
A Statistical Analysis on the Order of Understanding
for the Java Programming Language

Yasuhiro Takemura* Ken-ichi Matsumoto† Katsuro Inoue‡ Koji Torii†
*Osaka University of Arts †Graduate School of Information Science ‡Graduate School of Engineering Science
 Junior College Nara Institute of Science and Technology Osaka University

2-14-19 Yata, Higashi-sumiyoshi-ku, 8916-5 Takayama, Ikoma 1-3 Machikaneyama, Toyonaka
 Osaka 546-0023 Japan Nara 630-0101, Japan Osaka 560-8531, Japan
 +81-6-66941-7341 +81-743-72-5312 +81-6-6850-6571
 yasuhi-t@is.aist-nara.ac.jp [matumot,torii]@is.aist-nara.ac.jp inoue@ics.es.osaka-u.ac.jp

ABSTRACT
By extracting the order of understanding for the Java
programming language from results of examinations, we
investigate a learning process for efficient acquisition of
knowledge on programming languages, and positions of
knowledge items in textbooks. The order of understanding
is extracted by statistically analyzing the ordering relation
of knowledge (the relation that one piece of knowledge is
required for understanding another piece of knowledge) and
by constructing the whole structure of those relations. In
the statistical analysis, “correct random guesses” and
“careless mistakes” are statistically revised to extract
ordering relations.

Keywords
Java programming language, order of understanding,
learning process

1 INTRODUCTION
For subjects who have a long history of accumulated
teaching practice and knowledge, the ordering relation of
knowledge (the relation where one piece of knowledge is
required for understanding another piece of knowledge) has
been extracted, and a systematic teaching order derived
from the order relation of knowledge has been realized.
Since the teaching of programming languages does not
have a long history of teaching practice compared with
other subjects, there exists no systematic teaching method
which has obtained a consensus among experts on
education [1], [2]. For example, some textbooks can have
different orders of knowledge items to each other. In the
learning phase for a new domain, some teachers can use
learning materials in a different order to each other.
Therefore, in order to realize an efficient and systematic
teaching of programming, the order of understanding of the
programming language should be clarified [3], [4] ,[5], [6],
[7], [11], [12].

In this paper, we extract the order of understanding for the
Java programming language from results of examinations,
and investigate a learning process for efficient acquisition
of knowledge on programming languages and positions of
knowledge items in textbooks. The order of understanding

is extracted by statistically analyzing the ordering relation
of knowledge (the relation that one piece of knowledge is
required for understanding another piece of knowledge),
and by constructing the whole structure of those relations.
In the statistical analysis, “correct random guesses” and
“careless mistakes” are statistically revised to extract
ordering relations. We also perform factor analysis on
knowledge items and construct a relation structure.

2 ANALYSIS OF ORDERING RELATIONS IN
THE JAVA PROGRAMMING LANGUAGE

Knowledge of the Java language can be modeled by the
Ordering Theory because, as in mathematics or natural
science, there are two types of knowledge of the language:
one is fundamental and independent of other knowledge,
and the other is dependent on other knowledge. In this
paper, we adopt the model of Ordering Theory proposed by
P. W. Airasian [16] to extract the ordering relation of
knowledge.

In the Ordering Theory, test item X and test item Y are
regarded as having an ordering relation if the ratio of the
size of set M01 (the set consisting of the learners who
answered questions incorrectly to an easy test item X, and
correctly to a difficult test item Y to N01 (the number of all
the learners) is small. However, in Multiple-choice
questions, there can be so-called “correct random guesses”
and “careless mistakes”. In the Ordering Theory, the noise
is not taken into consideration in the derivation of ordering relations.

 In this paper, we adopt a statistical analysis method [15],
which can revise the inaccurate estimates caused by the so-
called “correct random guesses” and “careless mistakes”
and extract ordering relations. In the statistical analysis, we
suppose that answers contradicting the Ordering Theory are
caused by “correct random guesses” and “careless
mistakes” and we use Binomial distribution to revise the
inaccurate estimates and extract ordering relations. In
addition, we simplify the relational structure by applying
Factor Analysis to each knowledge item. The change in
numbers of errors and correct answers caused by “correct
random guesses” and “careless mistakes” in test item X and
test item Y is shown in Table 1.

