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Abstract 

This paper proposes a model for analyzing the reading 
process in software debugging. The model provides 
quantitative and objective visions to human’s debugging 
activity, and provides framework for clarifying good- 
and/or bad-process for program reading. We have 
conducted experiments to observe debugging processes 
and collected process data based on the model. Some 
hypotheses such as “Expert subjects spend more time to 
read the faulty module than novice subjects do.” were 
actually rejected; and, some other hypotheses such as 
“Reading the modules that have no dependence with 
faulty module degrade the debug efficiency.” were 
accepted. The result of experiment suggested that 
explicit and quantitative evaluation of program reading 
process becomes possible by using the proposed model. 
 
1. Introduction 
Recently, software maintenance groups often need to 
debug programs that are not originally developed by 
them because today’s many engineers move rapidly 
between companies and job assignments [8]. If a critical 
failure has occurred in a program after its release, 
engineers must quickly find a bug (fault) that has caused 
the failure even in case the program is new to the 
engineers. In addition, reuse activities in modern 
software development also force engineers to read and 
find bugs in reused code that is unfamiliar to them. 
Therefore, it is getting more and more important for 
software engineers to be able to quickly find and remove 
bugs in unfamiliar programs [11]. 
Unlike debugging familiar programs, debugging 
unfamiliar programs requires engineers to use some 
special expertise in program reading. In order to start 
finding bugs in an unfamiliar program, engineers must 

read and comprehend the program, however, engineers 
usually do not have enough time to comprehend the 
entire program because they must detect bugs within the 
scheduled time. Hence, engineers should somehow 
select the area that seems to lead to the bug detection, 
and, engineers should not read the area that is unrelated 
to the bug detection. Here, the strategies of area 
selection seem to greatly affect the efficiency of 
debugging. Therefore, engineers should somehow decide 
the area that seems to lead to the bug detection. 
The goal of our research is to clarify both good- and 
bad- reading process for debugging unfamiliar programs. 
Our approach is to analyze debugging tasks under the 
controlled environments, and to find and/or to verify 
patterns peculiar to experts’ (and novices’) reading 
processes. Yet, observing subjects’ external reading 
processes (such as “Which area did they read?” and 
“When did they read?”) is not sufficient. We need to 
investigate subjects’ intentions – “Why did they read?” 
In our previous researches [11][12], we have observed 
that strategies to select a module (= an area that should 
be comprehended) strongly relate to engineers’ 
impressions of each module – either the module is 
faulty, not faulty or uncertain. Therefore, in order to 
clarify reading process, we need to follow up engineer’s 
cognitive image of a program that represents faulty area, 
not faulty area and uncertain area. Moreover, structural 
properties of the target program should be taken in 
account as well. Some past researches say that the static 
slice of a program should be considered in debugging 
[3][15][7]. 
We propose a new modeling schema: Multiple-View 
Analysis Model of Debugging Process[12][13]. This 
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model provides two kinds of view to program reading in 
debugging process: Product view and Cognitive view. 
Product view represents target program’s module 
structure and properties, while Cognitive view presents 
the property of human’s activity. In order to analyze 
unclear part of human’s activities in clear and well-
defined way, target program structure is set as a 
basement of analysis framework. Human activities such 
as movement of reading target or module classification 
are, then, cast over the Product view. Cognitive view 
actually consists of following two views: 
-Decision view: Human’s cognitive image of the 
possible location of the bug. 
- Behavior view: Externally observed human’s action. 
By using above three views (Product view, Decision 
view, and Behavior view), analysis of debugging 
processes may be done in clear way, by examining 
interactions and relationships among these views. 
In order to get some insights concerning good- and bad- 
reading process for debugging, we actually carried out 
an experiment to observe debugging processes using 
video recordings and periodical interviews; and, we 
analyzed collected data based on our model. 
In the rest of this paper, Section 2 describes the detail of 
our analysis model. Section 3 describes experiments to 
analyze debugging processes based on the proposed 
model. Section 4 describes the result and discussion of 
the experiments. Finally, Section 5 summarizes this 
paper. 
2. Multi-View Analysis Model of Debugging 
Process 

Fig. 1 shows the overview of the model. In this model, 
we set the recognition granularity of the target program 
to the module-level. E.g., the target program is 
abstracted as a set of multiple modules . Consider we 
have n modules, and the target program P is represented 
as a set of modules {m1 … mn} . 

