Feature Interactions in
Telecommunications and
Software Systems VII

Edited by

Daniel Amyot

School of Information Technology and Engineering, University of Ottawa,
Ottawa, Canada

and

Luigi Logrippo

Département d’informatique et d’ingénierie,
Université du Québec en Qutaouais, Gatineau, Canada

i » O
K oW

il
il

(1

@]
)
3

Amsterdam e Berlin e Oxford e Tokyo ® Washington, DC

Feature Interactions in
Telecommunications and
Software Systems VII

Edited by

Daniel Amyot

School of Information Technology and Engineering, University of Ottawa,
Ottawa, Canada

and

Luigi Logrippo

Département d’informatique et d'ingénierie,
Université du Québec en Outaouais, Gatineau, Canada

"u
-
E o
Ko

Ay

ol
5
3

il

5 1l

Amsterdam e Berlin Oxford e Tokyo ® Washington, DC

Feature Interactions in Telecommunications 215
and Software Systems VII

D. Amyot and L. Logrippo (Eds.)

[0S Press, 2003

Detecting Script-to-Script Interactions
in Call Processing Language

Masahide NAKAMURA!, Pattara LEELAPRUTE?, Ken-ichi MATSUMOTO!,
and Tohru KIKUNO?

! Graduate School of Information Science, Nara Institute of Science and Technology, Japan
{masa-n, matumoto} @is.aist-nara.ac.jp
*Graduate School of Information Science and Technology, Osaka University, Japan
{pattara, kikuno} @ist.csaka-u.ac.jp

Abstract. This paper addresses a problem to detect feature interactions in a CPL (Call
Processing Language) programmable service environment on Internet telephony. In
the CPL environment, the previous works cannot be directly applied, because of new
complications introduced:(a) features created by non-experts and (b) distributed fea-
ture provision. To cope with the problem (a), we propose eight types of semantic
warnings which guarantee some aspects of semantic correctness in each individual
CPL script. Then, as for (b), we present an alternative definition of feature interac-
tions, and propose a method to implement run-time feature interaction detection. The
key idea is to define feature interactions as the semantic warnings over multiple CPL
scripts, each of which is semantically safe. We also demonstrate tools, called CPL
checker and FI simulator, to help users to construct reliable CPL scripts.

1 Introduction

Internet telephony [8] is expected to enable a new generation of telecommunication services.
It facilitates integration with other Internet services, which allows rich and sophisticated tele-
phony services. Internet telephony has been widely studied at the network protocol level (i.e.,
SIP [9] and H.323 [14]). Some companies have already started commercial services, and its
protocol stacks are also released by open source communities (e.g., VOCAL [16}).

The concern is now shifting to the service level, that is, how to provide value-added fea-
tures in Internet telephony. There are two complementary approaches to achieving the feature
provision.

The first one is based on network convergence, which integrates IP and the traditional
IN/PSTN networks [13]. The idea is to activate the IN services from Internet telephony
through APIs (e.g., JAIN API [15]). Many telecom industries are conducting research and
development for it, in order to make full reuse of their legacy services. Though this approach
is quite challenging, we do not discuss it in this paper.

Another approach, which is interesting for us here, is programmable service [6] [10]. The
service and feature creation is opened to end users and third parties. The service definitions
can be deployed in the local (and distributed) servers over the Internet. The users can create,
delete and modify their own services at any time.

216 M. Nakamura et al. / Detecting Script-to-Script Interactions

As in the IN/PSTN networks, feature interactions occur as well in Internet telephony. The
previous research works might be helpful to understand a part of the interactions. However,
feature interactions in Internet telephony are a more serious problem than the conventional
ones, because of various new complications introduced [1][7]. Especially in the context of

the programmable service, the following are essential issues that make the problem more
difficult.

(a) Features created by non-expert users: In conventional telephony, quality of individual
features is guaranteed by the telecom companies, and end users just subscribe to the
ready-made features. On the other hand, programmable services allow end users or third
parties to freely create and define their own custom-made features. Most of the end users
are not as expert as telecom engineers. Each user is very likely to create a feature, without
the greatest care of logical consistency and correctness in the (single) feature, much still
less feature interactions with others.

(b) Distributed feature provision: The created features can be easily installed in local sig-
naling servers. The features are completely distributed over the Internet and there is no
centralized feature server. This fact means that it is impossible to enumerate all possi-
ble features. Thus, we cannot conduct off-line feature interaction detection, nor prepare
resolution schemes in advance, such as feature priorities.

In this paper, we tackle the problem of feature interaction in Internet telephony with Call
Processing Language (CPL, in short) [5][6]. The CPL is an XML-based language for the
programmable service in Internet telephony, and is proposed as RFC2824 in IETFE. The CPL
is gaining popularity, and major VoIP systems (e.g., [16]1[17]) adopt it as feature description
language. The goal of this paper is to establish a definition and a detection method of feature
interactions within the CPL programmable service environment. To achieve this, we propose
two new methods corresponding to the above problems (a) and (b).

Firstly, we propose semantic warnings for the CPL scripts to address the problem (a) fea-
ture created by non-experts. In a CPL environment, each user describes his/her own feature
in a (single) CPL script at a time. The syntax of the CPL is strictly defined by DTD (Docu-
ment Type Definition). However, compliance with the DTD is not a sufficient condition for
correctness of a CPL script. As far as we know, there exist no guidelines for users to assure
semantical correctness of individual CPL scripts. The proposed warnings are not necessarily
errors, but they identify the source of ambiguity, redundancy and inconsistency for a given
CPL script.

