
Dynamic Software Birthmarks to
Detect the Theft of Windows Applications

Haruaki Tamada Keiji Okamoto Masahide Nakamura Akito Monden
Ken-ichi Matsumoto

Graduate School of Information Science,
Nara Institute of Science and Technology,

8916-5, Takayama, Ikoma, Nara 630-0101, Japan,
Email: {harua-t, keiji-o, masa-n, akito-m, matumoto}@is.naist.jp

ABSTRACT
This paper proposes dynamic software birthmarks which can
be extracted during execution of Windows applications. Birth-
marks are unique and native characteristics of software. For
a pair of softwarep andq, if q has the same birthmarks asp’s,
q is suspected as a copy ofp. Our security analysis showed
that the proposed birthmark has good tolerance against vari-
ous kinds of program transformation attacks.

Keywords
Copyright Protection, Birthmark, Dynamic Analysis

1 INTRODUCTION
Software theft is a growing concern in today’s highly com-
petitive world of computer software. Software theft includes
not only duplicating a whole software product and selling
the copies (calledsoftware piracy) but also stealing a part of
a product (e.g. modules and code fragments) and reusing it
in other product without permission. Indeed, many incidents
have been reported, for example, distribution of WAREZ (pi-
rated software) whose license checks were defeated [17], SCO
Group’s lawsuit against IBM for ownership violation [19],
copyright infringement of freeware/shareware [23], and GPL
infringement [7]. Software theft can cause severe damage to
the software industries; hence, companies must protect their
own intellectual properties from theft.

However, protecting software from such theft is not easy.
Since enormous amounts of software products are distributed
today, even detecting “suspected copies” is quite difficult,
unless the product is well-known to the public. Moreover,
each product generally consists of many modules and data
files. Suppose that an adversary steals only some modules,
builds them into his or her own code, and distributes this
“new” code without the source code. Detection of the theft
becomes much more difficult because finding the evidence
of copying by the manual binary analysis generally requires
a large amount of cost and extra-high skill.

This paper presents an easy-to-use method to provide rea-
sonable evidence for the theft of programs. Specifically, we
proposebirthmarksto support the efficient detection of pro-
grams that are quite similar to (or exactly the same as) each

other. Intuitively, a birthmark of a programs is the set of
unique characteristics that the programoriginally possessed.
If programp andq have the same birthmark,q is very likely
to be a stolen copy ofp (and vice versa).

In our previous work, we proposed four types ofstatic birth-
marksof Java class files [21]: (1) constant values in field
variables, (2) a sequence of method calls, (3) an inheritance
structure, and (4) used classes. However, these birthmarks
are vulnerable against manual (hand) modifications. This pa-
per proposesdynamic birthmarksusing the history of API
(Application Program Interface) function calls of a running
program. Since it is difficult to change the dynamic behav-
ior of a program without changing its functionality, the pro-
posed birthmark is more resilient to program transformation
attacks. Through security analyzes, this paper shows that
our birthmark is reasonably resilient against various kinds of
imaginable attacks.

2 PROPOSED METHOD

2.1 Key Idea

Applications running on the OS can use many features called
API function calls, provided by the OS. The typical API
function calls are file input/output, synchronized objects such
as semaphore, mutex and critical section, user interface (Win-
dow system) and graphics.

Since the most of API function calls cannot be replaced by
other instructions without affecting the program behavior,
history of their executions can be used as robust birthmarks
For example, the high level OS does not allow direct oper-
ations to the file system from user applications, and it only
allows file input/output via API function calls. Also, the op-
erations to GUIs are allowed only via API function calls.
It indicates that the birthmark using API function calls has
good tolerance against program transformation attacks.

This paper proposes a method for collecting history of API
function calls during execution of software from which we
extract birthmarks. As the target software, we limit the type
of software to those using API function calls of Microsoft
Windows.