P = {m1, m2, … , mn} 
To make following discussion simple, we assume that 

there is only one bug in the program. This assumption is 
natural to present a situation that we have one failure 
observed and an engineer must find a bug (fault) 
concerning to that failure. We also assume that the 
location of the bug is module m1 in the following 
discussion. 
The Product view provides structural characteristics of 
the target program, which is independent from actual 

debugging process. The Cognitive view provides the 
view of actual human activity in debugging process. The 
Cognitive view consists of the Decision view and the 
Behavior view, presenting internal and external action of 
a debugger (= a person who debugs a program) 
respectively. 

 
2.1. Product view 

The Product view expresses the abstract 
characteristics of the target program. Following four 
characteristics are presented: 
·Control dependence between modules (in this case this 
is equivalent to module call structure) (Fig. 2-(a)), 
·Data dependence between modules (Fig. 2-(b)),  
·Static slice [14][15] calculated from wrong output value 
(Fig. 2-(c)), and  
·Faulty execution path (Fig. 2-(d)). 
Program slice is the set of program statements possibly 
influencing the value of a particular variable in a 
particular statement (i.e. slicing point). [3] and [7] report 
that static slicing is useful for software maintenance. In 
our approach, we don’t use slice for actual debugging. 
We use static slice just for process analysis.   
As a summarization of the Product view, modules are 
categorized following four areas: S, E, SE and O. Area S 
is the set of modules included in the static slice. Area E 
is the set of modules included in the path of faulty 
execution (Fig. 2-(d)). Area E naturally contains the 
faulty module where the bug exists. Area SE is the set of 
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Fig.1 Multi-View Analysis Model for Debugging Process 



modules included in both of area S and area E. Area O is 
the set of the modules not belonging to any of above. In 
this area, there is naturally no faulty module. 

 
2.2. Decision view 
The Decision view presents internal action of the 
debugger. Here, we set a fundamental assumption that 
the debugging process is essentially expressed as a 
sequence of two kinds of action: expanding the trusted 
region of the program while narrowing down the 
suspicious region [1]. These actions are essentially 
influenced by the debugger’s subjective suspicion about 
the bug’s location. 
In the Decision view, modules are continuously and 
subjectively classified into three regions (set of modules) 
during the debugging process. The first region is the 
suspicious region (shown as B+), which is the set of 
modules that might contain a bug. The second region is 
the trusted region (shown as B-), which is the set of 
modules that seems to be no bug. The third region is the 
neutral region (shown as B0), which is the set of 
modules uncertain whether containing the bug or not 
(Fig 3). Occasional movement of modules over these 
three regions can explicitly express the change of human 
internal impression of the bug location.  
Hence, the debugging process in this view is observed as 
transitions of the status of the human internal impression 
S(t), which is represented with actual assignments to B+, 
B0, and B-. 
At the beginning of the unfamiliar program debugging 
(t=0), the debugger does not understand any modules. 
Therefore, the initial state S(0) should be expressed as 
follows: 
S(0) = [ B+= f,  B0= {m1, m2, … , mn},  B-=f  ]. 
As the bug localization activity proceeds, modules in B0 
will be moved to either B+ or to B-. At the final stage of 
the debugging process (t=T), the bug has been localized, 
and the final state S(T) should always be as follows: 

S(T)= [ B+={m1 },  B0= f,  B-={ m2, … , mn}  ]. 
The transition process from the initial state S(0) to the 
final state S(T) may greatly differ according to the 
debugger's capability and strategy. By using the 
Decision view, transition of the human decision can be 
formally expressed, and individual differences of the 
decisional transitions can be observed. 
Since transitions are performed in the debugger's mind 
inside, actual decision movements cannot be observed 
externally. We use periodical simple interviews to the 
developer to get impression of each module. 
 

 
2.3. Behavior view 
Behavior view can express the external reading action of 
the debugger. In this view, human’s behavior is 
represented as a sequence of module reading activity that 
is expressed as a pair of target module name and the 
reading duration, such as <m3,0:40>, <m2,0:30>,  …  , 
<m1,1:50> (Fig 4). This information can be captured in 
several ways such as video monitoring, command 
execution history, or eye gaze tracking. The order and 
the frequency of module readings clarify how the 
debugger read the program. 
 The Behavior view can be used to see each debugger’s 
way of limiting the referenced module set. People 
usually don’t read all of the modules for debugging, and 
sometimes there is implicit or explicit strategy for 
module choice [5]. Moreover, skilled programmer’s 
patterns of movement over modules might be 
significantly different from a novice programmer’s 
patterns. This view is also capable of investigating such 
skills differences [4]. 