Secondly, to address the problem (b) distributed feature provision, we propose an alter-
native definition of feature interaction, and its detection method in the CPL environment. In
[51[6], a brief categorization of feature interactions in the CPL environment is presented !.
However, no concrete method to detect feature interactions in the CPL environment has been
proposed yet.

In general, feature interactions can be defined (informally) as violation of user’s require-
ment that is caused by combination of multiple features. Here, a CPL script described by a
user can be considered as an exact requirement of the user. So, the violation of the require-
ment occurs when the script is not executed as described, under the influence of CPL scripts

! According to the categorization in [5], feature interactions discussed in this paper are script-script and/or
server-to-server interactions

M. Nakamura et al. / Detecting Script-to-Script Interactions 217

by other users within the call. Note that the violation can be observed only at run time, and can
never be predicted by off-line analysis. Thus, the new definition of feature interactions must
be dependent on a call scenario at run time, which is significantly different from definitions
in the literatures [4] [12]. ‘

Our key idea is to define feature interactions (i.e., the violation) as the semantic warnings
over multiple CPL scripts, each of which is semantically valid. For this, we propose a combine
operator and some new notions for CPL scripts (i.e., complete, safe). Then, we present a
procedure to implement run-time feature interaction detection. We also present tools to detect
the semantic warnings in a single CPL script, and to feature interactions over multiple scripts.

The rest of the paper is organized as follows. Section 2 describes a brief review of CPL.
In Section 3, we propose the semantic warnings for a single CPL script. Then, Section 4
presents definition and detection method of feature interactions among multiple CPL scripts.
Section 5 describes the tool support for the proposed method. Finally we conclude the paper
with discussion and future work in Section 6.

2 Call Processing Language (CPL)
2.1 Overview

Internet telephony basically consists of two types of components: end systems and signal-
ing servers. The CPL is meant to describe network-based features which process calls on
the signaling servers in a network. Terminal-based features, like camp-on, call waiting and
voicemail, that heavily depend on end-system states and devices should be implemented on
the end systems, and thus are out of scope of the CPL.

First of all, we review the CPL definition briefly. The full specification can be found in
[5][(6]. A CPL script is composed of mainly four types of constructors: top-level actions,
switches, location modifiers and signaling operations.

Top-level actions: Top-level actions are firstly invoked when a CPL script is executed: out -
going (or incoming) specifies a tree of actions taken on the user’s outgoing call (or
incoming call, respectively). subaction describes a sub routine to increase re-usability
and modularity.

Switches: Switches represent conditional branches in CPL scripts. Depending on types of

conditions specified, there are five types: address-switch, string-switch,language-

switch, time-switchand priority-switch.

Location modifiers: The CPL has an abstract model, called location set, for locations to
which a call is to be directed. The set of the locations is stored as an implicit global vari-
able during call processing action by the CPL. For the outgoing call processing, the loca-
tion is initialized to the destination address of the call. For the incoming call processing,
the location set is initialized to the empty set. During the execution, the location set can be
modified by three types of modifiers: location adds an explicit location to the current
location set; 1ookup obtains locations from outside; remove-location removes some
locations from the current location set.

Signaling operations: Signaling operations trigger signaling events in the underlying sig-
naling protocol for the current location set. There are three operations: proxy forwards

218 M. Nakamura et al. / Detecting Script-to-Script Interactions

<?xml version="1.0" ?>
<!DOCTYPE ¢pl PUBLIC "-//IETF//DTD RFCxooot
CPL 1.0//EN" "cpl.dtd">
<cpl>
<subaction id=" vo.xcemaxl >
<location url="sip:chris@voicemail.example.com">
<proxy />
</location>
1 1on ¢ </subaction>
?xml version=" ?> 3 3
< DOCTYBE cpl PUBLIC "-//IETF//DTD RFCxxxx o _switch fi {gin- {elde"host -
- eld="origin" subfield="host">
CPL 1.0//EN" "cpl.dtd*> N

<address subdomain-of="example.com”>

<CP]-> . <location url="sip:chris@office.example.com">
<outgoing> <proxy />
<address-switch field="destination" > </location>

</address>

<address subdomain-of="crackers.org">
<reject status="reject”

<address is="sip:bob@home.org">
<reject status="reject"

-n 3 : "
reason="No call to Bob is permitted" /> reason="No call from this domain allowed* />
</address> </address>
</address-switch> <address subdomain-of="instance.net">
</outgoing> <location url="sip:bob@home.org"*>
</cpl> <redirect />
</location>

</address>
<otherwise>) .
<sub ref="voicemail" />
</otherwise>
</address-switch>
</incoming>
</cpl>

Figure 1: A CPL script 54 of OCS Figure 2: A CPL script s, of DCF

the call to the location set currently specified; redirect prompts the calling party to
make another call to the current location set, then terminates the call processing; reject
causes the server to reject the call attempt and then terminates the call processing.

2.2 Feature examples

We start with a simple feature, namely Originating Call Screening (OCS, in short). Suppose
the following requirement: Alice (alice@instance .net)wants to block any outgoing calls
to Bob (bob@home . org) from her end system. Figure 1 shows an implementation of Alice’s
script s,. In Figure 1, the first three lines represent declaration of XML and DTD. The tag
<cpl> means the start of a body of the CPL script. The top-level action <outgoing> de-
scribes actions activated when Alice makes a call. Next, <address-switch> specifies a
conditional branch. In this example, the condition is extracted from the destination address
of the call (field="destination"). If the destination address matches bob@home . org
(<address is="bob@home.org">),the callis rejected (<reject status... />). Ifit
does not match, the call is be proxied to the destination address (This is done by default
behavior of the CPL, although the proxy operation is not explicitly specified. See Section
4.2.1).
The next example is a bit complicated. A user Chris (chris@example.com) wants to:

receive calls from domain example.com at office chris@office.example.com.

reject any call from malicious crackers belonging to crackers.org.

redirect any call from clients within instance.net to Bob’s home at bob@home . org.

proxy any other calls to his voicemail at chris@voicemail.example.com.