In this paper, we proposed two types of birthmarks. First
birthmark is a sequence of API function calls. The other is
a frequency of API function calls. Both birthmarks are ob-
tained by logging the API function calls of target software.
We describe the detail of proposed birthmarks in Section 2.3.

2.2 Definition
To make our discussion clearer, this subsection formulates a
notion of a birthmark. We start with formulation of thecopy
relationof programs.

Definition 1 (Copy Relation) Let Prog be a set of given
programs. Let≡cp denote an equivalent relation overProg
such that: forp, q ∈ Prog, p ≡cp q holds iff q is acopyof p
(vice versa). The relation≡cp is called acopy relation.

The criteria for whether or notq is acopyof p can vary de-
pending on the context. For example, each of the following
criterion is relatively reasonable for general computer pro-
grams:

(a) q is an exact duplication ofp,

(b) q is obtained fromp by renaming all identifiers in the
source code ofp, or

(c) q is obtained fromp by eliminating all the comment lines
in the source code ofp.

To avoid confusion, we suppose that≡cp is originally given
by the user. Since≡cp is an equivalent relation, the following
proposition holds.

Proposition 1 For p, q ∈ Prog, the following properties
hold. (Reflexive)p ≡cp p, (Symmetric)p ≡cp q ⇒ q ≡cp p,
(Transitive)p ≡cp q ∧ q ≡cp r ⇒ p ≡cp r.

All the above properties meet well the intuition of copy. Next,
if q is a copy ofp, the external behavior ofq should be iden-
tical top’s.

Proposition 2 LetSpec(p) be a (external) specification con-
formed byp. Then, the following property holds:p ≡cp q ⇒
Spec(p) = Spec(q).

Note that the inverse of this proposition does not necessarily
hold since we can see, in general, different program imple-
mentations conforming the same specification. Now we are
ready to define adynamic birthmarkof a program. Note that
we have defined a static birthmark of program in [21].

Definition 2 (Birthmark) Letp, q be programs,I be a given
input and≡cp be a given copy relation. Letf(p, I) be a set
of characteristics extracted fromp with input I by a certain
methodf . Thenf(p, I) is called adynamic birthmarkof p
under≡cp iff both of the following conditions are satisfied.

Condition 1 f(p, I) is obtained fromp itself and given input
I without any extra information.

Condition 2 p ≡cp q ⇒ f(p, I) = f(q, I)

Condition 1 means that the birthmark is not extra information
and is required forp to run. Hence, extracting a birthmark
does not require extra code as watermarking does. Condi-
tion 2 states that the same birthmark has to be obtained from
copied programs. By contraposition, if birthmarksf(p, I)
andf(q, I) are different, thenp 6≡cp q holds. That is, we can
guarantee thatq is not a copy ofp.

Hopefully, a birthmark will satisfy the following properties.

Property 1 (Preservation) For p′ obtained fromp by any
program transformation,f(p, I) = f(p′, I) holds.

Property 2 (Distinction) For p andq such thatSpec(p) =
Spec(q), if p andq are written independently, thenf(p, I) 6=
f(q, I).

These properties strengthen Condition 2 of Definition 2. Prop-
erty 1 specifies thepreservation propertyof the birthmark
against program transformation. We consider that clever crack-
ers may try to modify birthmarks by transforming the origi-
nal program into an equivalent one to hide the fact of theft.
There are several automated tools to perform the transforma-
tion, involving programobfuscatorsandoptimizers. These
tools can be used as a means of attack against the birthmarks.
Property 1 specifies that the same birthmark must be obtained
from p and convertedp′. However, there exist many ways to
transform a program into an equivalent one. Hence, in reality,
it is difficult to extract strong enough birthmarks to perfectly
satisfy Property 1.