 
(a)Control Dependence   (b)Data Dependence   
 
 

 
(c)Static Slice        (d)Faulty execution path 
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2.4. The advantage of the proposed model 
The main advantage of this model is that the activities of 
the debugger, both internal and external, become clear, 
and quantitative and objective analysis can be applied to 
it. Generally speaking, observation and explanation of 
the debugger’s internal activity are very hard. Many 
existing analyses mainly depend on subjective 
statements from debuggers, and resulting analysis is also 
highly subjective. For example, in Araki’s model, the 
debugging process is explained as iterations of 
debugger’s hypothesis evolution, which cannot be 
observed quantitatively [1]. In Vessey’s model, the 
debugging process is expressed based on debugger’s 
chunking ability [14]. However, these models cannot 
illustrate the objective activities of debuggers’. 
In our model, multiple-view architecture is provided for 
analyzing debuggers’ activities. Combining these three 
views over the module set, just like transparent sheets, 
enables various analyses. By placing the Decision view 
over the Product view, we can analyze the co-relation 
between debugger’s internal recognition and the 
program structure. For example, we can evaluate the 
debugger's process better by knowing the characteristic 
of the module belonging to each region of B+, B-, and 
B0. This may lead to finding good- or bad-process for 
judgment of faultiness the module based on the program 
structure. By placing the Behavior view over the Product 
view, we can also analyze the debugger's program 
reading process better. For example, we can know 
whether the debugger’s reading process is top-down or 
bottom-up, by examining the order of the module 
reading along program structure. This may lead to 
finding good- or bad-process for giving a priority of 
reading to each module. 
For years, many researches have tried to understand how 
engineers comprehend programs during software 
maintenance [2][9][6]. In their studies, there is an 
assumption that engineers must comprehend the program 
wholly and in details. However, this assumption does not 
fit to usual debugging situations – debugging in the 
scheduled time. Comprehending the whole program can 

be regarded as the worst process for program reading in 
limited time. On the other hand, we focus on process of 
reading only a necessary part for the bug detection. 
3. Experiment 
In order to get some insights concerning good- and bad- 
reading process for debugging, we actually carried out 
an experiment to observe debugging processes. Based on 
the proposed model, we corrected quantitative data for 
each model view (product, decision, behavior). We have 
also listed up several hypotheses about reading process; 
then, tried to verify using corrected data. 
3.1. Hypotheses of program reading process  
We put following five hypotheses concerning reading 
process to be verified in this experiment: 
-Hypothesis 1: Reading the modules that have no 
dependence with faulty module degrade the debug 
efficiency. 
-Hypothesis 2: There is a module that most of experts 
commonly read well but most of novices do not. 
-Hypothesis 3: Expert subjects spend more time to read 
the faulty module than novice subjects do. 
-Hypothesis 4: Expert subjects rapidly narrow down the 
focus of module examination. 
-Hypothesis 5: Expert subjects read modules along with 
control dependence paths. 
-Hypothesis 6:Expert subjects read modules along with 
data dependence paths. 
Hypothesis 2 can be verified by examining Behavior 
view only. Hypothesis 1, 5, and 6 can be verified by 
examining Product view and Behavior view. Hypothesis 
4 can be verified by Decision view and Product view. 
Hypothesis 3 can be verified by Decision view and 
Behavior view. 
3.2. Environment 
The experiment was conducted using the Ginger2 
CAESE environment [10]. This environment can record 
debugger’s various activities such as eye-gaze point on 
the computer display, voice, key typing, and screen 
image. We also manually conducted the periodical 
interviews in order to trace the debugger’s cognitive 
movement about the possible location of the bug. 
3.3. Subjects 
Ten subjects participated in the experiment and were 
assigned to debug the same program independently. All 
subjects are graduate school students. They can use C 
programming language. They have 3~4 years experience 
of programming and at least 2 years experience of C 
programming. 
3.4. Target Programs 
Two computer programs written in C language was 
prepared for this experiment: 
Program X(Calendar) 
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Fig.4 Behavior View 