Figure1 Simplification of the relational structure of
knowledge items : ordering relations with a similar direction

In this paper, we name the knowledge contained in a test
item a “knowledge item”, a group of test items a “cluster”,
the learners transiting to a contradictive set M01,
“contradictive learners”, the average probability of the
occurrence of a contradictive learner in M01 a
“inconsistency rate”, the function for computing a
inconsistency rate “contradiction function ”, and the whole
structure indicating relational structures of test items and
clusters a “relational structure”.

3 CONSTRUCTION OF THE RELATIONAL
STRUCTURE

On the basis of the ordering relations derived from
inconsistency rates and the relational structure in clusters,
the order of understanding of the Java language is
processed as follows.

 Expression (1) is contradiction function introduced in the
statistical analysis. Inconsistency rates are calculated by
applying the probability f of correct random guess and
the probability c of careless mistake The relational
structure of test items is constructed by ordering relations
extracted with inconsistency rates smaller than a constant.

 Knowledge items are merged to form several clusters by

using factor loadings calculated in the Factor Analysis of
test results. Factors are also extracted.

 The relational structure consisting of only knowledge

01

00 01 11 00 01 11 01
001

0

1
(, , , ,) (; ,) (; ,)

1

(; ,) (1)

N

k

k
x n x

x

P N N N f c B k N k f B N k N N k c
N

n
B k n q q q

x

=

−

=

= + − + −
+

 
= − 

 

∑

∑

(1)n• @

wher e • C• @

S0 •Fset of k learners who gave “random correct guesses”

e0 •Fnumber of learners in both e and S 0•C0 •…e0 •…k

k0 •Fnumber of learners who gave a “correct random guess” for test item Y, k0 = k - e0

e •Fnumber of learners who gave neither “correct random guesses” nor “careless mistakes”•Ce = e0 + e1 •C0 •…e •…N01

error correct

error N 00 S 0 N 10

correct k 0+ e 0 + k 1+e 1 N 1 1 S 1

X

Y

•Fanswer transition caused by “correct random guesses” of test item Y
•Fanswer transition caused by “careless mistakes” caused by “careless mistakes” of test item Y

set S0 of including “random correct guesses”

set S01 of including “careless mistakes”

e1 •Fnumber of learners in both e and S 1•C0 •…e1 •…N01-k

k1 •Fnumber of learners who gave a “careless mistake” to test item Y

Table1 Changes in numbers of errors and correct answers caused by “correct random guesses” and “careless mistakes”

Figure2 Simplification of the relational structure of knowledge
items : ordering relations with inconsistent directions

Knowledge Item j

Knowledge Item l

Knowledge Item i

f(x)

A n A r r o w r e p l a c e s s e v e r a l

a r r o w s w i t h t h e s a m e d i r e c t i o n

Knowledge Item t

Knowledge Item s

f(y)

Knowledge Item j

Knowledge Item l

Knowledge Item i

f(x)

Knowledge Item t

Knowledge Item s

f(y)

The direction with the smaller
averaged inconsistency rate

Knowledge Item j

Knowledge Item l

Knowledge Item i

f(x)

Knowledge Item s

f(y)

Knowledge Item j

Knowledge Item l

Knowledge Item i

f(x)

Knowledge Item s

f(y)

Knowledge Item t

Knowledge Item u

Knowledge Item s

f (y)

The ordering relation from f(x) to f(z) can
be inferred from other relations

Knowledge Item g

Knowledge Item c

f(z)

Knowledge Item j

Knowledge Item l

Knowledge Item i

f (x)

Knowledge Item r

Knowledge Item t

Knowledge Item u

Knowledge Item s

f (y)

Knowledge Item g

Knowledge Item c

f(z)

Knowledge Item j

Knowledge Item l

Knowledge Item i

f (x)

Knowledge Item r

Figure3 Simplification of the relational structure of knowledge
items : transitive ordering relations

Table2 Correct answers of test items and corresponding
required knowledge items

correct answ er of

the test item s

know ledge required

for the answ ers

A 1 attribute Instance variable
A 2 m am m als class Super class
A 3 class variable Class variable
A 4 inheritance Inheritance
A 5 sub class Sub class
A 6 attribute Instance variable
A 7 ball class Super class
A 8 class Class
A 9 instance Instance
A 10 m ethod M ethod
A 11 instance variable Instance variable
A 12 super class Super class
A 13 class m ethod Class method
A 14 interface Interface

items, which is constructed in , has two many arrows
indicating an ordering relation. This structure is so
complicated that capturing the order of understanding
from this structure is difficult. Therefore, we simplify the
relational structure by transforming the ordering relations
of knowledge items to those of clusters. Figures 1,2, and 3
show how to form clusters to simplify the relational
structure of knowledge items.

