
An Experiment of Evaluating Software Understandability
using a Probabilistic Model

Shinji Uchida,
Electrical and Information Engineering, Kinki University Technical College,

2800 arima, kumano, Mie 519-4395, Japan
Kazuyuki Shima,

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0101, Japan

Abstract
Software understandability is one of important

characteristics of software quality because it can

influence cost or reliability at software evolution in

reuse or maintenance. But it is difficult to evaluate

software understandability because understanding is an

internal process of humans. So, we propose “software

overhaul” as a method for externalizing process of

understanding software systems and propose a

probability model for evaluating software

understandability based on it. This paper presented the

experiment of evaluating software understandability

using a probabilistic model.

1. Introduction
Software reuse is promoted by object orientated

technology or component-ware technology [1].

However, when developers try to reuse a software

system developed by other developers, the difficulty of

understanding the system limits reuse [3]. Even if the

developers of the original system were in the same

organization at first, they may be transferred, or may

change their jobs or retire. It is not rare that changes to

reused software systems will be needed for enhancing

functions, correcting faults, or adapting them to new

circumstances. If the developers of the original system

were absent, the developers reusing it need to

understand it. If it is difficult to understand, changes to

it may cause serious faults and a chain reaction of

changes. Such changes may cost more time than

remaking the software system.

Boehm defined software understandability as a

characteristic of software quality which means ease of

understanding software systems [2]. In his model,

understandability is placed as a factor of software

maintenance. Although developers of the original

software system usually maintain it, they may be

transferred, or change their jobs or retire. Software

maintenance staff need to understand and change it for

enhancing functions, correcting faults, or adapting it to

new circumstances. Changes to software systems are

called software evolution in the research field of

software maintenance. Changes to reused software

systems can be considered as evolution of reused

software systems. Therefore, software understandability

can be placed as a factor of software evolution in reuse

or maintenance.

We propose “software overhaul” as a method for

externalizing process of understanding software

systems[7]. Overhaul itself does not change software

systems. However, data from the overhaul process can

be used to measure software understandability. This

paper presents an experiment of evaluating software

understandability using a probability model. We provide

20 modules (10 faulty modules and 10 non-faulty

modules) in the same software for overhaul. The result

of analysis using our model, we clarify that faulty

modules are worse understandability than non-faulty

modules.

2.Software Overhaul
Software overhaul” consists of deconstruction and

reconstruction like overhaul of hardware e.g. engines,

clocks, etc. Deconstruction is to take a software system

apart to components. Reconstruction is to reproduce the

software system by putting the components together

again. Reconstruction simulates the construction which

is to produce the original software system by selecting or

making the necessary components and putting them

together. In reconstruction, workers are given the same

components of the original software system so that

workers need not to select or make components. This

constraint reduces the time needed for reconstruction.

Workers use a tool to “overhaul”. The tool deconstructs

the original software system and checks the software

system reconstructed by workers. When the tool checks

the reconstructed software system, it fixes components

in the same place with the original so that the workers

use only remaining components at the next

reconstruction. Therefore, workers can overhaul by trial

and error. Fig. 1 shows a procedure of software overhaul

.

3. Probabilistic model
When a worker needed to reconstruct one software

system many times until he/she correctly reconstructs it,
it can be considered the software system is difficult for

him/her to understand. Needless to say, understanding
depends on not only understandability of the software
system, but also comprehension of the worker. If many
workers overhauled many software systems, the average
number of attempts needed for correct reconstruct can
be a metric of understandability or comprehension. The
average number of attempts needed for correct
reconstruction that one worker reconstructed many
software systems means comprehension of the worker.
The average number of attempts needed for correct
reconstruction that many workers reconstructed one
software system means understandability of the software
system. However, if the amount of data is small, such
average number does not carry high confidence as an
estimator. This section presents probabilistic models to
estimate comprehension and understandability. The
followings are given.
L : the number of workers
N : the number of software systems

nM : the number of components of the software system

n (n=1~N).

 nlT : the number of reconstructing when the worker l

overhauled the software system n (l=1~L, n=1~N).
3.1 Random Reconstruction

Some workers may randomly reconstruct just by trial
and error when they can not understand the software
system because the workers are not good at
comprehending or the software system is not well-
understandable. Let us define:

 RH : the hypothesis that the worker randomly

rearranges all components of the software system in
reconstructing.