Figure 2 shows an implementation of Chris’s script s.. Let us call this feature Domain
Call Filtering (DCF). The portion surrounded by <subaction> </subaction> defines a
subaction called from the main-routine. <incoming> specifies actions activated when Chris
receives an incoming call.

M. Nakamura et al. / Detecting Script-to-Script Interactions 219

Next, in <address-switch>, a condition for the switch is extracted from the host ad-
dress of the caller (field="origin" subfield="host"). If the domain matches ex-
ample.com (<address subdomain-of="example.com">), then the location is set to
chris@office.example.com, and the call is proxied to his office (<proxy />). If the
domain matches crackers.org, the call is rejected by <reject />. Else if the domain
matches instance.net,the locationissetto bob@home.org. Then, the call is redirected
to Bob and the caller places a new call to Bob. Otherwise, the subaction voicemail is called.
In the subaction voicemail, the location is set to the voicemail at chris@voicemail . exam
ple.com, and then the call is proxied there.

3 CPL semantic warnings

The definition of CPL with DTD [5][6] guarantees the syntactical structure of CPL, but does
not cover any semantical aspects of each individual script. Hence, there is enough room,
especially for non-expert users, to make semantical flaws in the script. The proposed warnings
aim to help each user find such semantical flaws in his/her script. Focusing on constraints of
CPL and semantic aspects of telephony features, we have identified eight kinds of warnings
so far.

3.1 Multiple forwarding addresses (MFAD) '

Definition: The execution reaches <proxy> or <redirect> while multiple addresses are
contained in the location set.

Effects: The CPL allows calls to be proxied (or redirected) to multiple address locations by
cascading <location> tags. However, if the call is redirected to multiple locations, then
the caller would be confused to which address the next call should be placed. Or, if the
call is proxied, a race condition might occur depending on the configuration of the proxied
end systems. As a typical example, if a user simultaneously sets the forwarding address
to his handy phone and voicemail that immediately answers the call. Then the call never
reaches his handy phone.

Example CPL: Figure 3(a) shows an example. The user is setting the forwarding address to
his handy phone pat tara@mobile.example.com and voicemail pattara@voicemail
.example . com, simultaneously. If the user configures the voicemail to immediately an-
swer the call, then no call reaches the mobile phone. '

3.2 Unused subactions (USUB)

Definition: Subaction <subaction id= "foo" > exists,but<subaction ref= "foo"
> does not.

Effects: The subaction is defined but not used. The defined subaction is completely redun-
dant, and should be removed to decrease server’s overhead for parsing the CPL script.

Example CPL: Figure 3(b) shows an example. In this script, a subaction mobi le that is de-
clared in the subsection part is not used in the body of the script. So, the unused subaction
mobi le is redundant and should be removed.

220 M. Nakamura et al. / Detecting Script-to-Script Interactions

3.3 Call rejection in all paths (CRAP)

Definition: All execution paths terminate at <reject>.

Effects: No matter which pati] is selected, the call is rejected. No call processing is per-
formed, and all executed actions and evaluated conditions are nullified. This is not a
problem only when the user wants to reject all calls explicitly. However, complex con-
ditional branches and deeply nested tags make this problem difficult to be found, on the
contrary to the user’s intention.

Example CPL: Figure 3(c) shows an example. By this script, any incoming call is rejected,
no matter who the originator is. All actions and evaluated conditions are meaningless after
all.

3.4 Address set after address switch (ASAS)

Definition: When <address>and <otherwise> tags are specified as outputs of <address-
switch>, the same address evaluated in the <address> is set in the <otherwise>
block.

Effects: The <otherwise> block is executed when the current address does not match the
one specified in <address>. If the address is set as a new current address in <other-
wise> block, then a violation of the conditional branch might occur. A typical example
is that, after screening a specific address by <address-switch>, the call is proxied to
the address, although any call to the address must have been filtered.

Example CPL: Figure 3(d) shows an example. When the user make an outgoing call, this
script checks the destination of the call. The call should be rejected if the destination ad-
dressis pattara@example.com,according to the condition specifiedin <address>.
However, in the <otherwise> block, the call is proxied to pattara@example. com,
which must have been rejected.

3.5 Overlapped conditions in single switch (OCSS)

Definition: Let A be a switch, and let cond s, and cond 42 (arranged in this order) be condi-
tions specified as output tags of A. Then, condy; is implied by cond 2.

Effects: According to the CPL specification, if there exist multiple output tags for a switch,
then the condition is evaluated in the order the tags are presented, and the first tag to
match is taken. By the above definition, whenever cond 4o becomes true, cond4; is true.
So, the former tag is always taken and the latter tag is never executed, which is a redundant
description.

Example CPL: Figure 3(e) shows an example. This script is supposed to do a typical call
processing in a support center. Calls for general help (with a subject containing help) are
meant to be redirected to general-support. Emergency calls (with a subject matching
emergency help) are to be proxied to an attendant staff. However, in fact, all calls
are redirected to general-support, and no emergency call reaches to the attendant.
Since "help" is a substring of "emergency help", two conditions are overlapped.

M. Nakamura et al. / Detecting Script-to-Script Interactions 221

3.6 Identical actions in single switch (IASS)

Definition: The same actions are specified for all conditions of a switch.