This program consists of about 300 lines/ 20 modules. 
This program is designed and coded to take the input of 
a date and to show a calendar of the date. There is a bug 
in module m17 (“ymd2rd2”) that produce the wrong out 
put of the date of a calendar. 
Program Y (Tick-Tack-Toe) 
This program consists of about 300lines/15modules. 
This program is designed and coded to play a game 
known as “tick-tack-toe”. This game uses 3x3 matrix 
where the computer and the user put marks by turns. The 
player, who succeeds to make three of his/her marks in a 
vertical/horizontal/slant line  first, wins. There is a bug 
in module m9 (“check2moku3”) that the program fails to 
recognize two of opponent’s marks that are already in 
line, and therefore, it cannot prevent the opponent from 
winning.  
As a summary of the Product view of each program, the 
modules of the target programs can be classified into 
four sets using static slicing as shown in Fig.5-(a),(b). In 
Program X, nine modules are contained in the slice 
(indicated as area S). Ten modules are contained in the 
execution trace (area E). Eight modules belong to both 
of the slice and the trace. Nine modules d o not belong to 
any of them (area O). The bug is located in one of the 8 
modules in the “Slice & Execution” (area SE.) Program 
Y is classified into area SE and area E. Fourteen 
modules compose area SE. Area E consists of only one 
module. 
 

3.4. Procedure 
Subjects were given the documentation and source code. 
At first, they were shown the program execution with 
error symptom to be fully understood. Then, they started 
to debug the program, but no directions about the 
debugging method were given. The experiment was 
performed until the bug is located and actually corrected. 
During the experiment, subjects had to answer the 
periodical interviews answering questionnaire every 5 
minutes until the end of experiment. In every interview, 
the probability of the bug existence for each module was 
scored. If the subject thought that no bug exists in the 
module, he/she marks ‘-’ (minus) in the questionnaire. If 
the subject think that a bug may be included in the 
module, he/she marks ‘+’(plus.) If the subject has no 

confidence of bug existence, he/she marks 
‘0’(zero.)(Fig.6) 

We define some metric values by interview data. These 
metric values are supposed to have relation to the 
debugging efficiency. 
Nb:Time duration from start time until the first time 
subject decided that faulty module is actually suspicious 
to have a bug. 
max|B+|:Maximum number of modules in B+ 
(suspicious region) through entire the process. 
avg|B+|:Average number of modules belonging to B+ 
(suspicious region) per interval. 
|B+|n:Final number of modules belonging to B+ 
(suspicious region) just before the bug is located and 
fixed. 
max|B-|:Maximum number of module in B- (trusted 
region) through entire the process. 
 
avg|B-|:Average number of modules belonging to B- 
(trusted region) per interval. 
|B-|n:Final number of modules belonging to B- (trusted 
region) just before the bug is located and fixed.  
m+→-:Total number of modules, which were judged to 
be suspicious at once, and then judged again to be 
innocent through the entire process. 
avg|N+→-|:Average time duration of misjudgement of 
non-faulty module to be suspicious.  
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Fig. 5 Product view summary of target programs
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m-→+:Total number of modules, which were judged to 
be innocent at once, and then judged again to be 
suspicious through the entire process. 
 
All subjects successfully pointed the position of the bug 
and the correction was completed. Comparing the every 
subject’s debugging time duration summarized in 
Table1, in case of Program X, subject X1 has the 
shortest debugging time as 23 minutes. In Table2, 
subject Y1 has the shortest debugging time as 21 
minutes for Program Y.  

 
4. Results and Discussion 
Fig.7 summarizes the collected data from subject X1 
through the entire debugging process. In the leftmost 
row of the table, module names are enumerated. From 
the, Product Views, Behavior View, and Decision View 
are indicated corresponding to each module. In the 
leftmost row of the table, module names are enumerated. 
From the, Product Views, Behavior View, and Decision 
View are indicated corresponding to each module. In the 
data dependence cell of a module, modules that are data-
dependent to that module are enumerated. In the control 
dependence cell of a module, modules that are called by 
that module are enumerated. If a module is included in 
the faulty execution path (i.e. that module is executed 
when the program produces faulty out put), asterisk (‘v’) 
is indicated in the “Execution” area. If a module is 
included in the static slice calculated from the failure 
point (i.e. where the program produces wrong out put 
value), asterisk (‘v’) is indicated in the “S. Slice” area. 
In the Behavior view area, order and duration of module 

reading in the form of timing-chart, with numeric value. 
In the Decision view area, categorization result of the 
module, judged by the subject as one of B+, B0 or B-
.Six hypotheses were verified through the analysis based 
on these collected data. 
- Hypothesis 1: Reading the modules that have no 
dependence with faulty module degrade the debug 
efficiency. 
Table 3 shows reading time and its ratio to total 
debugging time, summarised based on Product views. 
Two subjects (X3 and X4) of three, who were worst in 
debugging time, have spent relatively longer time (19% 
and 18% respectively) to read for the modules in area O 
(i.e. belonging to none of static slice and faulty 
execution path). In contrast, two better subjects (X1 and 
X2) didn’t spend much time on these modules (6% and 
5% respectively). This result shows that the hypothesis1 
is to be accepted. 
 