4 EXPERIMENTS FOR EXTRACTING
ORDERING RELATIONS

In the experiments for extracting ordering relations of the
Java language, we gave a test to subjects. The test consists
of 15 problems (A1 to A15) on the knowledge of the Java
language. We adopt Multiple-choice questions, because
quantitative analysis is easier and more subjects can answer
Multiple-choice questions. The answer to each test item is
judged as “correct” or “error”. The summary of the test
(correct answers and knowledge items needed) is shown in
Table 2.

A total of 96 subjects consists of three groups with different
majors: 42 students majoring in cultural sciences (half a
year (once a week)), 24 workers of an electric industry
(intensive course (two days (7 hours a day)), and 30
graduate students majoring in information science (half a
year (once a week)). A single teacher delivered lectures and
exercise classes to all the three groups, in order to decrease
the differences of teaching effects caused by the differences
of teaching environment. In order to decrease the difference
of difficulty between questions, we set basic questions for
each knowledge item.

The tests are conducted as follows.

 The teacher delivers a lecture on basic knowledge from
materials related to the Java language.

 The learners do programming exercises such as revision,

compiling and execution of a program.

 After the exercise, the learners take a written test on the
Java language.

5 THE CONSTRUCTION OF RELATIONAL
STRUCTURE

We construct a relational structure following the
construction process described in Section 3.

Inconsistency rates are computed by applying contradiction
function P to test data. 15 knowledge items are merged to
form clusters using factor loadings. In this paper, Factor
Analysis is conducted with 7 factors. Using the factor
loadings obtained in Factor Analysis, the 15 knowledge
items are merged into 7 clusters and the factors of each
cluster are extracted. The result is shown in Table 3. The
columns (A1 to A15) of Table 3 correspond to knowledge
items as starting points of ordering relations, and the rows
correspond to knowledge items as ending points of ordering
relations. In this paper, we assume that an ordering relation
exists if inconsistency rates are less than 0.1 (the
inconsistency rates less than 0.1 are highlighted in Table 3).

f(4) f(5) f(6)

(A11) (A4) (A13) (A9) (A8) (A12) (A5) (A1) (A7) (A6) (A3) (A2) (A10) (A15) (A14)
(A11) Instance variable 0.00 0.39 0.14 0.57 0.77 0.41 0.19 0.76 0.73 0.58 0.23 0.14 0.50 0.57 0.83
(A4) Inheritance 0.52 0.00 0.07 0.55 0.82 0.13 0.05 0.64 0.57 0.46 0.46 0.02 0.40 0.43 0.73

(A13) Class method 0.62 0.47 0.00 0.65 0.84 0.16 0.03 0.65 0.66 0.58 0.48 0.02 0.27 0.56 0.79

(A9) Instance 0.54 0.40 0.14 0.00 0.76 0.32 0.06 0.52 0.63 0.54 0.32 0.03 0.34 0.52 0.71

(A8) Class 0.16 0.21 0.01 0.14 0.00 0.41 0.16 0.30 0.26 0.24 0.20 0.10 0.14 0.06 0.53
(A12) Super class 0.73 0.53 0.16 0.72 0.90 0.00 0.01 0.61 0.72 0.66 0.41 0.04 0.35 0.65 0.80

(A5) Sub class 0.72 0.56 0.15 0.67 0.89 0.08 0.00 0.67 0.74 0.65 0.46 0.01 0.33 0.64 0.83

(A1) Attribute 0.74 0.53 0.14 0.52 0.79 0.08 0.06 0.00 0.28 0.19 0.41 0.03 0.26 0.57 0.74

(A7) Super class 0.68 0.33 0.08 0.58 0.76 0.24 0.12 0.18 0.00 0.42 0.42 0.08 0.36 0.39 0.69

(A6) Attribute 0.58 0.31 0.07 0.57 0.79 0.22 0.05 0.24 0.53 0.00 0.60 0.03 0.25 0.30 0.73

f(4) Class Variable (A3) Class variable 0.55 0.60 0.27 0.63 0.85 0.18 0.08 0.66 0.71 0.74 0.00 0.02 0.37 0.63 0.78

f(5) Thought (A2) Super class 0.74 0.60 0.21 0.70 0.90 0.29 0.06 0.70 0.76 0.68 0.45 0.00 0.47 0.63 0.84

f(6) M ethd (A10) Method 0.71 0.59 0.10 0.66 0.85 0.18 0.04 0.62 0.70 0.59 0.42 0.05 0.00 0.52 0.81

