

Analysis of Program Reading Process in Software Debugging
Based on Multiple-view Analysis Model

Shinji Uchida†, Akito Monden††, Hajimu Iida††, Ken-ichi Matsumoto†† and Hideo Kudoh†††
†Electrical and Information Engineering, Kinki University Technical College,

††Graduate School of Information Science, Nara Institute of Science and Technology,
†††Faculty of Modern Management Information, Osaka Seikei University

uchida@ktc.ac.jp,{akito-m@is,iida@itc,matumoto@is}.aist-nara.ac.jp, kudoh@osaka-seikei.ac.jp

Abstract

This paper proposes a model for analyzing the reading
process in software debugging. The model provides
quantitative and objective visions to human’s debugging
activity, and provides framework for clarifying good-
and/or bad-process for program reading. We have
conducted experiments to observe debugging processes
and collected process data based on the model. Some
hypotheses such as “Expert subjects spend more time to
read the faulty module than novice subjects do.” were
actually rejected; and, some other hypotheses such as
“Reading the modules that have no dependence with
faulty module degrade the debug efficiency.” were
accepted. The result of experiment suggested that
explicit and quantitative evaluation of program reading
process becomes possible by using the proposed model.

1. Introduction
Recently, software maintenance groups often need to
debug programs that are not originally developed by
them because today’s many engineers move rapidly
between companies and job assignments [8]. If a critical
failure has occurred in a program after its release,
engineers must quickly find a bug (fault) that has caused
the failure even in case the program is new to the
engineers. In addition, reuse activities in modern
software development also force engineers to read and
find bugs in reused code that is unfamiliar to them.
Therefore, it is getting more and more important for
software engineers to be able to quickly find and remove
bugs in unfamiliar programs [11].
Unlike debugging familiar programs, debugging
unfamiliar programs requires engineers to use some
special expertise in program reading. In order to start
finding bugs in an unfamiliar program, engineers must

read and comprehend the program, however, engineers
usually do not have enough time to comprehend the
entire program because they must detect bugs within the
scheduled time. Hence, engineers should somehow
select the area that seems to lead to the bug detection,
and, engineers should not read the area that is unrelated
to the bug detection. Here, the strategies of area
selection seem to greatly affect the efficiency of
debugging. Therefore, engineers should somehow decide
the area that seems to lead to the bug detection.
The goal of our research is to clarify both good- and
bad- reading process for debugging unfamiliar programs.
Our approach is to analyze debugging tasks under the
controlled environments, and to find and/or to verify
patterns peculiar to experts’ (and novices’) reading
processes. Yet, observing subjects’ external reading
processes (such as “Which area did they read?” and
“When did they read?”) is not sufficient. We need to
investigate subjects’ intentions – “Why did they read?”
In our previous researches [11][12], we have observed
that strategies to select a module (= an area that should
be comprehended) strongly relate to engineers’
impressions of each module – either the module is
faulty, not faulty or uncertain. Therefore, in order to
clarify reading process, we need to follow up engineer’s
cognitive image of a program that represents faulty area,
not faulty area and uncertain area. Moreover, structural
properties of the target program should be taken in
account as well. Some past researches say that the static
slice of a program should be considered in debugging
[3][15][7].
We propose a new modeling schema: Multiple-View
Analysis Model of Debugging Process[12][13]. This

In Proc. 6th Joint Workshop on System Development
(JWSD2003), CD-ROM Edition, Nagoya, Japan, April 2003.

model provides two kinds of view to program reading in
debugging process: Product view and Cognitive view.
Product view represents target program’s module
structure and properties, while Cognitive view presents
the property of human’s activity. In order to analyze
unclear part of human’s activities in clear and well-
defined way, target program structure is set as a
basement of analysis framework. Human activities such
as movement of reading target or module classification
are, then, cast over the Product view. Cognitive view
actually consists of following two views:
-Decision view: Human’s cognitive image of the
possible location of the bug.
- Behavior view: Externally observed human’s action.
By using above three views (Product view, Decision
view, and Behavior view), analysis of debugging
processes may be done in clear way, by examining
interactions and relationships among these views.
In order to get some insights concerning good- and bad-
reading process for debugging, we actually carried out
an experiment to observe debugging processes using
video recordings and periodical interviews; and, we
analyzed collected data based on our model.
In the rest of this paper, Section 2 describes the detail of
our analysis model. Section 3 describes experiments to
analyze debugging processes based on the proposed
model. Section 4 describes the result and discussion of
the experiments. Finally, Section 5 summarizes this
paper.
2. Multi-View Analysis Model of Debugging
Process