Effects: No matter which condition holds, the same action is executed. Therefore, the con-
ditional branch specified in the switch is meaningless. In such case, this switch should be
eliminated to reduce complexity of the logic.

Example CPL: Figure 3(f) shows an example. This script has a language-switch to
check the language preference of the call. This switch specifies a conditional branch de-
pending on whether the preference is Japanese (jp) or not. However, the same action
<sub ref="voicemail"> occurs independently of the language preference. So, the
switch is completely meaningless.

3.7 Overlapped conditions in nested switches (OCNS)

Definition: Let A and B be switches of the same type, and let cond 4 and condg be the con-
ditions of A and B, respectively. Then, [A is nested in B’s condition block] and [condp
implies cond 4].

Effects: This warning is derived by the fact that CPL has no variable assignment. So, any
condition that is evaluated to be true (or false) remains true (or false, respectively) during
the execution. Assume that condg implies conds. B’s condition block, in which A is
specified, is executed only when condp is true. So, by. the assumption, cond, always
becomes true when evaluated. Thus, A’s condition block is unconditionally executed.
Also, if A has an otherwise block, then the block cannot be executed. As a result, the
switch A is completely redundant and should be removed.

Example CPL: Figure 3(g) shows an example. When an incoming call arrives, the script first
checks a domain of the caller’s host. If the domain matches home . org, then the second
switch does the same checking again. However, since the condition for the second switch
is the same as the first one, which have already been shown to be true, it is redundant
description. Also, <reject />in <otherwise> is unreachable.

3.8 Incompatible conditions in nested switches (ICNS)

Definition: Let A and B be switches of the same type, and let cond4 and condp be the
conditions of A and B, respectively. Then,

() [A is nested in B’s condition block] and [cond 4 and condp are mutually exclusivel], or
(B) [A is nested in B’s otherwise block] and [cond 4 implies condg].

Effects: Let us consider (o) first. B’s condition block, in which A is specified, is executed
only when condp is true. However, cond4 and condp are exclusive, so cond 4 cannot
be true at this time. Therefore, A’s condition block is unexecutable. (3) is the comple-
mental case of (a). B’s otherwise block is executed only when condp is false. Now that
cond 4 must be false, which is implied by —condp. Consequently, A’s condition block is
unexecutable also.

222

M. Nakamura et al. / Detecting Script-to-Script Interactions

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxXxXXX
CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<location
url="sip:pattara@mobile. example com">
<location
url="sip:pattara@voicemail.example.com">
<proxy />
</location>
</location>
</incoming>
</cpl>

(a) Example of MFAD

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCXXXX
CPL 1.0//EN" "cpl.dtd">
<cpl>
<subaction id="mobile">

<location url="sip:jones@mobile.example.com" >

<proxy />
</location>
</subaction>
<incoming>
<location url="sip:jones@example.com">
<proxy />
</location>
</incoming>

</cpl>
(b) Example of USUB

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxXxX
CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<address-switch field="origin">
<address is="anonymous">
<reject status="reject" reason=
"I don’t accept anonymous calls”
</address>
<otherwise>
<reject status="reject" reason=
"I don’'t accept call from anyone”
</otherwise>
</address-switch>
</incoming>

</cpl>
(c) Example of CRAP

/>

/>

?>
"-//IETF//DTD RFCxXXXX
CPL 1.0//EN" "cpl.dtd">

<?xml version="1.0"
<!DOCTYPE cpl PUBLIC

<cpl>
<outgoing>
<address-switch field=*destination">
<address is="sip:pattara@example.com">
<reject status="reject"
reason="1 don’t call Pattara" />
</address>
<otherwise>
<location url="sip:pattara@example.com">
<proxy/>
</location>
</otherwise>
</address-switch>
</outgoing>

</cpl>
(d) Example of ASAS

<?xml version="1.0" 2>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCXXxXX
CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<string-switch field="subject">
<string contains="help">
<location urls=
"sip:general-support@example.com">
<redirect />
</location>
</string>
<string is="emergency help">
<location url="sip:staff@example.com">
<proxy />
</location>
</string>
</string-switch>
</incoming>

</cpl>
(e) Example of OCSS

<?xml version="1.0" ?>
<!DOCTYPE cpl ‘PUBLIC "-//IETF//DTD RFCXXXX
CPL 1.0//EN" "cpl.dtd">
<cpl>
<subaction id="voicemail">
<location url=*sip:nakamura@voicemail.org" >
<proxy />
</location>
</subaction>
<incoming>
<language-switch>
<language matches="jp">
<sub ref="voicemail"
</language>
<otherwise>
<sub ref="voicemail"
</otherwise>
</language-switch>
</incoming>

</cpl>
(HExample of IASS

/>

/>

<?xml version="1.0" 2>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCXXXX

CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<address-switch field="origin"
subfield="host">
<address subdomain-of="home.org">
<address-switch field="origin"”
subfield="host">
<address subdomain-of="home.org">
<location url="sip:pattara@mobile.net">
<proxy />
</location>
</address>
<otherwise> .
<reject status="reject"
reason="Some reason" />
</otherwise>
</address-switch>
</address>
</address-switch>
</incoming>

</cpl>
(g) Example of OCNS

<?xml version="1.0" 2>
<1DOCTYPE cpl PUBLIC "-//IETF//DTD RFCXxXx

CPL 1.0//EN" "cpl.dtd">
<cpl>
<incoming>
<address-switch field="origin"
subfield="host">

<address subdomain-of="home.org">
<address-switch field="origin"
subfield="host">
<address subdomain-of="example.com">
<location url="sip:pattara@mobile.net”">
<proxy />
</location>
</address>
</address-switch>
</address>
</address-switch>
</incoming>
</cpl>

(h)Example of ICNS

Figure 3: Example CPL scripts

M. Nakamura et al. / Detecting Script-to-Script Interactions 223

Example CPL: Figure 3(h) shows an example for the above (c). When an incoming call ar-
rives, the script first checks a domain of the caller’s host. If the domain matches home . org,
the second address switch evaluates the domain again. If the domain matches exam-
ple.com, the call is proxied to pattara@mobile.net. However, this proxy operation
never occurs, since conditions for the two switches are mutually exclusive. That is, it is
impossible that the domain matches both home . org and example . com, simultaneously.

