Software Quality Analysis by Code Clones in Industrial Legacy Software

Akito Monden' Daikai Nakae' Toshihiro Kamiya®

Shin-ichi Sato'”

Ken-ichi Matsumoto'

'Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101,
Japan, {akito-m, daikai-n, siniti-s, matumoto}@is.aist-nara.ac.jp
*PRESTO, Japan Science and Technology Corporation, 1-8, Honcho 4-Chome, Kawaguchi,
Saitama, 332-0012, Japan, kamiya@is.aist-nara.ac.jp
*NTT DATA Corporation, 3-3, Toyosu 3-Chome, Koto-ku, Tokyo, 135-6033, Japan,
satousnb @nttdata.co.jp

Abstract

Existing researches suggest that the code clone
(duplicated code) is one of the factors that degrades the
design and the structure of software and lowers the
software quality such as readability and changeability.
However, the influence of code clones on software
quality has not been quantitatively clarified yet.

In this paper, we have tried to quantitatively clarify
the relation between code clones and the software
reliability and maintainability of twenty years old
software. As a result, we found that modules having code
clones (clone-included modules) are more reliable than
modules having no code clone (non-clone modules) on
average. Nevertheless, the modules having very large
code clones (more than 200 SLOC) are less reliable than
non-clone modules. We also found that clone-included
modules are less maintainable (having greater revision
number on average) than non-clone modules; and,
modules having larger code clone are less maintainable
than modules having smaller code clone.

1. Introduction

Coping with large software is a great challenge for
companies who maintain them. Large software becomes
more and more complicated and unchangeable than it
used be through a long-continued process of maintenance
[21][24][26]. It is partially because changing the software
itself makes the software more difficult to be changed;
and, it is partially because turnover rate of maintainers is
much higher than the large system maintained by them
[22]. Thus, when software gets really aged and it finally
became a legacy system, it is then extremely difficult for
maintainers to keep up the maintainability and the
reliability of the system.

0-7695-1339-5/02 $17.00 © 2002 IEEE

87

In this paper we look into twenty years old software
focusing on the code clone, which is a duplicated code
section in source files of software. Previous works
suggest that considerable parts (5-50%) of large software
are code clones [2][7][17]. One of the major reasons why
clones occur is code reuse by copying a pre-existing
program fragment [5][7]{23]; and, such code reuse may
easily take place when one adds functionalities to an
existing system during maintenance. Previous work
suggests that the code clone is one of the factors that
degrades the design and the structure of software and
lowers the software quality such as readability and
changeability [7]. If one revises a copy of duplicated code
sections, he/she must update all the other copies, and this
may raise the maintenance cost. Moreover, if he/she
overlooks one of the copies, a fault will remain in the
copy, and this may lower the reliability of the system.
However, the influence of code clones on software quality
has not been quantitatively clarified yet.

The purpose of this paper is to quantitatively clarify
the relation between the code clone and the software
quality. Especially, we focus on the reliability and
maintainability of a large legacy system. If a certain kind
of clone particularly had a bad effect on maintenance, we
can feedback it to the field so that maintainers may
remove such a code clone or try not to produce such a
code clone.

There are some related works concerning the code
clone. Various kinds of clone detection techniques have
been proposed [1-5][7][12-17][19]. For example, Baker
proposed an efficient technique that can detect clones in
huge C software in a realistic time [1]. A systematic
technique for reducing code clones of object-oriented
programs is also proposed [10]. While these researches
focus on detecting and removing code clones, this
research focuses on analyzing detected code clones.

The remainder of this paper first describes the goal
and approach of our study (Section 2). Next describes a
technique we used for detecting code clones (Section 3).
Then we describe an experiment for analyzing the
relation between code clones and the reliability and
maintainability of an industrial legacy system (Section 4).
Afterwards, we describe the result of the experiment
(Section 5); and in the end, conclusions and future topics
will be shown (Section 6).

2. Goals and Approach

2.1. Goals of this study

The main goals of this study are follows:

(1) Clarify the relation between code clones and the
reliability.

(2) Clarify the relation between code clones and the
maintainability.

