Proceedings of

The 9th International Conference on
Information Networking (ICOIN-9)

Senri Life Science Hall, Senri, Osaka, Japan
Dec 12-14, 1994

Sponsored by:

Information Processing Society of Japan (IPSJ), Japan
Co-Sponsored by:

IEEE Computer Society

Korea Information Science Society (KISS), Korea
Industrial Technology Research Institute (ITRI), Taiwan

Protocol Synthesis from Acyclic Formed Service Specifications

Masahide Nakamura, Yoshiaki Kakuda and Tohru Kikuno

Department of Information and Computer Sciences
Faculty of Engineering Science, Osaka University
1-3, Machikaneyama-cho, Toyonaka-shi, Osaka 560, Japan

Phone: +81 6 844 1151 (ext. 4841)

Fax: +81 6 850 3051

E-mail: {masa-n, kakuda, kikuno}@ics.es.osaka-u.ac.jp

Abstract

In the conventional protocol synthesis, it is gener-
ally assumed that primilives in service specifications
cannot be erecuted simultancously at different Service
Access Points (SAPs). Thus if some primitives are ex-
ecuted concurrently, then protocol errors of unspecified
receptions occur.

In this paper, we iry to extend a class of service
specifications from which protocol specifications are
synthesized by the previous methods, to a new class of
an acyclic formed service specifications in which paral-
lel ezecution of primitives is permitted. We introduce
priorities into primitives such that one primitive of the
highest priority is selected from a set of primitives ez-
ecutable simultaneously and executed. Then, based on
this execulion ordering, we propose a new protocol syn-
thesis method which can avoid protocol errors due to
message collisions, communication competitions and
50 on.

Key Words

protocol engineering, protocol synthesis, parallel ez-
ecution of primitives

1 Introduction

Rapid progress of computer-communication sys-
tems enables advancement and diversification of com-
munication services. In order to realize such services,
it is required to establish efficient and reliable design
method for large-scale and complicated communica-
tion protocols.

Protocol synthesis is a method to derive a proto-
col specification from a service specification and it is
recognized widely as one of the most promising meth-
ods to meet the above requirement. In the protocol
synthesis, service specification prescribes relationships
between service primitives from either user in a higher
layer or process in a lower layer. On the other hand, a
protocol specification which is derived from the given
service specification defines relations on messages be-
tween processes in the lower layer. Interfaces between
the higher layer and the lower layer are called Service
Access Points, shortly SAPs.

The behavior of protocols can be modeled by Finite
State Machines, shortly FSM. Thus both service spec-
ification and protocol specification are represented by

FSM. Saleh et al.[6] and Liu et al.[1, 2] have already
proposed synthesis methods of protocol specifications
modeled by FSM. In these synthesis methods, it is
not allowed that parallel execution of service primi-
tives occurs at different SAPs. However, it is gener-
ally observed that the parallel execution of multiple
primitives can occur in real communication systems.

Figure 1 shows a sequence chart which illustrates
parallel execution of two service primitives. User 1
sends a primitive Connection Request(C_reql) in or-
der to make connection with User 2, and User 3 also
sends a primitive C_req3 to connect with User 2 at
the same time. Parallel execution of two primitives
C_reql from User 1 and C_req3 from User 3 brings
on a competition for an access with User 2. Protocol
errors of unspecified receptions are generally caused
by a parallel execution of service primitives, since the
parallel execution induces message collision and access
competition in the lower layer.

Userl PE1 PE2 User2 PE2 PE3 User3
C_req3
C,reql> - C_ind2 | CE)(R <
- Erqu: C_ind3
C_resp3
C_resp2 Acfm"n a4 -
C_confl - <+
 J J 1} / A / A J /

Figure 1: Sequence chart when parallel execution oc-
curs.

A protocol synthesis method to derive a protocol
specification including message collisions from a ser-
vice specification is proposed in [4]. However, in this
method the number of processes in the service speci-
fication is restricted to two. In this paper, we extend
the number of processes from two to n(> 3) and pro-
pose a new synthesis method which derives a protocol
specification from an acyclic formed service specifica-
tion with multiple primitives executable in parallel.

The rest of this paper is organized as follows. In

Section 2, definitions of service and protocol specifi-
cations are given. In Section 3, the protocol synthesis
problem is formulated and the class of service speci-
fication is discussed. Section 4 describes the details
of the synthesis method and Section 5 concludes this

paper.

2 Preliminary

2.1 Service Specification

A service specification defines sequences of primi-
tives to be realized as communication services, which
are exchanged between users and processes through
SAP. Each service access point is denoted by SAP¢,
and each protocol entity is denoted by PE:.