Property 2 specifies the distinction property of the birthmark,
stating that: even though the specification ofp andq is the
same, if implemented separately, different birthmarks should
be extracted. In general, the detail of two independent pro-
grams is almost never completely the same. However, in the
case thatp andq are bothtiny programs, extracted birthmarks
could become the same, even ifp andq are written indepen-
dently. Those properties should be tuned within an allowable
range at the user’s discretion.

The question is how to develop an effective methodf for a
setProg of programs and the copy relation≡cp.

2.3 Proposed Birthmarks
2.3.1 Sequence of API Function Calls Birthmark
The order of API function calls during execution of software
is considered unique characteristics of software. Changing
the order of API function calls causes introduction of bugs
or changing of the specification of software. Moreover, it is
quite a rare case that two different software have the same or-
der of API function calls even if they are using the same set



of API functions. Hence, it is convenient to use these char-
acteristics as birthmarks. Below we formulate the sequence
of API function calls birthmark.

Definition 3 (EXESEQ) Let p be a given program,I be a
given input top andW be a given set of API function names.
Let w1, w2, ..., wn be a sequence of function calls called by
executingp (execution order). Ifwi(1 ≤ i ≤ n) does not be-
long toW , we eliminate it from the sequence. Then, the re-
sultant sequence(w1, w2, ..., wm) is called anEXESEQ birth-
markof p, denoted byEXESEQ(p, I).

2.3.2 Frequency of API Function Calls Birthmark
The number of calls each API function per unit time will not
change even if an adversary could change the order of API
function calls by a semantic analysis hacking. Therefore, the
frequency of API function calls can be used as a good signa-
ture to characterize the software.

Definition 4 (EXEFREQ) Let p be a given program,I be a
given input top and(w1, w2, ..., wn) be a sequence of API
function call birthmark ofp (EXESEQ(p, I)). Let(w′1, w

′
2, ...,

w′m) be a sequence of function names which obtained by
eliminating duplicated function names fromEXESEQ(p, I).
Also, letki(1 ≤ i ≤ m) be a function name ofw′i andai be
the number of appearance ofki in EXESEQ(p, I). Then, the
sequence((k1, a1), (k2, a2), ..., (km, am)) is called anEXE-
FREQ birthmarkof p, denoted byEXEFREQ(p, I).

3 IMPLEMENTATION
3.1 Outline
In the proposed method, we must observe the API function
calls during execution of programs. Unfortunately, in gen-
eral use, we cannot observe the API function calls in Mi-
crosoft Windows platform. Windows platform has a function
called “Windows hook” which enables us to observe message
passings of GUI objects, keyboard and mouse. However, by
using Windows hook, we cannot observe enough information
to extract proposed birthmarks. Therefore, we propose a way
to implement the birthmark extraction system as below.

Step 1 Installing (inserting) a routine for observing API func-
tion calls into target software.

Step 2 Changing “function call pointer table” in order to
fetch API function calls.

Step 3 Intercepting and recording API function calls in the
installed routine.

Step 4 Calling original API function calls by the installed
routine.

Step 5 Extracting birthmarks.

We explain details of each step from next section.

3.2 Details of Implementation
3.2.1 Step 1: Installing the Observation Routine of API

Function Calls
In order to record the API function calls, we must put routine
for observing API function calls into target software. In this
step, we build an observation routine as a DLL (dynamic link
library); then, we exploit Windows hook mechanism to get
this DLL forcibly loaded into target software. We call this
DLL parasite DLLbecause the DLL becomes parasitic on
the target software. We also call the routine in the parasite
DLL parasite routine.

Figure 1 shows the mechanism of Windows hook. In the
Windows platform, messages (e.g., mouse click and key in-
put) are generally passed from the operating system to win-
dow objects (GUI widget) (Fig.1: dashed line arrow). We
can take over the message using Windows hook (Fig.1: solid
line arrow). Windows hook has a functionality to get any
DLL loaded into the target software so that the DLL can in-
tercept the messages in the target software during its execu-
tion. In this step, we do not use the mechanism of message
interception of Windows hook. We only exploit the feature
for loading the DLL to get our parasite DLL loaded into the
target software.

