 L 3
=10 N oo 10
5
0 0
0 50 100 150 200 0 20 40 60 80

Lines of code

Executable lines of code

Fig. 6 The observed number of attempts to reconstruct

structure, pointer, etc. and they were doing their exercise
in their course.

As a result of the experiment, it took subjects 88
min/KLOC. Therefore, it can be estimated that it will take
them 15 man x hours to overhaul the whole program
(10,000 lines). The average and standard deviation number

of attempts to reconstruct was 11 and 14, respectively. Fig.

5 shows the observed number of attempts to reconstruct
and the number of lines. The number of attempts to
reconstruct depends on the number of executables rather
than lines of code. The correlation coefficient between the
number of attempts to reconstruct and executables is 0.77.

The correlation coefficient between the number of
attempts to reconstruct and lines of code is 0.69. This
figure shows that it is extremely difficult to rearrange
more than 40 executables.

Fig. 5 shows a comparison of executables and F,, (T)

between the faulty files and non-faulty files. Faulty files
are uneven distribution although unfortunately they are not
statistically significant because the number of sampling is
not enough. The size of all files is from 7 to 60 and the
size of faulty files is from 12 to 42 although the number of
faulty files and non-faulty files are similar (10 vs 11). It
may imply that developers carefully reviewed large files

Executable lines of code

0 10 20 30 40 50 60 70
1 i L L i !
—
0.01 \ [/
0.001 T \WA \ | /
£ 0.0001 A \ \ \/
:2 0.00001 4 \\' /X
0.000001 \ ~&~ Faulty
0.0000001 \ —4&— Non faulty
0.00000001 &
0.000000001

Fig. 5 Size and understandability between faulty file and non-fauity files

54

(like over 50 executables) and small files do not contain
faults from the first. On the other hand, Faults frequently

appear in files whose I, (T") is low or high except. One

of six file has faults when F), (T') is the mid range from

0.00000001 to 0.01. It may imply that developers easily
missed faults when the files are difficult to understand,
however the developers sometimes missed faults when
they feel the files are very easy to understand.

5. Conclusion

This paper presented software overhaul as an approach
to externalize the process of understanding software
systems, the probabilistic ~models to evaluate
understandability, an overhaul tool for source code, and an
experiment as an example of overhaul.

The number of attempts to reconstruct that workers
repeated to reconstruct a software system is defined as a
process metric of understandability under the algorithm of
software overhaul. In a research of a large scale software
system, some process metrics were more useful to predict
fault incidence than most product metrics [5]. One of the
reasons can be human factors. For example, source code
developed in companies included one comment line for
each executable line. It means that developers feel
comments are important. However, product metrics do not
evaluate comments because it is difficult for computer to
evaluate comments written in natural languages yet.
Process metrics such as the number of changes to the
software system can incorporate human factors because
human behaviors influence them.

The probabilistic models presented in this paper
translate the number of attempts to reconstruct into the
probability of understanding that is comparable among
different software systems. If we could enumerate all
necessary knowledge items of the software system, we can
test whether developers know it or not after they read the
software system. However, this is usually impossible
because we have no systematic method for finding such
knowledge items or confirming that the enumerated
knowledge items are enough. Therefore, probabilistic
models are needed for estimation.

The overhaul tool we developed consists of a Java
applet and a WWW server. Therefore, there are the
following characteristics.

1. Experimenters do not need to install the tool on
each computer of workers in advance.

2. Workers can overhaul anywhere not only the
laboratory, but also their office or home.

3. Experimenters do not need to take a software
system away from the organization of developers if they
installed the server in the organization.

It is usual architecture itself as software systems.
However, this paper shows a possibility of application of

55

the architecture to computer aided empirical software
engineering [9].

Acknowledgment

Our thanks to Prof. Bev Littlewood, Prof. Lorenzo
Strigini, Dr. Diana Bosio and Mr. David Styles in City
University for help to us with the experiment, to Dr.
Andrey Povyakalo, Dr. Peter Popov, Dr. Eugenio Alberdi,
Dr. Mourad Oussalah, and Dr. Mark Alexander in City
University for valuable comments, and to the subjects for
joining the experiment.

Parts of this work were funded through a grant from
National Space Development Agency, Japan and a grant
(No. 14780324) from Japanese Government.

References

[1] M. Aoyama, “Component-based software engineering:
can it change the way of software development?” Proc.
of the 20th International Conference on Software
Engineering, vol. 2, pp. 24-27, 1998.

[2] B. W. Boehm, et. al, “Characteristics of Software
Quality,” North-Holland, 1978.

[3] G. Caldiera, and V. R. Basili, “The qualification of
reusable software components,” pp. 117-119 in [7].

[4] A. Dunsmore and M. Roper, "A Comparative
Evaluation of Program Comprehension Measures", The
Journal of Systems and Software, Volume 52, Issue 3.
pp. 121-129, June 2000.

[5] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting fault incidence using software change
history,” IEEE Transactions on Software Engineering,
vol. 26, no. 7, pp. 653-661, July 2000.

[6] A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta,
“An experiment to assess the cost-benefits of code
inspections in large scale software development,” IEEE
Transactions on Software Engineering, vol. 23, no. 6,
June 1997.

[71 W. Schafer, R. Prieto-diaz, and M. Matsumoto,
“Software Reusability,” Ellis Horwood Limited, pp.
117, 1994.

[8] Sidney Siegel, N. John Castellan, Jr., Nonparametric
Statistics for the Behavioral Sciences (second edition),
McGRAW-HILL Inc., ISBN 0-07-057357-3, 1988.

[9] Koji Torii, Ken-ichi Matsumoto, Kumiyo Nakakoji,
Yoshihiro Takada, Shingo Takada, and Kazuyuki
Shima. “Ginger2: an environment for CAESE
(computer-aided empirical software engineering),”
IEEE Transactions on Software Engineering, vol. 25, no.
4, pp. 474-492, Aug. 1999.

[10] Shinji Uchida, Kazuyuki Shima, Makoto. Sakai, Ken-
ichi Matsumoto, “An experiment to evaluate software
overhaul method.” (in Japanese) Software Symposium
2002, pp. 116-121, July 16-19, 2002.