Definition 1: A service specification, shortly S-
SPEC, is modeled by a Finile State Machine
(FSM) S =< S;,%;,T;s,0 > where

(1) S, is a non-empty finite set of service states
(or simply states).

(2) ¥, is a finite set of service primitives (or sim-
ply primitives). Each primitive p€ X, has,
as an attribute, an index of service access
point through which p passes. If primitive p
passes through SAPi, then we define a func-
tion sap(p) = 7, and also p; denotes it.

(3) T is a partial transition function: Sy x¥; —
S, . For simplicity, we use T; also as a set of
triples (u, p, v) such that v = T (u,p) (u,v €
Ss,p € Xs).

(4) o € S, is an initial service state.

An example of the S-SPEC is shown in Figure 2. In
this figure, an oval denotes a service state, an arrow
denotes a transition between states. The state drawn
by bold line is an initial state.

S-SPEC

Figure 2: Example of a service specification S-SPEC.

A sequence of transitions (ui, p1, us) (4, p2, us) ...
(uk, Pk, Uk 1) from uy to ugy1 in a S-SPEC mmplies or
defines an execution ordering of primitives py, pa, ...,

Pn-

Definition 2: Consider an S-SPEC S = < S;, X,
T,, ¢ >. For any node which represents a service
state s € S, in S, let OUT(s) denotes a set of
indices of primitives which leaves from s, and let
d*(s) denotes the number of edges outgoing from
s. We classify service states into four kinds of
states.

(1) If d*(s) = 0, then s is called final state.
(2) If d¥(s) = 1, then s is called normal state.

(3) If d*(s) > 2 and | OUT(s) |= 1, then s is
called choice state.

(4) If dt(s) > 2, | OUT(s) |> 1 and |
OUT(s) |= d*(s), then s is called parallel
state.

We also call the state s € S, join state if more than
one edges enter s.

Consider again S-SPEC shown in Figure 2. In this
S-SPEC, state 9 is a final state because d*(9) = 0
and state 9 is also a join state since two edges enter
state 9. Next, state 1 is a parallel state, since d*(1) =
2,|0UT(1)| = |{1,3}] = 2 > 1 and thus d*(1) =
|OUT(1)|. It implies that at state 1, primitives ('_reql
and C_req3 can be concurrently executed at SAP1 and
SAP3 respectively. Other states 2, 3,.., 8,10 ,.., 15 and
16 are normal states. It implies that at each normal
state a primitive is executable at a certain SAP.

2.2 Protocol Specification
Transmission and reception of messages are defined
as follows.

Definition 3: If message e is transmitted to PEj ,
then it is denoted by an event message le(j). If
message e is sent to PEji, PEj,,.., PEjg, then it
is denoted by an event message le(ji,..,jr). On
the other hand, if message e is received from PEj,
then denoted by an event message 7e(j) .

The protocol specification consists of n-tuples of
specifications for protocol entities. PEs communicate
with each other through underlying communication
medium. The protocol specification is also modeled
by FSM.

Definition 4: A protocol entity specification PE-
SPEC i is defined as a FSM P=<S5,%:p,T5p,
o;p> where

(1) Sip is anon-empty finite set of protocol states
(or simply states).

(2) T, is a non-empty finite set of protocol
events. Y;, = X;;, UMEX; U {c}, where
Yis is a set of primitives in Definition 2, and
MEX, is a set of events messages which are
sent from PEi7 or received by PEi.

(3) T}, is a partial transition function: S;, X
Yip — Sip. For simplicity we use T; also as a
set of triples (u,p,v) such that v = Tip(u,p).

(4) gip € Sip 1s an initial protocol state.

A PE-SPEC is especially called fundamental pro-
tocol entity specification, shortly {-PE-SPEC, if
the graph of the PE-SPEC and a graph of S-SPEC
are isomorphic. The formal definition of the f-PE-
SPEC is omitted due to the limited pages and can
be referred to [5].

Protocol specification P-SPEC P consists of n-
tuples of PE-SPEC: Pi 's(1<i<n).

An example of a P-SPEC is shown in Figure 3. In
this figure, an oval denotes a protocol states, and an
arrow denotes a transition.

C_req3 C_conf2
Ale (@

C_resp2 C_resp2
T Td) oy

PE-SPEC2

PE-SPEC3

Figure 3: Example of a protocol specification P-SPEC.