3.2.2 Step 2: Changing the API Function Pointer Table
In this step, we highlight on the API function pointer table
called import sectionwhom every Windows software has.
The import section is a pointer table comprising function
pointers to the DLL implementing an API function. In figure
2, we show a generic API function call as a dashed line arrow.
When Windows software calls an API function, the software
obtains a function pointer of the corresponding DLL from
the import section. Then, the DLL is executed through the
pointer. Therefore, by changing the function pointer of the
import section, we can change the to-be-executed DLL for
an arbitrary API function call.

When our parasite DLL is loaded into the target software
in Step 1, DLL-initialization code in this DLL is immedi-
ately executed (just as common DLLs). By exploiting this

Operating
System

Installed DLL

Message 
observation 
function

GUI widget
(Window object)

installation

message

Intercepted
message

Target Software

Figure 1: Installation of the DLL into target software
during execution



…

Import section

WinMain()
{
...
...
CreateWindowEx();
...
...

}

Parasite DLL

Hook_CreateWindowEx(){
// Recording
// Call original API function

}

user32.dll (System DLL)

CreateWindowEx(){
...
// implementation
...

}

API function call

Target Software

Figure 2: Mechanism of API function call observation

mechanism, our DLL-initialization code overwrites a func-
tion pointer entry of an API function which we want to ob-
serve, by an alternative pointer of wrapper function we pre-
pared in parasite DLL.

3.2.3 Step 3: Recording the History of API Function
Calls

When software calls the API function, the wrapper function
in the parasite DLL is called instead of original API. As Step
3, in the wrapper function, we record the following three
types of information: the name of called API function, the
time when the function is called, and the current thread id.

3.2.4 Step 4: Calling the Original Function
Software containing parasite DLL must keep the original soft-
ware specification. Hence, in Step 4, our wrapper function
calls an original API function after executing Step 3, and re-
turns its output value. We show this behavior with solid line
arrow in Figure 2. By this Step 4, the specification of original
software is preserved.

3.2.5 Step 5: Extracting Birthmarks
By Step 1...4, we can collect the information of API func-
tion calls by running the software. If we found software hav-
ing a suspicious function that seems to be implemented by
a stolen software module or code, we can execute Step 1,..4
and run the software, then operate the suspicious function
and recored API function call information from it. From the
recorded API function call information, we can extract two
birthmarks, EXESEQ and EXEFREQ birthmarks.

3.3 Comparing Birthmarks
3.3.1 Sequence of API Function Calls Birthmark
When we extract the EXESEQ birthmark from the recorded
the sequence of API function calls, we must not use API
function calls whose execution timing are unstable, e.g. ones
related to the timer or exceptions. We must use stable API
function calls to guarantee that the same birthmark is always
extracted from a given particular programp and an inputI.

To compare the EXESEQ birthmarks extracted from differ-

CreateFile
ReadFileEx
CloseHandle
…
…
…
…

…

…
…
…
CreateWindowEx
SendMessage
DestroyWindow

CreateWindowEx
CreateFile
ReadFileEx
ReadFileEx
ReadFileEx
CloseHandle
SendMessage
DestroyWindow

CreateWindowEx
CreateFile
ReadFileEx
ReadFileEx
ReadFileEx
CloseHandle
SendMessage
DestroyWindow

CreateWindowEx
SendMessage
SendMessage
DestroyWindow
…
…
…
…

CreateFile
ReadFileEx
CloseHandle

CreateWindowEx
CreateFile
ReadFileEx
ReadFileEx
ReadFileEx
CloseHandle
SendMessage
DestroyWindow

CreateWindowEx
CreateFile
ReadFileEx
ReadFileEx
ReadFileEx
CloseHandle
SendMessage
DestroyWindow