It is possible to estimate the reliability of a system by
measuring the number of faults found in recent years. We
can say a system that had fewer faults was more reliable
than a system that had more faults in recent years. So, if
we can measure the number of faults of an existing
system, we will be able to analyze the relation between
code clones and the reliability of that system.

On the other hand, it is not easy to measure the
maintainability of a system. Essentially, maintainability
is related to the maintenance cost (person-hours). We can
say a system of poor maintainability requires more cost in
doing maintenance works than that of higher
maintainability. However, under the uncontrolled
environment, observing how many person-hours are
required to perform maintenance works does not mean
measuring the maintainability. The problem is that it
measures not only maintainability, but also the person
doing the maintenance, as well as the environment in
which the person is working, the tools the person is using,
and the amount of the work itself [25].

Another way to estimate the maintainability is using
software (product) metrics. Many software metrics have
been proposed to measure the complexity of software
such as McCabe’s Cyclomatic number, Halsted’s metrics,
and Chidamber & Kemerers’ metrics, etc [6][9][11][20].
Each of these conventional metrics may measure a
certain aspect of maintainability; however, they are not
useful in our analysis because code clones are essentially
independent from these metrics. For example, we assume
a case we have pointed out that a certain module had low
maintainability because the module had a large
cyclomatic number (per SLOC). In this case, whether this
module had a code clone or not, the influence of code

88

clones to the maintainability cannot be addressed. In our
study, we must somehow estimate the maintainability
without using complexity metrics.

In this paper, as a simple and practical solution, we
use the revision number for estimating the
maintainability of software modules. Generally, as we
repeatedly revise a system, such as adding and changing
functionalities, the system becomes more complicated
and more difficult to be maintained than it was before. In
other word, it can be considered that a system having
higher revision number is more difficult in maintenance
than that having lower revision number on average. It is
pointed out in past researches that various properties of a
system, such as modularity of functions, degrade as we
continually revise the system [6][18]. Below we describe
our considerations in measurement:

(1) The increase of revision number could be due to
various maintenance activities such as adding and
changing functionality, enhancing and adapting the
code, and fixing faults, etc. Although not all the
activities cause the degradation of maintainability,
significant part of revisions in our twenty-years old
system had been taken up with adding and changing
functionality, which are inevitable parts of an
evolving system, and, these changes had certainly
degraded the maintainability of the system. In
addition, some modules in our system were
redesigned as a new module through reengineering
activities, however, in this case the revision number
of the modules were set to zero.

We do not believe that a module having greater
revision number is always less maintainable than
that having smaller revision number. Nevertheless,
we believe that an average maintainability is higher
in modules having smaller revision number than that
having greater revision number.

We do not believe that it is significantly more
difficult to maintain a module set whose average
revision number is 11 than that is 10. Nevertheless,
we believe that it becomes significant if the average
revision number becomes extremely higher (e.g. 50).

@)

3)

2.2. Module based analysis

In many industrial software systems, the module (file)
is a basic unit of software, and, software metrics such as
the number of faults and the revision number are
measured in each module. Thus, this paper conducted a
module-based analysis to clarify the relation between
software quality and code clones.

We classified clone pairs into following two types
(Figure 1.)

(1) In-module clone pair

In-module

1 .
c onel pair
Inter-module
clone pair
B8 :‘:, SRRRS
A
Module A Module B

Figure 1. Two types of code clone pairs

Inter-module
clone palr‘\\\
In-module \
clone pair

\

,‘ %

In-module / ,./
clone pair
W VRN T———
Non-clone Closed Related Composite
module module module module

Figure 2. Module classification

We call a code fragment pair “in-module clone
pair” if both fragments in the pair exist in the same
module.

(2) Inter-module clone pair
We call a code fragment pair “inter-module clone
pair” if each fragment in the pair exists in the
different module.

These two types of clone pairs may have different
influence on software quality. Inter-module clones may
implicitly increase the functional coupling between
modules, while in-module clones do not affect the
strength of coupling between modules.

Based on above classification, we also classified
modules into following four types (Figure 2.)

(1) Non-clone module
A module containing no clones.