We assume that communication links between any

two protocol entities are modeled by two unidirec-
tional reliable queues and that protocol messages are
delivered in a FIFO order. Suppose that a current
state of PEj is state u. If transition (u,E,v) or
(u, E/le(X),v) is specified in Tj,, then we say primi-
tive £ is executable or primitive £ and transmission
of message e are executable, respectively. If primitive
E is executed, PEj enters state v.
Consider a case that message = that is sent by PE: is
on the top of FIFO channel from PEi to PEj (j # 7).
If transition (u, 7z(i), v) is specified in T}, , then we say
reception of message z from PEi is executable. If PEj
receives message x, then z is deleted from top of the
queue and PEj enters state v. If multiple transitions
are executable, one of those is non-deterministically
chosen and executed.

Definition 5: Consider a case that message « that is
sent by PEi is on the top of FIFO channel from
PEi to PEj (j # 1) and a current state of PEj is
state u.

If there does not exist any edge (v, 72(4),v) in
T;p, such that there exists a path from state u to
u' which only includes (a,r,b) in Tj, where r is a
primitive, transmission of a message or executable

reception of a message from other PEk (k # 1),
then we say that an unspecified reception with
respect to z occurs in PE-SPECj.

3 Protocol Synthesis

3.1 Protocol Synthesis Problem

This paper imposes the following three restrictions
R1, R2 and R3 to assure correctness of the proposed
protocol synthesis method.

Restriction R1: Any state in the S-SPEC graph is
exactly one of normal state, final state, choice
state and parallel state.

Restriction R2: For any parallel state s, let Pal(s)
denote a set of primitives attached to edges out-
going from s. Then, for each parallel state s in the
S-SPEC, priorities are assigned to all primitives
in Pal(s).

Restriction R3: The S-SPEC is acyclic, that is, S-
SPEC is either a tree or a directed acyclic graph
(DAG). Furthermore, if S-SPEC is a DAG, S-
SPEC satisfies the following condition S.

Condition S: In the S-SPEC, if there exists more
than one path from a parallel state (let it be w)
to some state, then consider any pair of two dis-
joint paths which start from the parallel state w
and converge in a join state z. These paths are
denoted by (w, p1,z1) (z1,p2, 22) ...(Lx—1,P%, Tk)
and (w,q1,91) (¥1,42,92)---(%i-1,q, y) such that
zp=yr=zand z;m £y (1 <m<k-1,1<n<

{ —1). Assume that sap(p1) = i and sap(q1) = J

(i # j). Then these two paths must satisfy the

following (1) and (2).

(1) There exists a transition (yn_1,qn, Yn) such
that sap(q,) =7 (1 <n <I1—1). Addition-
ally, let) be a set of sap(q) such that g isa
primitive in the path w to y,_1, and let @’
be a set of sap(q’) such that ¢’ is a primitive
in the path y, to y; (1 = z). Then Q C Q.

(2) There exists a transition (2py,—1, Pm, £m) such
that sap(pm) = j (1 <m < k—1). Addi-
tionally, let P be a set of sap(p) such that p
is a primitive in the path w to &,,,_1, and let
P’ be a set of sap(p’) such that p’ is a prim-
itive in the path z,, to z} (zy = z). Then
pPCP.

Protocol Synthesis Problem to be solved in this pa-
per is formally defined as follows:

Input: A service specification S-SPEC with restric-
tions R1, R2 and R3.

Output: A protocol specification P-SPEC which sat-
isfies Conditions P1 and P2.

Condition P1: The execution order of primitives de-
fined by S-SPEC is kept in P-SPEC.

Condition P2: No unspecified reception caused by
parallel execution of primitive occurs in P-SPEC.

The previous protocol synthesis methods [1, 2, 6]
could not assure Condition P2, if a service specifica-
tion which allows the parallel execution of primitives
at different SAPs is given. That is, a protocol specifi-
cation includes unspecified receptions.

3.2 Class of Service Specification

A service specification defines the execution order
of service primitives which are exchanged between the
User and the protocol entity (PE). In the service spec-
ification, the parallel execution of primitives are al-
lowed at a parallel state. When the parallel execution
of primitives occurs at a parallel state, each PE re-
lated to primitives which are concurrently executed
independently triggers execution of primitives in the
individual primitive sequence that starts from the par-
allel state. Consequently, this execution causes the
message collisions and the access competitions, which
induces unspecified receptions in the previous meth-
ods.

For example, consider the S-SPEC shown in Figure
3. This S-SPEC defines a service that three proto-
col entities make connection with each other. The
sequence of transitions which include states 1,2,..,8
and 9 indicates making a connection in the order of
PE1, PE2 ,PE3 (we call it Service A). On the other
hand, the sequence of transitions which include states
1,10,11,..,16 and 9 also indicates making a connection
in the order of PE3, PE2, PEl (we call it Service
B). This S-SPEC allows the execution of both Ser-
vice A and Service B. Primitives C_reql and C_req3
initiate the Service A and Service B, respectively. If
parallel execution of primitives C_reql and C'_req3 at
state 1 occurs, then two services A and B compete
with each other and it may cause message collisions
and/or access competitions. These phenomena induce
unspecified receptions in the previous methods.