Software A’s EXESEQ birthmark Software B’s EXESEQ birthmark

match

Figure 3: Example of EXESEQ birthmarks

C
reateW

indow
E

x

C
reateM

utex

Z
eroM

em
ory

C
reateF

ile

R
eadF

ileE
x

W
riteF

ileE
x

C
reateS

em
aphore

W
aitF

orM
ultip…

C
reateE

vent

W
N

etA
ddC

on…

Frequency of API Function Calls Software A’s EXEFREQ birthmark
Software B’s EXEFREQ birthmark

Figure 4: Example of EXEFREQ birthmark

ent softwarep andq, we can use string matching tools such
as diff and CCFinder [9]. These tools can detect exact or
nearly exact duplicated part of text sequences. If a part ofp’s
EXESEQ birthmark are the same asq’s, we can suspect that
q containsp’s code.

In figure 3, we show an example of comparing two EXE-
SEQ birthmarks. In this example, gray parts indicate de-
tected match between two birthmarks.

3.3.2 Frequency of API Function Calls Birthmark
We construct a vector to compare the EXEFREQ birthmarks,
whose elements are the number of each API function calls.
We define that thesimilarity of two EXEFREQ birthmarks
is the angle of two vectors. Figure 4 shows an example of
two EXEFREQ birthmarks. If a part of software, e.g. a DLL
file, was suspected as a stolen code, we can extract an EXE-
FREQ birthmark of this suspected DLL and compare it with
an original DLL’s birthmark.

4 SECURITY ANALYSIS
In this section, we discuss the tolerance of the proposed birth-
marks against program modification attacks.



4.1 Tolerance against Program Transformation Tools
Software obfuscation is a method for protecting intellectual
property of software; however, this can also be used as an at-
tacking tool to modify the birthmarks. Obfuscation translates
a program so that it becomes more difficult to understand, yet
is functionally equivalent to the original program. There are
several obfuscation techniques for obfuscating binary pro-
grams [11, 12].

Here we discuss whether or not the proposed birthmarks have
the tolerance against program obfuscators. The obfuscator
statically analyzes an binary program or its source code be-
fore translating it. Based on the analysis, the obfuscator
may translate jumps and calls for internal functions and may
change the control flow of the program [11]. Some of our
previously-proposed static birthmarks can be tampered with
this attack [21]. However, the obfuscator cannot translate
calls for external libraries because substitution of an external
library call with another one is generally quite difficult.

Therefore, the proposed birthmarks are robust against pro-
gram transformation attacks using obfuscators.

4.2 Tolerance against Manual Modification
An adversary would try to modify the birthmarks bymanual
hacking. In this case, the adversary analyzes the program
and understands its specification; then, he or she is ready to
replace API function calls into other equivalent ones.

First, we discuss whether or not the adversary can delete an
API function call from the program. If there exists a set of
functions that is functionally equivalent to the API function,
then, the adversary is able to delete the API function call
by replacing it to this function set. However, there are sev-
eral Windows API function calls that are not substitutable,
for example, an API function for creating GUI objects can
not be implemented with other functions since it is a funda-
mental part of Microsoft Windows. Therefore, by using such
“fundamental” API functions in our birthmark, the proposed
birthmark becomes robust against manual modification at-
tacks.

Next, we discuss whether or not the adversary is able to
change the execution order of API functions. For some se-
quences of API function calls, it seems possible for the adver-
sary to change its order without affecting the program spec-
ification. If the adversary succeeded in this attack, the EX-
ESEQ birthmark of the attached program is changed. How-
ever, the EXEFREQ birthmark tolerates against this attack.
Anyway, since manual binary analysis and modification is a
quite time consuming task, and it requires extra-high skill,
we believe there will be few adversaries that can tamper with
our birthmark.