89

}
x=b-c;
if(x>0)n=0;

y=0;
X=y-z;
if(x>0)n=1;
z=0;

while (b>0) {

Module 1 Module 2
(a) Original source code
yEON i
EBYEEY ABpEEE
BERBOERALYG BRABUHEE0E
BEDE Wik REH 0NN
Module 1 Module 2
(b) Lexical analysis
BENE P
FBRUEE bETE oL)
HERERIRERS BERSRIRENE
RERE VTR ERI Y
Module 1 Module 2

(c) Transformation

..... P=p;)

..... el ERigRz
...... B HEBERYE
""" pP=p; while (p>p) {

Module 2

(d) Match detection and formatting
Figure 3. Clone detection procedure

(2) Clone-included module

A module containing at least one code clone pair.

This type of module is classified into following

three modules.

(2a) Closed module
A module containing in-module clone pairs
only.

(2b) Related module
A module containing inter-module clone pairs
only.

(2c) Composite module
A module containing both in-module and
inter-module clone pairs.

3. Detection of Code Clones

Recently, various kinds of clone detection techniques
and tools have been proposed [1-5][7][12-17][19]. Since
clones usually occur when a code fragment is copied and
partly modified, it is insufficient to detect a code
fragment that is exactly identical to another fragment.
Thus, existing tools also detect a fragment that is nearly
identical to others.

In this paper we used a token-based code clone
detection technique proposed by Kamiya et al. [11][12]
because their technique have industrial strength, and is
applicable to a million-line size system within affordable
computation time and memory usage. This technique is
also easily applicable to legacy software written in old
programming language such as COBOL and PL/I.

Below we briefly describe the overview of clone
detecting process we used.

(1) Lexical analysis
All the source files are divided into tokens based on
lexical rules of the programming language (Figure
3(a) and 3(b)). White spaces and comments are
ignored in this analysis.

(2) Transformation
Each token related to types, variables and constants
is replaced with a special token (Figure 3(c)). This
replacement makes code-portions with different
variable names to become clone pairs.

(3) Match detection and formatting
From all the sub-strings on the transformed token
sequence, equivalent pairs are detected as clone
pairs (Figure 3(d)). Then, each location of clone
pair is converted into line number on the original
source files.

4. Experiment

4.1. Target system

The target system is legacy software developed about
20 years ago in NTT DATA Corporation. This software
was developed to manage transactions for a public
institute and has been continuously maintained till today.
It consists of about one million lines in 2000 modules
(files) written in a COBOL-like language, which is an
expansion of COBOL.

4.2. What we have measured

In order to remove accidental duplication of code
fragments, we detected clone pairs having at least 30
same lines. In the detection, we ignored self-overlapping
clone pairs. Below describes what we have measured in
this experiment.

(1) LOC (Lines of code)

90

LOC
o]
80+ :
2 40 g
50+ o
| - U=
%7/}’ /A 49
W
zé %
0 T T R —
Module A Module B Module C Module D
(Non-clone) (Closed) (Related) (Composite)
MAXLEN: 0 20 40 40
COVERAGE: 0 50% 50% 80%

Figure 4. Example of code clone metrics

Lines of code of each module.

(2) AGE (Module age)
The number of days from the date each module is
initially developed to the present.

(3) REV (Revision number)
The number of revisions made upon each module
till present. The revision includes any kind of
modifications done to each module such as fixing
faults and adding and changing functionalities.

(4) Faults (The number of faults)
The number faults found from each module in
recent years (past six years in this experiment).

(5) MAXLEN (Length of maximum clone)
The length (LOC) of the largest code clone included
in each module.

(6) COVERAGE (Coverage of clone)
The percentage of lines that include any portion of
clone in each module.

Figure 4 shows an example of code clone metrics.
MAXLEN of module B is 20 because module B contains
two clones and both of them are of 20 LOC. Similarly,
MAXLEN of module D is 40 because the largest clone
included in module D is of 40 LOC.

COVERAGE of module B is 80% (= 40 / 80 * 100)
because total clone size is 40 LOC (= 20 + 20) and the
module size is 80LOC. Similarly, COVERAGE of
module D is 80% (= 80 / 100 * 100) because total clone
size is 80 LOC (= 40 + 20 + 20) and the module size is
100 LOC.