Fig. 1 shows the overview of the model. In this model,
we set the recognition granularity of the target program
to the module-level. E.g., the target program is
abstracted as a set of multiple modules . Consider we
have n modules, and the target program P is represented
as a set of modules {m1 … mn} .

P = {m1, m2, … , mn}
To make following discussion simple, we assume that

there is only one bug in the program. This assumption is
natural to present a situation that we have one failure
observed and an engineer must find a bug (fault)
concerning to that failure. We also assume that the
location of the bug is module m1 in the following
discussion.
The Product view provides structural characteristics of
the target program, which is independent from actual

debugging process. The Cognitive view provides the
view of actual human activity in debugging process. The
Cognitive view consists of the Decision view and the
Behavior view, presenting internal and external action of
a debugger (= a person who debugs a program)
respectively.

2.1. Product view

The Product view expresses the abstract
characteristics of the target program. Following four
characteristics are presented:
·Control dependence between modules (in this case this
is equivalent to module call structure) (Fig. 2-(a)),
·Data dependence between modules (Fig. 2-(b)),
·Static slice [14][15] calculated from wrong output value
(Fig. 2-(c)), and
·Faulty execution path (Fig. 2-(d)).
Program slice is the set of program statements possibly
influencing the value of a particular variable in a
particular statement (i.e. slicing point). [3] and [7] report
that static slicing is useful for software maintenance. In
our approach, we don’t use slice for actual debugging.
We use static slice just for process analysis.
As a summarization of the Product view, modules are
categorized following four areas: S, E, SE and O. Area S
is the set of modules included in the static slice. Area E
is the set of modules included in the path of faulty
execution (Fig. 2-(d)). Area E naturally contains the
faulty module where the bug exists. Area SE is the set of

Product views

Program module set

Cognitive views

Data
dependence

Decision view
(Faulty/non-faulty classification)

Behavior view
(Inspection target and duration)

Control
dependence

Static
slice

Execution
trace

3:01

4:00 7:13

10:11 0:071:00

+
o +

o +-

Find
C

o-relationships

Control/Data flow analysis

Mapping to human activities

Product views

Program module set

Cognitive views

Data
dependence

Decision view
(Faulty/non-faulty classification)

Behavior view
(Inspection target and duration)

Control
dependence

Static
slice

Execution
trace

3:01

4:00 7:13

10:11 0:071:00

+
o +

o +-

Find
C

o-relationships

Control/Data flow analysis

Mapping to human activities

Fig.1 Multi-View Analysis Model for Debugging Process

modules included in both of area S and area E. Area O is
the set of the modules not belonging to any of above. In
this area, there is naturally no faulty module.

2.2. Decision view
The Decision view presents internal action of the
debugger. Here, we set a fundamental assumption that
the debugging process is essentially expressed as a
sequence of two kinds of action: expanding the trusted
region of the program while narrowing down the
suspicious region [1]. These actions are essentially
influenced by the debugger’s subjective suspicion about
the bug’s location.
In the Decision view, modules are continuously and
subjectively classified into three regions (set of modules)
during the debugging process. The first region is the
suspicious region (shown as B+), which is the set of
modules that might contain a bug. The second region is
the trusted region (shown as B-), which is the set of
modules that seems to be no bug. The third region is the
neutral region (shown as B0), which is the set of
modules uncertain whether containing the bug or not
(Fig 3). Occasional movement of modules over these
three regions can explicitly express the change of human
internal impression of the bug location.
Hence, the debugging process in this view is observed as
transitions of the status of the human internal impression
S(t), which is represented with actual assignments to B+,
B0, and B-.
At the beginning of the unfamiliar program debugging
(t=0), the debugger does not understand any modules.
Therefore, the initial state S(0) should be expressed as
follows:
S(0) = [B+= f, B0= {m1, m2, … , mn}, B-=f].
As the bug localization activity proceeds, modules in B0
will be moved to either B+ or to B-. At the final stage of
the debugging process (t=T), the bug has been localized,
and the final state S(T) should always be as follows:

S(T)= [B+={m1 }, B0= f, B-={ m2, … , mn}].
The transition process from the initial state S(0) to the
final state S(T) may greatly differ according to the
debugger's capability and strategy. By using the
Decision view, transition of the human decision can be
formally expressed, and individual differences of the
decisional transitions can be observed.
Since transitions are performed in the debugger's mind
inside, actual decision movements cannot be observed
externally. We use periodical simple interviews to the
developer to get impression of each module.

2.3. Behavior view
Behavior view can express the external reading action of
the debugger. In this view, human’s behavior is
represented as a sequence of module reading activity that
is expressed as a pair of target module name and the
reading duration, such as <m3,0:40>, <m2,0:30>, … ,
<m1,1:50> (Fig 4). This information can be captured in
several ways such as video monitoring, command
execution history, or eye gaze tracking. The order and
the frequency of module readings clarify how the
debugger read the program.
 The Behavior view can be used to see each debugger’s
way of limiting the referenced module set. People
usually don’t read all of the modules for debugging, and
sometimes there is implicit or explicit strategy for
module choice [5]. Moreover, skilled programmer’s
patterns of movement over modules might be
significantly different from a novice programmer’s
patterns. This view is also capable of investigating such
skills differences [4].

(a)Control Dependence (b)Data Dependence

(c)Static Slice (d)Faulty execution path

Fig.2 Product View

B+

B-

B0

m2

m3

m9

m1

m4 m5

m8

m6

m10

m7

Suspicious region

Innocent region

Neutral region

Fig.3 Decision View

2.4. The advantage of the proposed model
The main advantage of this model is that the activities of
the debugger, both internal and external, become clear,
and quantitative and objective analysis can be applied to
it. Generally speaking, observation and explanation of
the debugger’s internal activity are very hard. Many
existing analyses mainly depend on subjective
statements from debuggers, and resulting analysis is also
highly subjective. For example, in Araki’s model, the
debugging process is explained as iterations of
debugger’s hypothesis evolution, which cannot be
observed quantitatively [1]. In Vessey’s model, the
debugging process is expressed based on debugger’s
chunking ability [14]. However, these models cannot
illustrate the objective activities of debuggers’.
In our model, multiple-view architecture is provided for
analyzing debuggers’ activities. Combining these three
views over the module set, just like transparent sheets,
enables various analyses. By placing the Decision view
over the Product view, we can analyze the co-relation
between debugger’s internal recognition and the
program structure. For example, we can evaluate the
debugger's process better by knowing the characteristic
of the module belonging to each region of B+, B-, and
B0. This may lead to finding good- or bad-process for
judgment of faultiness the module based on the program
structure. By placing the Behavior view over the Product
view, we can also analyze the debugger's program
reading process better. For example, we can know
whether the debugger’s reading process is top-down or
bottom-up, by examining the order of the module
reading along program structure. This may lead to
finding good- or bad-process for giving a priority of
reading to each module.
For years, many researches have tried to understand how
engineers comprehend programs during software
maintenance [2][9][6]. In their studies, there is an
assumption that engineers must comprehend the program
wholly and in details. However, this assumption does not
fit to usual debugging situations – debugging in the
scheduled time. Comprehending the whole program can