(A15) Package 0.62 0.38 0.13 0.61 0.77 0.30 0.10 0.65 0.57 0.39 0.46 0.03 0.24 0.00 0.68

(A14) Interface 0.62 0.10 0.01 0.26 0.67 0.03 0.02 0.34 0.30 0.28 0.09 0.01 0.18 0.05 0.00

f(1)

f(2)

f(3)

f(7)

f(1) f(2) f(3)

Super Class,

Sub Class

Atribute

Package

f(7)

Instance

variable

Table3 Inconsistency rate and clusters

Knowledge Item
page

num ber
Knowledge Item

page
num ber

Knowledge Item
page

num ber
Knowledge Item

page
num ber

Variable 11,168 Class 47 Variable 50,120 Variable
M ethod 43,124 M ethod 49 Class 112 Class
Class 124 Variable 52 M ethod 121 Super Class
Super Class 165 Super Class 67 Super Class 125 Sub Class
Sub Class 165 Sub Class 69 Sub Class 125 M ethod
Interface 197 Interface 80 Interface 166 Interface

M aterial ‡ @ M aterial ‡ A M aterial ‡ B M aterial ‡ C

M aterial ‡ @ Variable M ethod
Class,
M ethod

Super Class,
Sub Class

Variable Interface

M aterial ‡ A Class M ethod Variable Super Class
Sub
Class

Interface

M aterial ‡ B Variable Class Variable M ethod
Super Class,
Sub Class

Interface

M aterial ‡ C Variable Class
Super Class,
Sub Class

M ethod Interface

Table4 The positions of the learning items

In the computation of inconsistency rates, the probability f
of “correct random guesses” and the probability of
“careless mistakes” are set as follows. Probability f is set as
0.2 because there are 5 choices in multiple-choice questions.
Probability c is set as 0.071, which is computed from data
measuring the levels of understanding in three learning
phases (before learning, after learning with materials, after
learning with exercises) [14] .

Figure 4 shows the relational structure of test items
constructed with the inconsistency rates in Table 3. Figure
5 shows the relational structure of clusters.

6 DISCUSSION ON THE LEARNING PROCESS
Figure 6 shows an example of an efficient learning process
derived from the simplified relational structure following
rule a and rule b. Rule a states that clusters adjacent to each
other in the relational structure should not be separated.
Rule b states that clusters not adjacent to each other are
arbitrarily ordered. f(5):Thought is excluded from the
learning process because it refers to a factor related to

thought. The following process is derived with f(2):Super
class as a starting point.

f(2):Super class, Sub class f(3):Attribute f(6):Method
f(4): Class Variable f(7):Package f(1): Instance Variable

In this process, the learning of f(2):Super class, Sub class is
followed by the learning of f(4): Class Variable and f(1):
Instance Variable. In this process, after the learning of the
concept of “class”, the learning proceeds to knowledge
items requiring compound knowledge. For this reason, this
process allows an efficient learning of the Java language.

Next, we discuss the differences between the relational
structure of knowledge items and the positions of the
learning items written in a learning material shown in
Table 4 [8], [9], [10], [13]. In the relational structure of
Figure 7, Sub class is the only knowledge item to Method.
Also in the material , Sub class is followed by Method.
This means that our relational structure provides the same
relational order as the learning material for this point. On
the other hand, Knowledge item Interface requires
compound knowledge. Therefore, our relational structure

A12

A10
A1

A5

A3

A13

A14

A15

A8
A11

A9A2

A4

A6

A7

Figure 4 Relational structure of knowledge items

A12

A10 A1

A5

A3

A13

A14
A15

A8

A11

A9

A2

A4

A6

A7

f(2)

f(7)

f(3)

f(4)

f(5)

f(6)

f(1)

Figure 5 Relational structure of clusters

Package

A12

A10 A1

A5

A3

A13

A14
A15

A8
A11

A9
A2

A4

A6

A7

f(2)

f(7)

f(3)

f(4)

f(5)

f(6)

f(1)

Instance variable

Class Variable

Attribute

Super Class,

Sub Class

M ethod

Thought

A12

A10
A1

A5

A3

A13

A14

A15

A8
A11

A9A2

A4

A6

A7

Class

M ethod

Sub class

Super class

Interface

Class m ethod

PackageClass variable

Derived ordering relation Ordering relation in material ‡ C Ordering relation given by both

Figure 7 Comparison with a learning material

contains several ordering relations from other knowledge
items to Interface, and also in the learning material ,
Interface is positioned at a later part of the learning process.
Thus, the ordering relations of basic knowledge and
compound knowledge are consistent with the result of the
experiment. However, other learning items are positioned
differently. Therefore, learning items for which the level of
understanding cannot be easily captured depend on the
experience and knowledge of the author of the learning
materials.