5. Result of experiment

5.1. Module type and code clone metrics

Closed module
125 modules (7%)

Composite module
169 modules (9%)

2 Non-clone module

Related module 948 modules (50%)

641 modules (34%)

Figure 5. Classification of modules

COVERAGE 60 - 80%
89 modules (5%)

COVERAGE 80 - 100%
39 modules (2%)

COVERAGE 40 - 60%
138 modules (7%)

COVERAGE 20 - 40%

300 modules (16%) COVERAGE 0

948 modules (50%)

COVERAGE 0 - 20%
369 modules (20%)

Figure 6. COVERAGE and the number of modules

Figure 5 shows the classification of modules. About
50% of modules are clone-included module. This result
follows the previous research that Cobol payroll system
had 59% code duplication [7]. As shown in Figure 5,
most of clones are inter-module clone. Closed modules
hold only 7% while related modules account for 34% of
the whole.

Figure 6 shows the relation between COVERAGE and
the number of modules. The non-clone modules and the
low coverage modules (0-40%) together account for 86%
of the whole. On the other hand, 2% of the modules are
of 80% coverage. Some of them were almost identical
copies of each other.

Figure 7 shows the COVERAGE and AGE of each
module. We see in the figure three clusters of modules.
For convenience, we call them YOUNG, MIDDLE, and
OLD. The average COVERAGE for these module
clusters is 18%, 13%, and 11% respectively. More clones
are detected from modules that are younger than from
older modules.

5.2. Reliability analysis

91

OLD
Average 11%

MIDDLE
Average 13%

YOUNG
Average 18%

100
g 80
m .
2 o i
§ 40 :
o 20 . § . “
© . BN -y

0 ” .- ¢
0 2000 4000 6000 8000 10000
AGE (Days)

Figure 7. COVERAGE and AGE

In order to evaluate the reliability of modules, we used
the number of faults per line as a reliability measure.
Figure 8 shows a comparison of reliability between non-
clone modules and clone-included modules. Obviously,
clone-included modules are more reliable than non-clone
modules. Clone-included modules are 1.7 times as
reliable as non-clone modules on average. One possible
interpretation for this result is that copying code from
trusted part can lessen the fault injection compared with
writing the code from scratch. Another possible
interpretation is that code fragments created by copy-and-
past programming do not have new types of functionality,
so that there may be little chance of introducing unknown
types of faults in the fragments.

Figure 9 shows the reliability of each type of modules.
Closed modules, related modules, and composite modules
are all more reliable than non-clone modules on average.

Figure 10 shows the relation between the number of
faults per line and MAXLEN. As shown in the figure, we
classified clone-included modules into four groups based
on modules’ MAXLEN. As the MAXLEN of modules
gets larger (30 MAXLEN up to 199 MAXLEN), the
reliability of modules becomes higher; however, the
modules having more than 200 lines of code-clones
suddenly show the worst reliability. This result suggests
that producing too large clones degrades software
reliability.

Although the result showed evidence that clone-
included modules were more reliable than non-clone
modules in past six years, the relation between the code
clone and the reliability were not clarified yet. Further
analysis is needed in the future.

5.3. Maintainability analysis

Non-clone modules
0.000432

Clone-included modules
0.000255

The number of faults per line

Figure 8. Relation between reliability and clones

Non-clone modules
0.000432

Closed modules
- 0.000291

Related modules
0.000225

Composite modules
0.000342

The number of faults per line

Figure 9. Reliability of different types of modules

0.0006
0.0005 |
0.0004
0.0003
0.0002 -
0.0001
0.0000 —

Non-
clone

| e g

L

The number of faults per line

30-49 50-99 100-199 200-
MAXLEN

Figure 10. Relation between faults and MAXLEN

In order to evaluate the maintainability of modules, we
have used the revision number as a maintainability
measure. As we stated in Section 2.1, we consider a
module set having higher revision number on average is
more difficult to be maintained than that having lower
revision number on average. Figure 11 shows a

92

comparison of the maintainability between non-clone
modules and clone-included modules. Obviously, clone-
included modules are less maintainable than non-clone
modules.

Figure 12 shows the maintainability of each type of
modules. Closed modules, related modules, and
composite modules are all less maintainable than non-
clone modules on average.