5 RELATED WORK
Software watermarking(often calledsoftware fingerprinting)
is a well-known technique used to provide a way to prove
ownership of stolen software. Therefore, it may be used

for our objective. Watermarking is basically used to embed
stealthy information in a piece of software, such as a software
developer’s copyright notation or a unique identifier of soft-
ware in a static manner [6, 13, 14], or in a dynamic manner
[4, 5, 22]. Unfortunately, watermarking is not always feasi-
ble because it requires software developers to embed a wa-
termarkbeforereleasing the software. Thus, proofs cannot
be given for already-released software without watermarks.
In addition, strictly speaking, to protect all the modules in a
software package, we need to embed watermarks into all of
these modules. This is generally difficult to meet when the
number of modules is large. Our birthmark approach pro-
vides a way to detect stolen software without embedding any
additional information beforehand.

The most commonly used technique to detect a suspected
copy is software similarity computation [1, 3, 18, 24], which
is generally used forplagiarism detectionin programming
classes. A plagiarized program is defined as a program that
has been reproduced from another program with only a small
number of editions, and with no detailed understanding of
the program required [16]. In order to detect plagiarized pro-
grams, various methods for similarity computation have been
proposed based on attribute counting [15], structure metrics
[1, 18, 24], and Kolmogorov complexity [3]. Unfortunately,
since these methods require the source code of software to
compute the similarity, they are not applicable in our prob-
lem setting where software products are usually distributed
without a source code. Moreover, these techniques did not
consider attacks by practical code transformation tools, such
as software optimizers and obfuscators.

Another way to detect software theft is to find code clone
pairs between two software products[2, 9]. Code clones are
exact or nearly exact duplicate lines of code within the source
code. In [9], by using a code clone detection tool called
CCFinder, Kamiya et al. found thatsys/net/zlib.c
of FreeBSD anddrivers/net/zlib.c of Linux are al-
most identical. Such code clone techniques are useful for de-
tecting suspected copies; however, they are also susceptible
to code transformation attacks.

Finally, we consider authorship analysis methods [10, 20].
In [10], programming style metrics and programming layout
metrics are used to identify the author of a source code. In
[20], Spafford and Weeber suggest that it might be feasible to
analyze code remnants in executable code, such as data struc-
tures and algorithms and choice of system and library calls
made by the programmer, which are typically the remains of
a virus or Trojan horse, and identify its author. Such identify-
ing information are called a “software birthmark” by Grover
[8], although we proposed its formal definition in Section
2.2.

6 CONCLUSION
In this paper we proposed dynamic birthmarks to provide a
reasonable evidence of theft of software. First we gave a



formal definition of a dynamic birthmark, then proposed two
types of birthmarks, EXESEQ and EXEFREQ birthmark. Our
preliminary security analysis showed that our birthmarks are
reasonably robust against obfuscator attacks and manual hack-
ing attacks.

In the future, we are planning to conduct experiments for
evaluating proposed birthmarks. Investigation of other types
of birthmarks is also an interesting future work.

REFERENCES
1. Alex Aiken. MOSS: A system for detecting software

plagiarism, Jun 2004.
http://www.cs.berkeley.edu/ aiken/moss.html.

2. Ira D. Baxter, Andrew Yahin, Leonardo M. De Moura,
Marcelo Sant’Anna, and Lorraine Bier. Clone detection
using abstract syntax trees. InICSM: the International
Conference on Software Maintenance, pages 368–377,
1998.

3. Xin Chen, Brent Francia, Ming Li, Brian Mckinnon,
and Amit Seker. SID plagiarism detection, Jun 2004.
http://genome.math.uwaterloo.ca/SID/.

4. Christian Collberg. Sandmark: A tool
for the study of software protection algorithms, 2000.
http://www.cs.arizona.edu/sandmark/.

5. Christian Collberg and Clark Thomborson. Soft-
ware watermarking: Models and dynamic embed-
dings. InPrinciples of Programming Languages 1999,
POPL’99, pages 311–324, San Antonio, TX, Jan 1999.