The above eight warnings can occur even if a given CPL script is syntactically well-
formed and valid in the sense of XML.. Note that the semantic warnings in a single script can
be detected by a simple static (thus, off-line) analysis.

Definition (Semantically Safe): We say that a CPL script is semantically safe iff the script
is free from the semantic warnings.

4 Feature interaction detection in CPL scripts
4.1 Key idea

Even if each user creates a safe script by means of the proposed semantic warnings, feature
interactions may occur when multiple scripts are executed simultaneously. In the CPL envi-
ronment, each user cannot have more than one script at a time. Hence, interactions between
features allocated in the same user (e.g, CW v.s. TWC) cannot occur [7]. Instead, interactions
may occur between scripts owned by different users.

Interaction between OCS & DCF: Let us recall two features OCS and DCF in Section 2.2,
implemented as s, in Figure 1 and s, in Figure 2, respectively. Now, consider a call sce-
nario where Alice (alice@instance.net) calls Chris (chris@example.com).
First, Alice’s script s, is executed. Since Chris is not screened in s,, the call is prox-
ied to Chris. Next, Chris’s script s, is executed. Since Alice belongs to a domain in-
stance.net, the call is redirected to Bob (bob@home . org). As a result, Alice makes
a call to Bob, although this call must have been blocked in s,. Thus we can say that s,
and s, interact.

The situation in the above example is quite similar to the semantic warning ASAS (See
Section 3.4), although it occurs within the combination of multiple scripts s, and s.. The key
idea of our approach is to define feature interactions as the semantic warnings over multiple
CPL scripts.

4.2 Preliminaries

Before formalizing feature interactions in the CPL environment, we define some new notions
with respect to CPL scripts.

4.2.1 Complete CPL scripts

When an execution of a CPL in a signaling server reaches .an unspecified condition or an
empty signaling operation, the execution follows the default behaviors (See Section 11 of [5]
for more details). Here are some examples:

224 M. Nakamura et al. / Detecting Script-to-Script Interactions

<?xml version="1.0" ?>
<!DOCTYPE cpl PUBLIC "-//IETF//DTD
RFCxxxx CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>
<address-switch field="destination" >
<address is="sip:bob€home.org">
<reject status="reject"
reason="No call to Bob is permitted" />
</address>
<otherwise>
<proxy />
</otherwise>
</address-switch>
</outgoing>
<incoming>

</incoming>
</cpl>

Figure 4: A complete CPL scripts, of OCS

D1: In an outgoing action, if there is no location modifier and no signaling operation is
reached, then proxy to the destination of the call.

D2: In an incoming action, if there is no location modifier and no signaling operation is
reached, then treat as if there is no CPL script (i.e., the server tries to connect the call to
an end system of the owner of the script).

D3: If location modifier exists but no signaling operation is specified, proxy or redirect to
the location, based on the server’s standard policy.

These default behaviors are usually taken implicitly from user’s point of view, based on the
server’s policy and/or the underlying protocol 2 and may sometimes contradict to the user’s
intension. Hopefully, the implicitness caused by the default behaviors should be eliminated
from every script. For this purpose, we define a new class of CPL scripts:

Definition (Complete Script): We say that a CPL script is complete iff no default behavior
is taken in any possible execution path.

The default behaviors must be simulated deterministically by using auxiliary information
on the signaling server. Hence, we assume that every CPL script on a signaling server can
be transformed into a completed script without changing logics of the original script. The
followings are guidelines to achieve the transformation.

(a) Make all conditional branches complementary. For instance, <otherwise> block must
be added to every switch, if it is not present.

(b) Based on the server’s standard policy, specify an appropriate signaling operation in every
terminating node (i.e., leaf of XML's tree structure) that has location modifier.

(c) Add empty <incoming> or <outgoing> blocks if either of them is not present.

As an example, consider again the CPL script in Figure 1. This script is not complete,
since there is no action specified when the destination address is not bob@home . org. Based
on the default behavior and the guidelines above, the script can be transformed into a complete
one as shown in Figure 4.

2For example, the VOCAL system [16] adopts redirect for the above D3.

M. Nakamura et al. / Detecting Script-to-Script Interactions 225

4.2.2 Successor functions

Suppose that we have a complete CPL script s, and that we want to examine feature inter-
actions between s and other related.scripts. Then, we need to know at least which script
should be executed after s is terminated. Since s is complete, the execution of s must exit on
an empty tag or a certain signaling operation (proxy, redirect or reject), with a location set
containing the next address(es) the call is directed to.

Note that the above information dynamically varies depending on given call scenarios.
More specifically, we assume that the following functions are available at run time for a
given CPL script s and a call scenario c.

Definition (Functions): For a complete CPL script s and a call scenario ¢, we define the
following functions.

exit(s, c): returns a pointer to a signaling operation in s executed at the end under c.

next(s, c): returns the next CPL script executed following s under ¢, obtained based on the
next address.

type(s, c): returns a type of the signaling operation: proxy, redirect, reject or end (for empty
signaling operation).