)(TfM : the probability that the worker correctly

rearranges M components at the T reconstructing under

RH .

kkMkM PCP ′′×=′ : the number of permutations of the

M components in which k components are different
from the original permutation and the other (M-k)
components are the same with the original permutation.

 MMM PP ′=′′ : the number of permutations in which all

M components are different from the original
permutation.
The following equations can be derived.

1)0(0 =f .

0)0(=Mf when 0>M .

0)(0 =Tf when 0>T .

deconstruct

overhaul

reconstruct

x

x=check

T = 0

>0

=0

T = T + 1

End

deconstruct

overhaul

reconstruct

x

x=check

T = 0

>0

=0

T = T + 1

End

Fig.1 The procedure of overhaul

 10000 =′=′′=′ PPPM .

 kkMkM PCP ′′×=′ .

When the worker rearranged M components and k of M
components are different from the original software
system, he/she rearranges k components at the next
attempt to reconstruct. Therefore,

∑
=k

kM

MP ′′ can be calculated as follows:

 !
0

MP
M

k
kM =′∑

=

.

∑
−

=

′−=′
1

0

!
M

k
kMMM PMP when 0>M .

∑
−

=

′′×−=′′
1

0

!
M

k
kkMM PCMP when 0>M .

3.2 Significance Test of Understanding
In order to confirm that the worker did not randomly

reconstruct the software system,)(TfM can be used to

statistically test RH as follow:

T : the observed number of reconstructing.
t : the random variable of reconstructing.

∑
=

=≤=
T

t
MRM tfHTtPTF

0

)()|()(: the probability

that the worker correctly rearranges M components
within T reconstructing.
α : the significance level such as 0.05, 0.01, 0.005, or
0.001.

For example, when α≤)(TFM , RH is significantly

rejected. Therefore, probably RH . If α>)(TFM , RH
is accepted. However, it is not significant. That is, it

does not mean that RH is proved. This relationship is

described as follows:

)()|(

)()|()(

RR

RR

HPHTtP

TtPTtHPTtHP

≤=
≤≤=≤∩

)(

)()(
)|(

TtP

HPTF
TtHP RM

R ≤
=≤ .

If a worker could overhaul a software system within T
reconstructing, he/she can usually overhaul the same
software system within T reconstructing at the next time
because he/she can remember the original software
system. Therefore, it can be considered 1)(=≤ TtP .

When the worker overhaul the software system many

times,)(RHP will decrease because he/she remembers

the original software system. However, it is difficult to

estimate)(RHP at the first overhaul. Therefore, we

use 1)(≤RHP to derive the following inequality.

)()|(TFTtHP MR ≤≤ .

)(1)|(1)|(TFTtHPTtHP MRR −≥≤−=≤ .

Therefore, if)(TFM is small, the probability of RH is

large. It means that the worker could understand the
software system at least a little. However, even if

)(TFM is large, maybe RH or maybe RH .

})(|max{)(max α≤= ∀ TFTMT M : the maximum

number of attempts to reconstruct of which)(TFM is

less than the significance level α .