be regarded as the worst process for program reading in
limited time. On the other hand, we focus on process of
reading only a necessary part for the bug detection.
3. Experiment
In order to get some insights concerning good- and bad-
reading process for debugging, we actually carried out
an experiment to observe debugging processes. Based on
the proposed model, we corrected quantitative data for
each model view (product, decision, behavior). We have
also listed up several hypotheses about reading process;
then, tried to verify using corrected data.
3.1. Hypotheses of program reading process
We put following five hypotheses concerning reading
process to be verified in this experiment:
-Hypothesis 1: Reading the modules that have no
dependence with faulty module degrade the debug
efficiency.
-Hypothesis 2: There is a module that most of experts
commonly read well but most of novices do not.
-Hypothesis 3: Expert subjects spend more time to read
the faulty module than novice subjects do.
-Hypothesis 4: Expert subjects rapidly narrow down the
focus of module examination.
-Hypothesis 5: Expert subjects read modules along with
control dependence paths.
-Hypothesis 6:Expert subjects read modules along with
data dependence paths.
Hypothesis 2 can be verified by examining Behavior
view only. Hypothesis 1, 5, and 6 can be verified by
examining Product view and Behavior view. Hypothesis
4 can be verified by Decision view and Product view.
Hypothesis 3 can be verified by Decision view and
Behavior view.
3.2. Environment
The experiment was conducted using the Ginger2
CAESE environment [10]. This environment can record
debugger’s various activities such as eye-gaze point on
the computer display, voice, key typing, and screen
image. We also manually conducted the periodical
interviews in order to trace the debugger’s cognitive
movement about the possible location of the bug.
3.3. Subjects
Ten subjects participated in the experiment and were
assigned to debug the same program independently. All
subjects are graduate school students. They can use C
programming language. They have 3~4 years experience
of programming and at least 2 years experience of C
programming.
3.4. Target Programs
Two computer programs written in C language was
prepared for this experiment:
Program X(Calendar)

m3 m9m2

m8m6 m1 m1

m3

m3 m9

m1
0:40 0:30 2:10 2:20

1:40 0:20

0:50 2:202:10 3:50

1:50

m9

2:10

m3 m9m2

m8m6 m1 m1

m3

m3 m9

m1
0:40 0:30 2:10 2:20

1:40 0:20

0:50 2:202:10 3:50

1:50

m9

2:10

Fig.4 Behavior View

This program consists of about 300 lines/ 20 modules.
This program is designed and coded to take the input of
a date and to show a calendar of the date. There is a bug
in module m17 (“ymd2rd2”) that produce the wrong out
put of the date of a calendar.
Program Y (Tick-Tack-Toe)
This program consists of about 300lines/15modules.
This program is designed and coded to play a game
known as “tick-tack-toe”. This game uses 3x3 matrix
where the computer and the user put marks by turns. The
player, who succeeds to make three of his/her marks in a
vertical/horizontal/slant line first, wins. There is a bug
in module m9 (“check2moku3”) that the program fails to
recognize two of opponent’s marks that are already in
line, and therefore, it cannot prevent the opponent from
winning.
As a summary of the Product view of each program, the
modules of the target programs can be classified into
four sets using static slicing as shown in Fig.5-(a),(b). In
Program X, nine modules are contained in the slice
(indicated as area S). Ten modules are contained in the
execution trace (area E). Eight modules belong to both
of the slice and the trace. Nine modules d o not belong to
any of them (area O). The bug is located in one of the 8
modules in the “Slice & Execution” (area SE.) Program
Y is classified into area SE and area E. Fourteen
modules compose area SE. Area E consists of only one
module.

3.4. Procedure
Subjects were given the documentation and source code.
At first, they were shown the program execution with
error symptom to be fully understood. Then, they started
to debug the program, but no directions about the
debugging method were given. The experiment was
performed until the bug is located and actually corrected.
During the experiment, subjects had to answer the
periodical interviews answering questionnaire every 5
minutes until the end of experiment. In every interview,
the probability of the bug existence for each module was
scored. If the subject thought that no bug exists in the
module, he/she marks ‘-’ (minus) in the questionnaire. If
the subject think that a bug may be included in the
module, he/she marks ‘+’(plus.) If the subject has no

confidence of bug existence, he/she marks
‘0’(zero.)(Fig.6)

We define some metric values by interview data. These
metric values are supposed to have relation to the
debugging efficiency.
Nb:Time duration from start time until the first time
subject decided that faulty module is actually suspicious
to have a bug.
max|B+|:Maximum number of modules in B+
(suspicious region) through entire the process.
avg|B+|:Average number of modules belonging to B+
(suspicious region) per interval.
|B+|n:Final number of modules belonging to B+
(suspicious region) just before the bug is located and
fixed.
max|B-|:Maximum number of module in B- (trusted
region) through entire the process.

avg|B-|:Average number of modules belonging to B-
(trusted region) per interval.
|B-|n:Final number of modules belonging to B- (trusted
region) just before the bug is located and fixed.
m+→-:Total number of modules, which were judged to
be suspicious at once, and then judged again to be
innocent through the entire process.
avg|N+→-|:Average time duration of misjudgement of
non-faulty module to be suspicious.