For example, consider again the example in Section 2.2 and the scripts s, in Figure 4 and

s in Figure 2. Table 1 summarizes values of the functions, with respect to two instances c;
and ¢, of call scenarios.

Table 1: Example of successor functions for s,

[Call scenarios | exit(sq,c;) [nezt(sq,ci) | type(sa,ci) |
¢ (AlicecallsBob) | <reject .../> line 8-9 none reject
¢ (Alice calls Chris) <proxy .../> line 12 Se¢ proxy

4.3 Feature interactions among two scripts

Firstly, let us consider two complete scripts s and ¢ only. In order to define feature interactions
between s and ¢, we need to capture a combined behavior of s and ¢. For this purpose, we
propose a combine operator.

Intuitively, the combine operator merges two scripts s and ¢ such that ¢ is executed after
s. This partial order is defined only when the call is proxied from s to t. In the case that s
redirects a call to t, the call is once reverted to the caller, and s terminates. Then, a new call
is originated from the caller to ¢ without passing through s. Note that the combine operator
depends on a given call scenario, because ¢ depends on the scenario.

Definition (Combine operator): Let ¢ be a given call scenario, and let s and ¢ be complete
scripts such that type(s, c) = prozy and next(s,c) = t. Then, a combined scriptT = sbct
is a CPL script obtained from s and ¢ by the following procedures:

Stepl: If any subaction (let it be <subaction id="foo">)is defined in s (or t), eliminate
it by replacing <sub ref="foo" /> with the body of the subaction.

226 M. Nakamura et al. / Detecting Script-to-Script Interactions

<?xml version="1.0" 2>
<1DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxXXXX CPL 1.0//EN" "cpl.dtd">
<cpl>
<outgoing>
<address-switch field="destination" >
<address is="sip:bob@home.org">
<rejedt status="reject"
reason="No call to Bob is permitted" />
</address>

<otherwise> .
<remove-location> o
<address-switch field="origin" subfield="host">

<address subdomain-of="example.com">
<location url="sip:chris@office.example.com">
<proxy />
</location>
</address>

<address subdomain-of="crackers.org">
<reject status="reject"”
reason="No call from this domain is permitted"” />
</address>

<address subdomain-of="instance.net">
<location url="sip:bob@home.org">
<redirect />
</location>
</address>

<otherwise>
<location url="sip:chris@voicemail.example.com">
<proxy />
</location>
</otherwise>

</address-switch>
</remove-location>
</otherwise>
</address-switch>

</outgoing>

<incoming>

</incoming>

</cpl>

Figure 5: A combined CPL script s, e, Sc

Step2: Let In(t) be the body of incoming action of ¢ (i.e., the portion surrounded by <in-
coming> - - - </incoming>).In s, replace <proxy /> pointed by exit(s, c) with <remove-
location> In(t) </remove-location>. Let the resulting script be 7.

The combine operator >, makes a chain between s and ¢, by merging the <proxy> operation
executed at the end of s, with the <incoming> action of ¢ executed next. The <remove-
location> inserted in Step 2, is to simulate that the location set is initialized to empty when
the incoming action occurs (see Section 2.1). Note that the combine operation does not ruin
the syntax structure, since both <remove-location> In(t) </remove-location> and
<proxy /> are defined as nodes in the DTD of CPL. So, if both s and ¢ are syntactically
valid, then s >, t is also valid.
Now we are ready to define feature interactions among two scripts.

Definition (Feature interaction among two scripts): Let s and ¢ be given complete scripts,
and let ¢ be a given call scenario. Then, we say that s interacts with t with respect to c, iff
both s and ¢ are semantically safe, but s>, ¢ is not safe.

Let us consider two scripts s, and s in Figures 4 and 2, respectively. Also, take a scenario
¢, in Table 1, where Alice calls Chris. Figure 5 shows a combined script s, D¢, Sc- Now, both
s, and s, are semantically safe, but 54>, S is not safe. It contains a semantic warning ASAS,
since address bob@home . org evaluated in <address> is set in <otherwise> block. This
is just the interaction explained in Section 4.1.

M. Nakamura et al. / Detecting Script-to-Script Interactions 227

scripts Succ(script s, scenario c) {
R =s;
if (type(s, c)) == "proxy’) {
' check_loop(nezxt(s,c),c);

foreach t € Succ(next(s,c),c)
oo » X R=RU(spct);

} else if (type(s, ¢) == 'redirect’) {

......... .D EJ. @ \ R = R U Succ(nezt(s,c),c);

return R;

. Figure 7: Algorithm Succ(s,c) for computing a set of
Figure 6: Multiple scripts involved in a call scenario | gcripts to be checked

4.4 Feature interaction detection

In the previous subsection, we have defined feature interactions between two scripts. How-
ever, a call could involve more than two scripts in general, because of successive redirect and
proxy operations. So, the definition of feature interactions is generalized as follows:

Definition (Feature interactions): Let s, be a given script of the call originator, and let ¢
be a given call scenario. Also, let sy, $2, -+ -, S be scripts, where s; proxies the call to s;41
under a call scenario c. Then, we say that feature interactions occur with respect to sy and c,
iff all of 5;(0 < ¢ < n) are semantically safe, but there exists some k(1 < k < n) such that
So D¢ 81 D¢ - * + De S 18 not semantically safe.

Figure 6 shows an example of a call scenario where multiple scripts are successively exe-
cuted. In the figure, a box represents a CPL script. A solid arrow represents a proxy operation
between scripts, while a dotted arrow describes a redirect operation. To identify feature in-
teractions in this call scenario ¢, we must check the semantic warnings for the following six
scripts (1) s, (2) s> t, (3) s> 7, (4) S T DV, (5) s> v, wand (6) s T D v D L.