- Hypothesis 2: There is a module that most of experts 

commonly read well but most of novices do not. 
Table4 and 5 shows reading time of every module, 
reading time ratio to total debugging time, and 
correlation coefficient between them, for Program X and 
Program Y, respectively. Coefficient shows that the 
better debugger, who completed debugging in shorter 
time, have spent more time to read a certain module 
(ymd2rd1,check3moku3). For Program X, subject X1 
and X2 spent 15% and 5% of their reading time, 
respectively. For Program Y, subject Y1 spend 18% of 
the reading time. After this analysis, we have examined 
these modules, and we found that they are functionally 

 

 
Fig.7 Example of detailed debugging process

Table1 Debugging time of ProgramX
X1 X2 X3 X4 X5

Debugging Time(T minutes) 23 27 84 86 106
Interviews(N) 4 5 16 16 19  

Table2 Debugging time of ProgramY
Y1 Y2 Y3 Y4 Y5

Debugging Time(T minutes) 21 29 32 34 41
Interviews(N) 4 6 6 6 8  

Table3 Reading time of each area (Program X) 
 X1 X2 X3 X4 X5

S 131 55 26 94 28 -0.57
(Static Slice) (15%) (5%) (1%) (3%) (1%) -0.77

SE 635 1079 2810 2336 3799 0.96
Slice&Execution (72%) (90%) (75%) (67%) (91%) 0.02

E 61 14 189 414 38 0.44
(Execution) (7%) (1%) (5%) (12%) (1%) 0.09

O 52 58 699 633 305 0.74
(Other) (6%) (5%) (19%) (18%) (7%) 0.58



similar to actual faulty module (ymd2rd2 and 
check2moku3). Their names are also similar and they are 
referring the same external variables. This result seems 
to support the hypothesis 2, however, further study will 
be needed to clarify the detailed characteristics of the 
key module. 
 
- Hypothesis 3: Expert subjects spend more time to 

read the faulty module than novice subjects do 
Continuing with table4 and 5, now focusing to the 
actual faulty modules (ymd2rd2 and check2moku3), 
just reading longer these faulty modules does not 
directly related to shorter debugging time. E.g., 
subject X4 and X5 spends 22% and 24% of their 
reading time for ymd2rd2 in Program X 
respectively. Also, subject Y3 and Y4 spends 25% 

and 18% of their reading time for check2moku3 in 
Program Y respectively. This result seems to reject 
the hypothesis 3. I.e., reading the faulty (or most 
suspicious) module only won’t generally lead to 
shorter debugging time. 

 
- Hypothesis 4: Expert subjects rapidly narrow down the 
focus of module examination. 
Table6 and 7 summaries the decision view of the 
debugging process collected by interviews. Subjects who 
took longer debugging time have larger avg|B+|. 
Especially, the worst subjects in both Program X and 
Program Y have the largest values. This data suggest 
that novice debuggers take longer time to narrow down 
the suspicious region (i.e. they have difficulty to locate 
the bug position). 
Subjects who took longer debugging time, had larger 
difference between N and Nb: three subjects (X3, X4, 
X5) for Program X, and subject Y5 for Program Y, had 
N more than twice of Nb. I.e., they took longer time 
from getting suspicious to faulty module until actually 
removing the bug. 