 P r o g r a m M o d u le s

M o d u le s in
S ta t i c S l i c e

M o d u l e s in
E x e c u t i o n P a t h

S
(1)

S E
(8)

E
(2)

O (9)

P r o g r a m M o d u le s

M o d u le s in
S ta t i c S l i c e

M o d u l e s in
E x e c u t i o n P a t h

S
(1)

S E
(8)

E
(2)

O (9)

P r o g r a m M o d u le s

M o d u le s in
S ta t i c S l i c e

M o d u le s in
E x e c u t io n P a t h

S
(0)

S E
(1 4)

E
(1)

O (0)

P r o g r a m M o d u le s

M o d u le s in
S ta t i c S l i c e

M o d u le s in
E x e c u t io n P a t h

S
(0)

S E
(1 4)

E
(1)

O (0)
(a)Program X(calendar) (b)Program Y(tick-tack-toe)

Fig. 5 Product view summary of target programs

Module1

Module2

Module3

Module4

The bug may be in this
module.

The bug may not be
in this module

0 ＋ー

…………

1 2 3 4 5 6 7 8 9 10
Module1

Module2

Module3

Module4

The bug may be in this
module.

The bug may not be
in this module

0 ＋ー

…………

1 2 3 4 5 6 7 8 9 10

Fig. 6 Interview sheet

m-→+:Total number of modules, which were judged to
be innocent at once, and then judged again to be
suspicious through the entire process.

All subjects successfully pointed the position of the bug
and the correction was completed. Comparing the every
subject’s debugging time duration summarized in
Table1, in case of Program X, subject X1 has the
shortest debugging time as 23 minutes. In Table2,
subject Y1 has the shortest debugging time as 21
minutes for Program Y.

4. Results and Discussion
Fig.7 summarizes the collected data from subject X1
through the entire debugging process. In the leftmost
row of the table, module names are enumerated. From
the, Product Views, Behavior View, and Decision View
are indicated corresponding to each module. In the
leftmost row of the table, module names are enumerated.
From the, Product Views, Behavior View, and Decision
View are indicated corresponding to each module. In the
data dependence cell of a module, modules that are data-
dependent to that module are enumerated. In the control
dependence cell of a module, modules that are called by
that module are enumerated. If a module is included in
the faulty execution path (i.e. that module is executed
when the program produces faulty out put), asterisk (‘v’)
is indicated in the “Execution” area. If a module is
included in the static slice calculated from the failure
point (i.e. where the program produces wrong out put
value), asterisk (‘v’) is indicated in the “S. Slice” area.
In the Behavior view area, order and duration of module

reading in the form of timing-chart, with numeric value.
In the Decision view area, categorization result of the
module, judged by the subject as one of B+, B0 or B-
.Six hypotheses were verified through the analysis based
on these collected data.
- Hypothesis 1: Reading the modules that have no
dependence with faulty module degrade the debug
efficiency.
Table 3 shows reading time and its ratio to total
debugging time, summarised based on Product views.
Two subjects (X3 and X4) of three, who were worst in
debugging time, have spent relatively longer time (19%
and 18% respectively) to read for the modules in area O
(i.e. belonging to none of static slice and faulty
execution path). In contrast, two better subjects (X1 and
X2) didn’t spend much time on these modules (6% and
5% respectively). This result shows that the hypothesis1
is to be accepted.