We present an algorithm to compute a set of combined scripts that must be checked in
feature interaction detection. Figure 7 shows a C-like pseudo code to compute the set R
of the scripts for a given originating script s and a call scenario c¢. In the algorithm, we
define a procedure check-loop (t, c). This abstracted procedure checks if script t forms a
forwarding loop in the call scenario c, by using a loop detection mechanism in the underlying
protocol [5]. If a loop is detected, the procedure terminates the algorithm with some error
reports.

The algorithm Succ first puts the given script s itself in the set R. Next, if the processing
type is proxy, Succ first checks a forwarding loop by check.loop. If no loop is detected, it
combines s with its successive scripts, which are recursively computed by setting the proxied
script as the initial script, and put them in R. If the processing type is redirect, Succ recur-
sively obtains a set of scripts starting with the redirected script, and then puts them in K.
Finally, Succ returns the set R. For example, consider again a call scenario ¢ in Figure 6.
Succ(s, ¢) computes the six combined scripts: (1) s, (2) sbct, B) s 7, (4) s, (5)
ST DD, w and (6) s> T >, VD T

228 M. Nakamura et al. / Detecting Script-to-Script Interactions

We are ready to present a feature interaction detection algorithm. We assume that each
individual script is semantically safe.

Feature interaction detection algorithm :

Input: A CPL script s of a call originator, and a call scenario c.
Output: Feature interactions occur or not.

Procedure: Compute Succ(s,c), and check if each script in Succ(s,c) is semantically
safe. If all of the scripts are semantically safe, return “feature interaction does not
occur”. Otherwise, return “feature interaction occurs” with the corresponding (com-
bined) scripts. |

5 Tool support

We are currently implementing a set of tools for the proposed framework. Here we introduce
two of them: CPL checker and FI simulator.

CPL checker: For a given CPL script, CPL checker detects the proposed semantic warnings.
It also performs syntax checking to validate the conformance to the XML syntax and the
DTD of CPL. Thus, it can be used for debugging CPL scripts as well. Figure 8(a) shows
a screenshot, where semantic warning OCSS is detected. Every validated script can be
registered in the system with the (virtual) owner’s address of the script. The registered
scripts can be used by FI simulator to perform off-line simulation.

FI simulator: This tool simulates execution of CPL scripts registered through CPL checker.
Then, for a given call scenario, it tries to identify feature interactions by combining ap-
propriate scripts. A user of the tool firstly chooses some of the registered scripts, then
configures a call scenario *. Finally, the tool computes a combined script by algorithm
Succ, and detects feature interactions as semantic warnings. Figure 8(b) shows a screen-
shot, where interaction ASAS presented in Section 4.1 is detected. The call scenario and
simulated call processing are also seen in the figure.

The tools are implemented as a collection of CGI programs written in Perl open-source
modules [2][3]. Since all operations to the tools are performed through a simple Web inter-
face, a user can easily conducts validation and simulation of his/her CPL script. A prototype
of the tools can be freely used at http://www-kiku.ics.es.osaka-u.ac.jp/~pattara/CPL/, though it is
still experimental.

We are also planning to develop modules and libraries that can be used for on-line feature
interaction detection (See Section 6.2).

6 Discussion

In this paper, we have presented two major issues of the CPL programmable service in In-
ternet telephony: semantic warnings and feature interactions among CPL scripts. Finally, we
summarize some important issues to be discussed further.

3Currently, a call scenario involves selection of caller and callee only.

M. Nakamura et al. / Detecting Script-to-Script Interactions 229

A hitp 7/129.1.16,60/cpl cet - Microzoft Intarnat Explorer A P1p.//132.1.16.60/combina.agi - Mizrnsaft Internet Explorar

7:4»(9 WRE) EARY BRATQ y-uD ALTH ¥ 7inE) BRE KR BRIANQ v-nD ATy
71700) Wip/ %01 1650/ cplogi 2 L #1571 | 0 g/ 301 1680/ conbine i R L
- ~
CPL. validation ; Simulation summary
l"“‘" user name “J"';‘";“;“';‘Vu “. ‘ : ‘call scenario | user name
Clxal voralons* A s n " o
CIOBLTYAE aa1 PUBLIC.-~//1ETF//DTD AFCrxex CPL 1.0//EN" “cpl, dLd"> : caller | . _'azw
<coi> i . 'sipbob®home org
Cincoming>
Gring-sritch fle]d="subloct™> i i ... [calke ‘sipchis@eamplecom
<string containss"help®) i H mgchmﬂvmcemadammn!e com |
(loclllcn url=
“slpigenarel-supportlcxanple. con™> i Select sgain
Credirect />
</localion> :

Outgoing call from sip-alice®instance. nat

deatination = sipchris@axample.com

original-destination = sip chris@example.com

checking script=sip alice@instance. net

call processing = sipalice@inatance net call to sipchris®@arample com

</string>

Cstring 132 emergency heln®>
Clocation uriz"slpisleffBexsnolo.con”>
<proxy />
¢/location>

<fstring>

</string-seitch>

(,ﬁﬁ:;‘“"‘"" v ; lncommg call to mn chrisGaxample.com
: - . T bil scrmt slp lice@i net => sipichri la.com
————-*] : {esti le.com
Dli‘-’i‘;‘ IE - call proceesmg nedlrac(o sip:bob@home org
Qo 10 User selection Incoming call to sip:bobhome.org
L. § . : Combined script: sipalice@instance.net => sinbob@home.org
The CPL script is wel-formed and valid against the DTD of the CPL destination=sip bob®home.org
. . - - A call processing = call to sip bob@®home.org
t.ioe 13: Warning OCSS: “emargency help” in line 13 contain "
help” in line number 7 . - Interaction AGAS detectad!t . v

(a) CPL checker (b) FI simulator

Figure 8: Screenshots of the developed tools (prototype)

6.1 Other semantic warnings

We have proposed eight classes of the semantic warnings in this paper. However, there could
exist other types of semantic warnings. We need to investigate more case studies and some
quantitative evaluation to make it clear how much feature interactions can be covered by the
proposed eight classes.