Fig. 2 shows)(max MT when α =0.05, 0.01, 0.005, or

0.001. The horizontal axis shows the number of
components. The vertical axis shows the number of

reconstructing. If 0)(max =MT , the results of overhaul

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M : the number of components

T
 :

th
e

nu
m

be
r

of
 a

tte
m

pt
s

to
re

co
ns

tr
uc

t 0.05
0.01

0.005
0.001

Fig2. The maximum number of attempts to
reconstruct with significance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

T : the num ber of attem pts to reconstruct

T
h
e

p
r
o
b
a
b
i
l
i
t
y

M =10

M =20

M =30

M =40

M =50

M =60

Fig. 3 The number of attempts to reconstruct vs
the probability

can never be significant because the number of

reconstructing is one at least. If 1)max =MT , the

comparison of results is meaningless because the
number of reconstructing is always one when it is

significant. Therefore, (max M should two at least. It

means that 6, 7, 8, or 9 components are required for the

respectively.
If workers needed to rearrange all components in every

reconstruct is 1/M! in every attempts, and then, it is too

within practical attempts. However, even if the workers
randomly rearrange the components, the number of

because the tool fix components in the same place with
the original in each attempt. Fig. 3 shows the feasibility

axis means (TFM .)(
26, 37, 48, 59, or 70 when M=10, 20, 30, 40, 50, or 60,
respectively. Although workers may be tired if they

can succeed at final.

3.3 Significance Test for Multiple Overhauls

software system or not depends on not only
understandability of the software system, but also

may assign one software system to multiple workers for
accurate measurement. Suppose the result of only one

RH and the results of others accepted

RH . The experimenter can logically think that RH is

rejected when the number of workers is not large.
However, if 20 workers randomly reconstructed the

software system, one lucky workers may reject RH with

the significance level 0.05.
The Kolmogorov-Smirnov one-sample test is a test of
goodness-of-fit [5]. It is concerned with the degree of
agreement between the distribution of a set of sample
values (observed scores) and some specified theoretical
distribution. Therefore, it can be used to determine
whether results in overhaul by multiple workers can
reasonably be thought to have come from a population

having the theoretical distribution under RH . The

tested hypothesis is that RH for all workers. The

Kolmogorov-Smirnov test focuses on the maximum
deviation D as follows:

|)(|max
L

S
TFD nl

nlM n
−= where Nn ,...,2,1= ,

Ll ,...,2,1= , and nl S is the number of workers whose

the number of reconstructing were equal to or less than

nlT .

The sampling distribution of D under the hypothesis is
known (for example, see [5]). If the observed D is more
than the sampling value, the hypothesis is reject. It
means that some of workers can understand the software
system.
4. Experiment.
In order to evaluate software understandability using our
model, we conducted an experiment. In the experiment,
at first, the subject were given the source code and the
documents. Then they started to carry out the overhaul
using overhaul tool.
4.1 An overhaul tool
We developed an overhaul tool for source code. This tool
consists of a client and a server which are written in
Java. The server is one of WWW servers so that workers
can use WWW browsers to access it. At first, workers
open a home page on the server. The home page contains
the client as a Java applet so that the WWW browsers
download and execute it. Therefore, it does not need to
install the client into workers' computers in advance.
Workers can access the server any time and any where
even when experimenters are absent. Therefore, this tool
has a simple login session in order to distinguish
workers. The client asks workers to register their
personal data or to enter their name and ID. The
personal data are the name, birth year, job, etc. which are
needed to know the characteristics of workers. When
workers have registered, the client send the personal data
to the server. The server assigns an ID and replies it to
the client. The client shows the ID. When workers
entered their name and ID, the client send them to the