- Hypothesis 2: There is a module that most of experts

commonly read well but most of novices do not.
Table4 and 5 shows reading time of every module,
reading time ratio to total debugging time, and
correlation coefficient between them, for Program X and
Program Y, respectively. Coefficient shows that the
better debugger, who completed debugging in shorter
time, have spent more time to read a certain module
(ymd2rd1,check3moku3). For Program X, subject X1
and X2 spent 15% and 5% of their reading time,
respectively. For Program Y, subject Y1 spend 18% of
the reading time. After this analysis, we have examined
these modules, and we found that they are functionally

Fig.7 Example of detailed debugging process

Table1 Debugging time of ProgramX
X1 X2 X3 X4 X5

Debugging Time(T minutes) 23 27 84 86 106
Interviews(N) 4 5 16 16 19

Table2 Debugging time of ProgramY
Y1 Y2 Y3 Y4 Y5

Debugging Time(T minutes) 21 29 32 34 41
Interviews(N) 4 6 6 6 8

Table3 Reading time of each area (Program X)
 X1 X2 X3 X4 X5

S 131 55 26 94 28 -0.57
(Static Slice) (15%) (5%) (1%) (3%) (1%) -0.77

SE 635 1079 2810 2336 3799 0.96
Slice&Execution (72%) (90%) (75%) (67%) (91%) 0.02

E 61 14 189 414 38 0.44
(Execution) (7%) (1%) (5%) (12%) (1%) 0.09

O 52 58 699 633 305 0.74
(Other) (6%) (5%) (19%) (18%) (7%) 0.58

similar to actual faulty module (ymd2rd2 and
check2moku3). Their names are also similar and they are
referring the same external variables. This result seems
to support the hypothesis 2, however, further study will
be needed to clarify the detailed characteristics of the
key module.

- Hypothesis 3: Expert subjects spend more time to

read the faulty module than novice subjects do
Continuing with table4 and 5, now focusing to the
actual faulty modules (ymd2rd2 and check2moku3),
just reading longer these faulty modules does not
directly related to shorter debugging time. E.g.,
subject X4 and X5 spends 22% and 24% of their
reading time for ymd2rd2 in Program X
respectively. Also, subject Y3 and Y4 spends 25%

and 18% of their reading time for check2moku3 in
Program Y respectively. This result seems to reject
the hypothesis 3. I.e., reading the faulty (or most
suspicious) module only won’t generally lead to
shorter debugging time.

- Hypothesis 4: Expert subjects rapidly narrow down the
focus of module examination.
Table6 and 7 summaries the decision view of the
debugging process collected by interviews. Subjects who
took longer debugging time have larger avg|B+|.
Especially, the worst subjects in both Program X and
Program Y have the largest values. This data suggest
that novice debuggers take longer time to narrow down
the suspicious region (i.e. they have difficulty to locate
the bug position).
Subjects who took longer debugging time, had larger
difference between N and Nb: three subjects (X3, X4,
X5) for Program X, and subject Y5 for Program Y, had
N more than twice of Nb. I.e., they took longer time
from getting suspicious to faulty module until actually
removing the bug.

Table5 Reading time of each module
(b)ProgramY

Y1 Y2 Y3 Y4 Y5
main 121 139 91 85 119

(11%) (12%) (7%) (5%) (6%)
start 69 209 35 241 270

(6%) (18%) (3%) (13%) (13%)
battle 42 198 47 151 249

(4%) (17%) (4%) (8%) (12%)
man 26 50 14 99 145

(2%) (4%) (1%) (5%) (7%)
computer 112 157 267 144 443

(10%) (14%) (20%) (8%) (22%)
check2moku 70 55 61 96 61

(6%) (5%) (5%) (5%) (3%)
check2moku1 71 8 318 226 284

(6%) (1%) (24%) (12%) (14%)
check2moku2 106 62 68 46 97

(9%) (5%) (5%) (2%) (5%)
check2moku3 136 182 337 326 237

(12%) (16%) (3%) (18%) (12%)
check3moku 7 14 11 115 12

(8%) (1%) (2%) (6%) (3%)
check3moku1 90 13 22 111 52

(1%) (1%) (1%) (6%) (1%)
check3moku2 48 0 0 95 5

(4%) (0%) (0%) (5%) (0%)
check3moku3 209 0 63 64 10

(18%) (0%) (5%) (3%) (0%)
printbord 27 32 4 3 23

(2%) (2%) (0%) (0%) (1%)
initialize 9 30 4 42 11

(1%) (2%) (0%) (2%) (1%)