Figure 13 shows the relation between the revision
number and MAXLEN. As the MAXLEN of modules
gets larger, the revision number of modules becomes
higher. That is to say, a module having larger code clone
is less maintainable than the module having smaller code
clone. This result suggests that producing large clones
raises maintenance cost.

Although the result showed evidence that clone-
included modules have higher revision number than non-
clone modules on average, the relation between the code
clone and the maintainability (revision number) were not
clarified yet. One possible interpretation is that code
clones caused the revisions, and, another interpretation is
that revisions produced the code clones. One thing that
follows latter interpretation is that maintainers of this
system said that when they add and/or change the
functionality, they often intentionally produce new clone
pairs by using copy-and-paste programming in order to
keep up the reliability of the system. However, further
quantitative analysis is needed in the future.

6. Summary

In this paper we tried to quantitatively clarify the
relation between code clones and the software reliability
and maintainability of twenty years old software. Below
describes the overview of the result.

- Clone-included modules are 1.7 times as reliable as

non-clone modules on average.

- Closed modules, related modules, and composite
modules are all more reliable than non-clone modules
on average.

- Nevertheless, the modules having very large code
clones (more than 200 lines) are less reliable than
non-clone modules.

- Clone-included modules are less maintainable
maintainable (having greater revision number) than
non-clone modules on average.

- Closed modules, related modules, and composite
modules are all less maintainable than non-clone
modules on average.

- The modules having larger code clone are less
maintainable than modules having smaller code clone.

Non-lone modules
41.1

Clone-included modules
] 58.1

Revision number

Relation between maintainability and
clones

Figure 11.

Non-clone modules
41.1

0
(=]

r Closed modules
68.9

(=)
(=]

-+ Related modules
' 54.9

L Composite modules
~ 62.3

[\
(=}

Revision number
S
1)

Figure 12. Maintainability of different types of
modules

=)
[}
3 &

Revision number
& 8

MAXLEN

Figure 13. Relation between REV and MAXLEN

We also had some findings related to the nature of
code clones:

93

- Closed modules held only 7% while related modules
account for 34% of the whole modules.

- The non-clone modules and the low coverage
modules (0-40%) together accounted for 86% of the
whole. On the other hand, 2% of the modules were of
80% coverage.

- More clones are detected from modules that are
younger than from older modules.

Although we have quantitatively pointed out that there
is a relation between code clones and the software
reliability and maintainability, the relation itself is not
clarified yet. In order to make valid interpretations to our
observations, we are planning to conduct further
quantitative analyses.

Acknowledgement

This study was supported by the Industrial Technology
Research Grant Program from the New Energy and
Industrial Technology Development Organization
(NEDO) of Japan.

References

[1] B.S. Baker, “A program for identifying duplicated
code,” Proc. 24th Symposium on the Interface:
Computing Science and Statistics, pp. 49-57 Mar. 1992.
[2] B.S. Baker, “On finding duplication and near-
duplication in large software system,” Proc. Second
IEEE Working Conf. on Reverse Eng. (WCRE’95), pp.
86-95 Jul. 1995.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and
K.A. Kontogiannis, “Measuring clone based
reengineering opportunities,” Proc. 6th IEEE Int’l
Symposium on Software Metrics (METRICS ’99), pp.
292-303, Boca Raton, Florida, Nov. 1999.

[4] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and
K.A. Kontogiannis, “Partial redesign of Java software
systems based on clone analysis,” Proc. 6th IEEE
Working Conf., on Reverse Eng. (WCRE °99), pp. 326-
336, Atlanta, Georgia, Oct. 1999.

[5] LD. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone detection using abstract syntax trees,”
Proc. IEEE Int’l Conf on Software Maintenance
(ICSM’98), pp. 368-377, Bethesda, Maryland, Nov. 1998.
[6] S. R. Chidamber and C.F. Kemerer, “A metrics suite
for object oriented design,” IEEE Trans. on Software
Eng., Vol. 20, No. 6, pp. 476-493, 1994.

[7] S. Ducasse, M. Rieger, and S. Demeyer. “A language
independent approach for detecting duplicated code,”
Proc. IEEE Int’l Conf on Software Maintenance
(ICSM’99), pp. 109-118. Oxford, England. Aug. 1999.