6. Robert L. Davidson and Nathan Myhrvold. Method
and system for generating and auditing a signature for
a computer program, 1996. US Patent 5,559,884, As-
signee: Microsoft Corporation.

7. Epson pulls linux soft-
ware following gpl violations (slashdot.org), Sep 2002.
http://slashdot.org/article.pl?sid=02/09/11/2225212.

8. Derrick Grover, editor.The protection of computer soft-
ware – its technology and applications Second edition.
The British Computer Society Monographs in Infor-
matics Cambridge University Press, May 1992.

9. Toshihiro Kamiya, Shinji Kusumoto, and Katsuro In-
oue. Ccfinder: A multi-linguistic token-based code
clone detection system for large scale source code.
IEEE Trans. on Software Engineering, 28(7):654–670,
2002.

10. Ivan Krsul and Eugene H. Spafford. Authorship anal-
ysis: identifying the author of a program.Computers
and Security, 16(3):233–257, 1997.

11. Cullen Linn and Saumya Debray. Obfuscation of ex-
ecutable code to improve resistance to static disassem-
bly. In Proc. of the 10th ACM conference on Computer
and communication security, pages 290–299. ACM
Press, 2003.

12. Masahiro Mambo, Takanori Murayama, and Eiji
Okamoto. A tentative approach to constructing tamper-
resistant software. InProc. of the 1997 workshop on
New security paradigms, pages 23–33. ACM Press,
1997.

13. Akito Monden. jmark: A lightweight tool for
watermarking java class files, 2002. http://se.aist-
nara.ac.jp/jmark/.

14. Akito Monden, Hajimu Iida, Kenichi Matsumoto, Kat-
suro Inoue, and Koji Torii. A practical method for wa-
termarking java programs. InProc. COMPSAC 2000,
24th Computer Software and Applications Conference,
pages 191–197, 2000.

15. Karl J. Ottenstein. An algorithmic approach to the de-
tection and prevention of plagiarism.SIGCSE Bulletin,
8(4):30–41, 1976.

16. Alan Parker and Hamblen O. James. Computer algo-
rithms for plagiarism detection.IEEE Transactions on
Education, 32(2):94–99, May 1989.

17. Andy Patrizio.
Pirates experience Office XP (wired news), Mar 2001.
http://www.wired.com/news/business/0,1367,42402,00.html.

18. Lutz Prechelt, Guido Malpohl, and Michael Philippsen.
Finding plagiarisms among a set of programs with
JPlag. Journal of Universal Computer Science,
8(11):1038–1116, 2002.

19. Eric Raymond and Rob Landley. OSI position
paper on the sco-vs.-ibm complaint, May 2004.
http://www.opensource.org/sco-vs-ibm.html.

20. Eugene H. Spafford and Stephen A. Weeber. Software
forensics: Can we track code to its authors?Computers
and Security, 12(6):585–595, 1993.

21. Haruaki Tamada, Masahide Nakamura, Akito Monden,
and Ken’ichi Matsumoto. Design and evaluation of
birthmarks for detecting theft of java programs. In
Proc. IASTED International Conference on Software
Engineering (IASTED SE 2004), pages 569–575, Inns-
bruck, Feb 2004.

22. Clark Thomborson, Jasvir Nagra, Ram Somaraju, and
Charles He. Tamper-proofing software watermarks. In
Proc. of the second workshop on Australasian informa-
tion security, Data Mining and Web Intelligence, and
Software Internationalisation, volume 32, pages 27–36.
Australian Computer Society, Inc., 2004.

23. Tomohiro Ueno. The protest page to pocketmascot,
Sep 2001. http://members.jcom.home.ne.jp/tomohiro-
ueno/AboutPocketMascot/AboutPocketMascote.html.

24. Michael J. Wise. YAP3: Improved detection of simi-
larities in computer program and other texts. InProc.
of 27th SCGCSE technical Symposium, pages 130–134,
1996.