Table4 Reading time of each module
(a)ProgramX

X1 X2 X3 X4 X5
main 241 110 421 412 324

(27%) (9%) (11%) (12%) (8%)
mchk 0 0 49 26 13

(0%) (0%) (1%) (1%) (0%)
dchk 61 14 140 388 25

(7%) (1%) 0.037684 0.111631 0.005876
getdofm 95 15 356 172 116

(11%) (1%) (10%) (5%) (3%)
getdofy 0 0 12 27 0

(0%) (0%) (0%) (1%) (0%)
isulu 0 35 22 71 187

(0%) (3%) (1%) (2%) (4%)
ymd2rd 38 11 18 165 304

(4%) (1%) (0%) (5%) (7%)
getdt 0 0 0 45 42

(0%) (0%) (0%) (1%) (1%)
rd2ymd 33 526 912 243 786

(4%) (4%) (24%) (7%) (19%)
ymd2rd1 131 55 26 94 28

(15%) (5%) (1%) (3%) (1%)
getdby 0 0 45 174 11

(0%) (0%) (1%) (5%) (0%)
getdbm 0 0 0 0 25

(0%) (0%) (0%) (0%) (1%)
getnumop 0 0 0 0 0

(0%) (0%) (0%) (0%) (0%)
setcal 0 11 121 69 0

(0%) (1%) (3%) (2%) (0%)
mcmd 13 0 0 0 0

(2%) (0%) (0%) (0%) (0%)
ycmd 0 0 175 229 133

(0%) (0%) (5%) (7%) (3%)
ymd2rd2 124 268 668 779 1910

(14%) (22%) (18%) (22%) (46%)
printdt 39 46 358 63 94

(4%) (4%) (10%) (2%) (2%)
scmd 104 113 400 467 173

(12%) (10%) (11%) (13%) (4%)
usage 0 0 0 54 0

(0%) (0%) (0%) 0.015612 (0%)

These results suggest, at least, the hypothesis 4 was not
rejected because novice debuggers actually seem to have
difficulty to locate the position of the bug.

- Hypothesis 5: Expert subjects read modules along with
control dependence paths.
- Hypothesis 6:Expert subjects read modules along with
data dependence paths.
Table8 shows the ratio of existence of control/data
dependence between current reading module and next
reading module. Although subject X1 has high tendency
to follow control/data dependence, other subjects don’t
show such tendency. Thus, we cannot accept this
hypothesis for now.

5. Conclusion
In this paper we proposed a model for analyzing the
reading process in debugging. The model provides three
views for representing human activities: Product view
for presenting structural properties of target program,
Decision view for representing human’s cognitive image
of the possible location of the bug, and Behavior view
for representing externally observed human’s action. By
using above three views, analysis of debugging
processes can be done in clear way, by examining
interactions and relationships among these views.

We have conducted experiments to observe debugging
processes and collected process data based on our
model. Several hypotheses were verified with collected
data based on the model. Some hypotheses such as
“Expert subjects spend more time to read the faulty
module than novice subjects do.” were actually rejected;
and, some other hypotheses such as “Reading the
modules that have no dependence with faulty module
degrade the debug efficiency.” were accepted. The result
of experiment suggested that explicit and quantitative
evaluation of debugging process become possible by
using the proposed model.
Although some of our hypotheses suggested the
candidates of good- and/or bad-reading process, we have
not clarified the useful process for actual debugging yet.
We need to employ more programs, bugs, and subjects
in the future experiments to clarify more useful process.
However, we believe our analysis model is a powerful
tool for seeking for the quantitative and objective
debugging strategies, which was very difficult in the past
researches.
Acknowledgment
This study was financially supported by the Proposal-
based New Industry Creative Type Technology R&D
Promotion Program from the New Energy and Industrial
Technology Development Organization (NEDO) of
Japan.
References
[1] K. Araki, Z. Furukawa and J. Cheng, A general
Framework for Debugging, IEEE Software, 18 (1991)
14-20.
[2] T. J. Bigerstaff, B. G. Mitbander and D. Webster,
The Concept Assignment Problem in Software
Understanding, Proceedings of 15th International
Conference on Software Engineering (1993) 482-497.
[3] K. B. Gallagher and J. R. Lyle, Using Program
Slicing in Software Maintenance, IEEE Transactions on
Software Engineering, 17 (1991) 751-761.
[4] K. Iio, Y. Arai and T. Furuyama, Cognitive Process
Analysis based on the Tendency to the Module
Programmers View, Technical Report of JSAI, SIG-
KBS-9402-2 (1994) 9-16 (in Japanese)
[5] J. Koenemann and S. P. Robertson, Expert problem
solving strategies for program comprehension,
Proceedings of Human Factors in Computing Systems
(1992) 125-130.
[6] A. Von Mayrhauser and M. Vans, Program
Comprehension During Software Maintenance and
Evolution, Computer, 28 (1995) 44-55.
[7] A. Nishimatsu, K. Nishie, S. Kusumoto and K.
Inoue, An Experimental Evaluation of Program Slicing
on Fault Localization Process, IEICE Transactions, 582-
D-I, (1999) 1336-1344.