[8] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron,
and A. Mockus, “Does code decay? Assessing the
evidence from change management data,” IEEE Trans.
on Software Engineering, Vol. 27, No. 1, pp. 1-12, Jan.
2001.

[9] N. E. Fenton, “Software metrics:
approach,” Chapman & Hall, London, 1991.
[10] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.
Roberts, “Refactoring: Improving the design of existing
code,” Addison-Wesley, 1999.

[11] M. H. Halstead, “Elements of software science,”
Elsevier, New York, 1977.

[12] T. Kamiya, F. Ohata, K. Kondou, S. Kusumoto, and
K. Inoue: “Maintenance support tools for Java programs:
CCFinder and JAAT”, Proc. 23rd Int’l Conf. on
Software Eng. (ICSE2001), pp. 837-838, Toronto,
Canada, May. 2001.

[13] T. Kamiya, S. Kusumoto, and K. Inoue, “A token-
based code clone detection technique and its evaluation,”
Technical Report of IEICE (The Institute of Electronics,
Information and Communication Engineers), Vol. 100,
No. 570, pp. 41-48, Jan. 2001.

[14] J. H. Johnson, “Identifying redundancy in source
code using fingerprints,” Proc. IBM Centre for Advanced
Studies Conference (CAS CON’93), pp. 171-183,
Toronto, Ontario. Oct. 1993.

[15] J. H. Johnson, “Substring matching for clone
detection and change tracking,” Proc. IEEE Int’l Conf.
on Software Maintenance (ICSM’94), pp. 120-126.
Victoria, British Columbia, Canada. Sep. 1994.

[16] K.A. Kontogiannis, R. De Mori, E. Merlo, M. Galler,
and M. Bernstein, “Pattern matching techniques for
clone detection and concept detection,” J. Automated
Software Eng., Kluwer Academic Publishers, vol. 3, pp.
770-108, 1996.

[17] B. Lagu¢, E.M. Merlo, J. Mayrand, and J. Hudepohl.
“Assessing the benefits of incorporating function clone
detection in a development process,” Proc. IEEE Int’l

A rigorous

94

Conf. on Software Maintenance (ICSM’97), pp. 314-321,
Bari, Italy. Oct. 1997.

(18] M. M. Lehman and L. A. Belady, “Program
evolution: Process of software change,” Academic Press,
1985.

[19] J. Mayland, C. Leblanc, and E. M. Merlo.
“Experiment on the automatic detection of function
clones in a software system using metrics”, Proc. IEEE
Int’l Conf. on Software Maintenance (ICSM’96), pp. 244-
253, Monterey, California, Nov. 1996.

[20] T. J. McCabe, “A complexity measure,” IEEE Trans.
on Software Engineering, Vol. 2, No.4, pp. 308-320, Dec.
1976.

[21] A. Monden, S. Sato, K. Matsumoto, and K. Inoue,
“Modeling and Analysis of Software Aging Process,”
Int’l Conf. on Product Focused Software Process
Improvement (Profes2000), Lecture Notes in Computer
Science, Vol. 1840, pp. 140-153, Springer-Verlag, June
2000.

[22] A. Monden, S. Sato and K. Matsumoto, "Capturing
industrial experiences of software maintenance using
product metrics," Proc. 5th World Multi-Conference on
Systemics, Cybernetics and Informatics (SCI2001), Vol.
2, pp- 394 - 399, Florida, USA, July 2001.

[23] T. Nakae, T. Kamiya, A. Monden, H. Kato, S. Sato,
and K. Inoue, “Quantitative analysis of cloned code on
legacy software,” Technical Report of IEICE (The
Institute of Electronics, Information and Communication
Engineers), Vol. 100, No. 570, pp. 57-64 Jan. 2001 (in
Japanese).

[24] N. F. Schneidewind, and C. Ebert, ‘“Preserve of
redesign legacy systems?,” IEEE Software, Vol. 15, No.4,
pp-14-17, July/Aug. 1998.

[25] H. M. Sneed, “Economics of software re-
engineering,” J. of Software Maintenance: Research and
Practice, Vol.3, No.3, pp.163-182, 1991.

[26] H. M. Sneed, “Planning the reengineering of legacy
systems,” IEEE Software, Vol.12, No.1, pp.24-34, Jan.
1995.