Table5 Reading time of each module 
(b)ProgramY 

Y1 Y2 Y3 Y4 Y5
main 121 139 91 85 119

(11%) (12%) (7%) (5%) (6%)
start 69 209 35 241 270

(6%) (18%) (3%) (13%) (13%)
battle 42 198 47 151 249

(4%) (17%) (4%) (8%) (12%)
man 26 50 14 99 145

(2%) (4%) (1%) (5%) (7%)
computer 112 157 267 144 443

(10%) (14%) (20%) (8%) (22%)
check2moku 70 55 61 96 61

(6%) (5%) (5%) (5%) (3%)
check2moku1 71 8 318 226 284

(6%) (1%) (24%) (12%) (14%)
check2moku2 106 62 68 46 97

(9%) (5%) (5%) (2%) (5%)
check2moku3 136 182 337 326 237

(12%) (16%) (3%) (18%) (12%)
check3moku 7 14 11 115 12

(8%) (1%) (2%) (6%) (3%)
check3moku1 90 13 22 111 52

(1%) (1%) (1%) (6%) (1%)
check3moku2 48 0 0 95 5

(4%) (0%) (0%) (5%) (0%)
check3moku3 209 0 63 64 10

(18%) (0%) (5%) (3%) (0%)
printbord 27 32 4 3 23

(2%) (2%) (0%) (0%) (1%)
initialize 9 30 4 42 11

(1%) (2%) (0%) (2%) (1%)

Table4 Reading time of each module 
(a)ProgramX 

X1 X2 X3 X4 X5
main 241 110 421 412 324

(27%) (9%) (11%) (12%) (8%)
mchk 0 0 49 26 13

(0%) (0%) (1%) (1%) (0%)
dchk 61 14 140 388 25

(7%) (1%) 0.037684 0.111631 0.005876
getdofm 95 15 356 172 116

(11%) (1%) (10%) (5%) (3%)
getdofy 0 0 12 27 0

(0%) (0%) (0%) (1%) (0%)
isulu 0 35 22 71 187

(0%) (3%) (1%) (2%) (4%)
ymd2rd 38 11 18 165 304

(4%) (1%) (0%) (5%) (7%)
getdt 0 0 0 45 42

(0%) (0%) (0%) (1%) (1%)
rd2ymd 33 526 912 243 786

(4%) (4%) (24%) (7%) (19%)
ymd2rd1 131 55 26 94 28

(15%) (5%) (1%) (3%) (1%)
getdby 0 0 45 174 11

(0%) (0%) (1%) (5%) (0%)
getdbm 0 0 0 0 25

(0%) (0%) (0%) (0%) (1%)
getnumop 0 0 0 0 0

(0%) (0%) (0%) (0%) (0%)
setcal 0 11 121 69 0

(0%) (1%) (3%) (2%) (0%)
mcmd 13 0 0 0 0

(2%) (0%) (0%) (0%) (0%)
ycmd 0 0 175 229 133

(0%) (0%) (5%) (7%) (3%)
ymd2rd2 124 268 668 779 1910

(14%) (22%) (18%) (22%) (46%)
printdt 39 46 358 63 94

(4%) (4%) (10%) (2%) (2%)
scmd 104 113 400 467 173

(12%) (10%) (11%) (13%) (4%)
usage 0 0 0 54 0

(0%) (0%) (0%) 0.015612 (0%)



These results suggest, at least, the hypothesis 4 was not 
rejected because novice debuggers actually seem to have 
difficulty to locate the position of the bug.  

 
- Hypothesis 5: Expert subjects read modules along with 
control dependence paths. 
- Hypothesis 6:Expert subjects read modules along with 
data dependence paths. 
Table8 shows the ratio of existence of control/data 
dependence between current reading module and next 
reading module. Although subject X1 has high tendency 
to follow control/data dependence, other subjects don’t 
show such tendency. Thus, we cannot accept this 
hypothesis for now. 

 
5. Conclusion 
In this paper we proposed a model for analyzing the 
reading process in debugging. The model provides three 
views for representing human activities: Product view 
for presenting structural properties of target program, 
Decision view for representing human’s cognitive image 
of the possible location of the bug, and Behavior view 
for representing externally observed human’s action. By 
using above three views, analysis of debugging 
processes can be done in clear way, by examining 
interactions and relationships among these views. 

We have conducted experiments to observe debugging 
processes and collected process data based on our 
model. Several hypotheses were verified with collected 
data based on the model. Some hypotheses such as 
“Expert subjects spend more time to read the faulty 
module than novice subjects do.” were actually rejected; 
and, some other hypotheses such as “Reading the 
modules that have no dependence with faulty module 
degrade the debug efficiency.” were accepted. The result 
of experiment suggested that explicit and quantitative 
evaluation of debugging process become possible by 
using the proposed model. 
Although some of our hypotheses suggested the 
candidates of good- and/or bad-reading process, we have 
not clarified the useful process for actual debugging yet. 
We need to employ more programs, bugs, and subjects 
in the future experiments to clarify more useful process. 
However, we believe our analysis model is a powerful 
tool for seeking for the quantitative and objective 
debugging strategies, which was very difficult in the past 
researches. 
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