Also, we have discussed the semantic warnings and feature interaction in the context of
the CPL programmable service only. However, feature interactions can occur between pro-
grammable services and the conventional telephony services provided by network conver-
gence framework [15]. This is a very challenging issue and our future work.

6.2 Architecture for run-time detection

In order to perform a run-time detection of feature interaction in the CPL environment, we
would need a special architecture to compute Succ(s,c) and detect semantic warnings. A
possible solution is to deploy an Feature Interaction server in the global network. Upon ev-
ery call setup, signaling servers involving the call upload the relevant CPL scripts to the FI
server. Then, the FI server performs appropriate combine operations and then detects feature
interactions in the call. The overhead of the script uploading can be reduced if users volun-
tarily registers their own scripts in a global service repository of the FI server beforehand.
To implement the architecture, we have to, of course, tackle related issues such as security,
privacy and authentication.

6.3 Resolution of feature interactions

In the conventional telephony network, once an feature interaction is detected, some resolu-
tion schemes, such as feature priorities, are applied. However, in the CPL environment, it is
impossible to prepare in advance appropriate resolution schemes. This is the point that the
conventional run-time approaches (e.g., [11]) cannot be applied directly.

230 M. Nakamura et al. / Detecting Script-to-Script Interactions

The Internet basically adopts “use at your own risk” policy. So, it would be natural to
prompt users to make decision on how the call should be processed by themselves. How-
ever, if the programmable service environment is operated on the commercial basis, a certain
guideline for users to resolve feature interactions must be prepared. The examination of the
resolution schemes is also our feature research.

Acknowledgment

This research was partially supported by: the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientists (B) (No.13780234, 2002), and Grant-in-Aid for 21st century COE
Research (NAIST-IS — Ubiquitous Networked Media Computing, 2003).

References

[1] L. Blair, J. Pang, “Feature Interactions - Life Beyond Traditional Telephony”, Proc. of Sixth Int’l. Work-
shop on Feature Interactions in Telecommunication Networks and Distributed Systems (FIW’00), pp.83-
93, May. 2000.

[2] C. Cooper, “XML::Parser - A perl module for parsing XML documents”, http:/search.cpan.org/author
/COOPERCL/XML-Parser-2.31/Parser.pm

[3] E. Derksen, “Overview of libxml-enno”, http:/www.socsci.umn.edu/ssrf/doc/xml/enno-xml-docs/
users.erols.com/enno/xml/index.html

[4] D.Keck and P. Kuehn, “The feature interaction problem in telecommunications systems: A survey,” [EEE
Trans. on Software Engineering, Vol.24, No.10, pp.779-796, 1998.

[5] J. Lennox and H. Schulzrinne, “Call processing language framework and require-
ments,” Request for Comments 2824, Internet Engineering Task Force,May 2000,
http://www.ietf.org/rfc/rfc2824.txt?7number=2824

[6] J.Lennox and H. Schulzrinne, “CPL:A Language for User Control of Internet Telephony Service”, Internet
Engineering Task Force, Jan 2002, http://www.ietf.org/internet-drafts/draft-ietf-iptel-cpl-06.txt

; [7] J.Lennox and H. Schulzrinne, “Feature Interaction in Internet Telephony”, Proc. of Sixth Int’l. Workshop
| on Feature Interactions in Telecommunication Networks and Distributed Systems (FIW’00), pp.38-50,
May. 2000.

[8] H. Schulzrinne and J. Rosenberg, “Internet Telephony: Architecture and protocols - an IETF perspective,”
Computer Networks and ISDN Systems, vol.31, pp.237-255, Feb 1999.

|

i

1 [9] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP:session initiation protocol”, Request for
Comments 2543, Internet Engineering Task Force, Feb 2002, http://www.ietf.org/internet-drafts/draft-ietf-
sip-rfc2543bis-09.txt

[10] M. Smirnov, “Programming Middle Boxes with Group Event Notification Protocol”, Proceedings of the
Seventh IEEE International Workshop on Object-oriented Real-time Dependable Systems (WORDS2002),
pp- 198-205, Jan 2002.

[11] S.Tsang and E. H. Magill, “Learning to Detect and Avoid Run-Time Feature Interactions in the Intelligent
Network”, IEEE Transactions on Software Engineering, Volume 24, Number 10, Oct 1998.

[12] “Feature Interaction in Telecommunications”, Vol. I-VI, IOS Press (1992-2000)
[13] ITU-T Recommendations Q.1200 Series: Intelligent Network Capability Set 1, ITU-T (1990)
[14] ITU-T Recommendation H.323, “Packet-Based Multimedia Communications Systems”, February 1998.

[15] JAIN initiative, “The JAINTM APIs: Integrated Network APIs for the Java Platform”,
http://java.sun.com/products/jain/ '

[16] “VOCAL: The Vovida Open Communication Application Library”, http://www.vovida.org/

[17] NetCentrex™M, “Application Execution and Service Creation Environment”, http://www.netcentrex.net/
products/application_server.shtml