Fig.4 An overhaul tool for source code

server. The server checks them with the registered data
and replies the result. If the name and ID are the same
with the registered data, the client starts overhaul
session. If not, the client ask workers their name and ID
again.
At first of overhaul session, the client asks the server to
send a file of source code. The server randomly selects a
file from files of the software system and sends it to the
client. The client shuffles lines of the file and shows
them. Fig. 4 shows a window of the client. Gray lines of
which background are gray are shuffled. When workers
click two of gray lines, the two lines are exchanged.
When workers click the 'Answer Check' button at the
bottom of the window, the client checks gray lines that
workers rearranged with the original lines. The client
makes gray lines that are the same with the original lines
white. Gray lines that are different from the original
lines remain. The client send the number of times when
workers clicked the 'Answer Check' button to the server.
4.2 Subjects
73 subjects participated in the experiment and were
assigned to carry out the overhaul independently. All
subjects are graduate school student. We separated the
subjects into two groups. One group (46 subjects)
overhauled the non-faulty module. Another one (27
subjects) overhauled the faulty module.
4.3 Target program
The program was developed for the European Space
Agency (ESA) in the C language within Microsoft Visual
C++ 1.5 environment. The program consists of almost
10,000lines of code (6,100 executables) and is organized
in three subsystems of parser, computation, and
formatting. This program consists of 139 modules and
includes 33 faults. We choose 20 modules in the
program(10 faulty modules and 10 non-faulty modules).

5. Result
Fig. 5 shows the observed number of attempts to
reconstruct and the number of lines. The number of

attempts to reconstruct depends on the number of
executables rather than lines of code.
The modules that have less than 30 executable lines of
code are almost non-faulty module(42 non-faulty
modules and 12 faulty modules). On the other hand, the
modules that have more than 30 executable lines of code
are faulty module(3 non-faulty modules and 14 faulty
modules). This figure shows that the fault is included in

the module that has longer executable lines of code.

Fig. 6 shows a comparison of executables and)(TFM

between the faulty files and non-faulty files.
In less than 10 executable lines of code, all modules are
non-faulty module. From 10 to 30 executable lines of
code, the modules of which understandability is low are
almost faulty modules. In more than 30 executable lines
of code, almost modules are faulty module. This figure
shows faulty modules are worse understandability than
non-faulty modules.

6. Conclusion
This paper presented the experiment of evaluating
software understandability using a probabilistic model. In
the experiment, we provide 20 Modules (10 faulty
modules and 10 non-faulty modules) in the same
software for overhaul. The result of experiment, we
clarify that faulty modules are worse understandability
than non-faulty modules. In the future, we are planning
to conduct further experimental investigation based on
the model.
References
[1] M. Aoyama, “Component-based software engineering: can
it change the way of software development?” Proc. of the 20th
International Conference on Software Engineering, vol. 2, pp.
24-27, 1998.
[2] B. W. Boehm, et. al, “Characteristics of Software Quality,”
North-Holland, 1978.
[3] G. Caldiera, and V. R. Basili, “The qualification of
reusable software components,” pp. 117-119 in [6].

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Executable lines of code

N
u
m
b
e
r

o
f

R
e
c
o
n
s
t
r
u
c
t
i
o
n

Non-faulty
Faulty

Fig. 5 The observed number of attempts to
reconstruct

1E-20

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70

Executable lines
P
r
o
b
a
b
i
l
i
t
y

o
f

r
a
n
d
o
m

r
e
c
o
n
s
t
r
u
c
t
i
o
n

non-faulty
faulty

Fig. 6 Size and understandability between faulty
modules and non-faulty modules

[4] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting fault incidence using software change history,”
IEEE Transactions on Software Engineering, vol. 26, no. 7,
pp. 653-661, July 2000.
[5] Sidney Siegel, N. John Castellan, Jr., Nonparametric
Statistics for the Behavioral Sciences (second edition),
McGRAW-HILL Inc., ISBN 0-07-057357-3, 1988.
[6] W. Schafer, R. Prieto-Diaz, M. Matsumoto, "Software
Reusability", Ellis Horwood Limited, pp.117,1994.
[7] Kazuyuki Shima, Yasuhiro Takemura, and Ken-ichi
Matsumoto, "An approach to experimental evaluation of
software understandability," In Proc. International Symposium
on Empirical Software Engineering (ISESE2002), IEEE
Computer Society Press, pp.48-55, Oct. 2002