7 CONCLUSION
In this paper, we have extracted the order of understanding
of the Java language, which has previously been estimated
by the experience of teachers in learning. For this purpose,
we adopted a statistical analysis based on the Ordering
Theory to extract the ordering relations of knowledge items.
We also constructed a relational structure.

The data on 15 test items obtained in the experiment were
analyzed with the Factor Analysis. Knowledge items were
merged and they formed 7 clusters according to the factor
loadings. The complicated relational structure of
knowledge items was simplified to the relational structure
of clusters.

We discussed the difference between the learning process
derived from the relational structure and the learning
process from learning materials. We conclude that this
difference can be used to create a systematic learning

process.

The
statistical

analysis method used in this paper depends on the problems
in tests. The meaning of each factor in the Factor Analysis
must be manually determined. Therefore, the application of
the proposed method is limited to a certain domain of the
Java language. However, if problems for tests are prepared
and the meaning of each factor is appropriately determined,
the proposed method may be applied to many other
domains.

REFERENCES
1. R. J. Brachman, H. J. Levesque: Reading in Knowledge
Representation, San Mateo, CA, Morgan Kaufmann
Publishers, 1980.

2. E. Davis: Representation of Commonsense Knowledge,
San Mateo, CA., Morgan Kaufmann Publishers, 1990.

3. S. Hasegawa, T. Yamazumi, and S. Koike: Imaging and
understanding on control structure in programming
education. Journal of Information Processing Society of
Japan 39(4): 1180-1183, 1998.

4. N. Iwane, A. Takeuchi, and S. Otsuki: A network type
intelligent educational system for arithmetic word

problems, the Transactions of the Institute of Electronics,
Information and Communication Engineers J80-D-II(4):
915-924, 1997.

5. H.Kudo, Y.Sugiyama, M.Fujii, and K.Torii:
Quantifyinga design process based on experiments,
The journal of system and software 9, pp.129-136,
1989.

6. T. Kuwabara: Relationship between complexity of
information and difficulty of example oriented textbook.
the Transactions of the Institute of Electronics.

Information and Communication Engineers J80-D-II(11):
3039-3047, 1997.

7. N Matsuda, A. Kashihara, T. Hirashima, and J. Toyoda:
A tutoring for behavior-based recursive programming, the
Transactions of the Institute of Electronics, Information
and Communication Engineers J80-D-II(1):326-335, 1997.

8. K. Muto: DOKUSYU-Java, SHOEISHA Co., Ltd., pp.
1-76, 1999.

 9. S. Nakayama: Java Programming TETTEI-ENSYU,
NIKKAN KOGYO SHIMBUN,Ltd, pp.1-184, 1998.

10. Y. Ootani, K. Muto: HAZIMETE-NO-Java, Gijutsu-
Hyohron Co., Ltd. , pp.1-131, 1996.

 11. R.C.Schank: Conceptual Information Processing, New
York : North-Holland, 1975.

12. E.Soloway and K.Ehrligh: Empirical Studies of
Programming Knowledge, IEEE Transactions on
Software Engineering, SE-10 (5), pp.595-609, 1984.

13. Sun Microsystems, Inc.: Java Programming KOUZA,
ASCII Co., Ltd, pp.12-79, 1998.

14. Y. Takemura, K. Shima, K. Matsumoto, K. Inoue and
K. Torii: Factor analysis of comprehension states in the
learning phases of a programming language, Proceedings

Figure 6 Learning process derived from a relational structure

of the 6th Asia-Pacific Software Engineering Conference
(APSEC'99), pp.136-143, Dec. 1999.

15. Y. Takemura: An Analyzing Method about the
Visualization for Understanding Structure of Java
Language, Journal of Osaka University of Junior College,
No.26 pp.143-153, 2002.

16. A. W.Airasian and W. M.Bart: Ordering Theory: A
new and useful measurement model, Education
Technology, pp.56-60, 1973.