Table7 Result of the Interviews(ProgramY)
Y1 Y2 Y3 Y4 Y5

Interviews(N) 4 5 6 6 8
Nb 3 5 6 5 4

max|B+| 2 1 1 5 7
avg|B+| 1.25 0.33 0.17 1.3 4.4
|B+|n 2 1 1 2 6

max|B-| 13 10 14 10 10
avg|B-| 9.5 6.8 9.5 4.7 7.5
|B-|n 13 10 14 10 9

m+→- 0 0 0 1 2
avg|N+→-| - - - 1.2 5

m-→+ 0 0 0 0 2

Table6 Result of the Interviews(ProgramX)
X1 X2 X3 X4 X5

Interviews(N) 4 5 16 16 19
Nb 4 4 5 5 4

max|B+| 2 3 4 3 5
avg|B+| 1 1.4 1.8 1.5 3.9
|B+|n 1 1 2 1 4

max|B-| 9 19 19 19 15
avg|B-| 4 9.6 9.6 9.5 9.7
|B-|n 9 19 18 9 15

m+→- 3 2 7 3 2
avg|N+→-| 1 3 5 7.9 11.6

m-→+ 0 0 4 14 2

Table8 Reading time of subject X1--X5
 X1 X2 X3 X4 X5

Control Dependence 55% 35% 32% 26% 33% -0.69
Data Dependence 50% 30% 25% 26% 26% -0.72

[8] E. Regelson and A. Anderson, Debugging practices
for complex legacy software systems. Proceedings of
International Conference on Software Maintenance,
(September 1994) 137-143.
[9] M. A. D. Storey, K. Wong and H. A. Muller, How
Do Program Understanding Tools Affect How
Programmers Understand Program, Proceedings of the
Fourth Working Conference on Reverse Engineering
(1997) 12- 21.
[10] K. Torii, K. Matsumoto, K. Nakakoji, Y. Takada, S.
Takada and K. Shima, Ginger2: An Environment for
Computer-Aided Empirical Software Engineering, IEEE
Transactions on Software Engineering, 25 (July/August
1999) 474-492.
[11] S. Uchida, H. Kudo and A. Monden, An experiment
and an Analysis of debugging process with periodic
interviews, Proceedings of Software Symposium ‘98,
(1998) 53-58 (in Japanese).
[12] S. Uchida, A. Monden, H. Iida, K. Matsumoto, K.
Inoue and H. Kudo, Debugging process models based on
changes in impressions of software modules,
Proceedings of International Symposium on Future
Software Technology 2000, Guiyang, China, (Aug.
2000), 57-62.
[13]S. Uchida, A. Monden, H. Iida, K. Matsumoto, and
H. Kudo, A multiple-view analysis model of debugging
processes, Proceeding of International Symposium on
Empirical Software Engineering (ISESE2002), IEEE
Computer Society Press, Nara, Japan, (Oct. 2002) 139-
147.
[14] I. Vessey, Expertise in debugging computer
programmers : A process analysis, International Journal
of Man-Machine Studies, 23 (1985) 459-494.
[15] M. Weiser, Program slicing, Proceedings of 5th
International Conference on Software Engineering,
(1981) 439-449.
[16] M. Weiser, Programmers use slices when
debugging, Communications of the ACM, 25, (1982)
446-452.