In order to solve this problem, we prioritize the
primitives which are concurrently executable. When
parallel execution of primitives occurs at the paral-
lel state, the execution of primitive with the highest
priority is taken precedence to the others and carried
out. The execution of the others are aborted. The se-
quence of primitives which follows the primitive with
the highest priority are executed prior to the others.
This fundamental idea first appears in [5]. Based on
the above approach, we focus on the class of service
specifications satisfying the restrictions R1, R2 and
R3 and propose the protocol synthesis method from
service specification belonging to that class.

We have discussed above that when parallel execu-
tion of primitives occurs, a primitive sequence with the
highest priority (here we call it highest sequence) is
executed and the other primitive sequences with lower
priority (we call them Jower sequences) are aborted.
First, consider that S-SPEC forms a tree. Execution
of the lower sequences stops at some leaf node of S-
SPEC even in the worst case. Next, consider that
S-SPEC forms a DAG. If there exists more than one
path from a parallel state to a join state and paral-
lel execution of primitives occurs at the parallel state,

then execution of lower sequences may possibly reach
the join state faster than that of highest sequence. In
this situation, execution precedence of the highest se-
quence from the parallel state to a final state via the
join state to the other sequence is violated. Condition
S gives a sufficient condition to synthesize a protocol
so that this execution precedence is preserved.

After expanding DAG formed S-SPEC into tree
formed one, we can synthesize the protocol specifica-
tion from that one. In general, the number of states
in the expanded S-SPEC tends to become quite large.
This expansion approach is undesirable. We thus pro-
pose the protocol synthesis from acyclic service speci-
fications.

4 Proposed Method

4.1 Outline

The proposed method to derive a protocol speci-
fication P-SPEC from a service specification S-SPEC
consists of the following five steps.

Step 1: Based on given priorities of primitives, assign
the priorities to all primitive execution sequences
in a service specification S-SPEC.

Step 2: Obtain n(> 2) projected service specifica-
tions PS-SPECs by applying the projection to a
service specification S-SPEC.

Step 3: Construct n(> 2) fundamental protocol en-
tity specifications f-PE-SPECs by applying tran-
sition synthesis rules (to be shown in Tablel) to
PS-SPECs.

Step 4: Obtain protocol entity specifications PE-
SPECs by adding some transitions for parallel
execution of primitives to f-PE-SPECs refined at
Step 3.

Step 5: Remove ¢ transitions from each PE-SPEC,
and obtain a protocol specification P-SPEC.

4.2 Step 1

In this step, priorities are assigned to all primitive
in a service specification S-SPEC. Priorities are used
to identify which primitive to be given preference of
execution, when parallel execution of primitives oc-
curs.

From Restriction R2, priorities are pre-assigned to
some primitives, that is, primitives leaving from any
parallel state in S-SPEC. Based on the priorities of
those primitives, the priorities to all primitives are as-
signed in the order of the Depth First Search.

Consider a S-SPEC shown in Figure 2. State 1 is
parallel state and two primitives C_reql and C req3
are leaving from state 1. Suppose that we give the
higher priority C_regql. Figure 4 shows a S-SPEC ob-
tained by applying Step 1. In the figure, priorities
are described by numbers at the side of transitions,
and the less the number is, the higher priorities are
assigned.

For the service specification S-SPEC in which pri-
orities are assigned to all primitives, we define parallel
subgraph PSG in the following.

C_confl
S-SPEC

Figure 4: A service specification S-SPEC after Step 1.

Definition 6: Consider any parallel state w and a
primitive £ attached to an outgoing edge from w
in the directed graph G representing S-SPEC. As-
sume that sap(E) = 7 and a priority z is assigned
to E. Then a parallel subgraph PSG-S(w, E) is
a maximal connected subgraph G’ of G which
satisfies the following (1) and (2).

(1) G’ has a root w.

(2) For any edge (a,p,b) in G’, sap(p) # ¢ and
a priority assigned to p is lower than z.

And consider the directed graph H representing
f-PE-SPEC: based on the S-SPEC G. Then PSG-
PEi(w, E) is a connected subgraph H’ of H such
that H’ is a fundamental protocol entity specifi-
cation based on PSG-S(w, E).

Consider the S-SPEC shown in Figure 4,
PSG(1,C_reql) is a subgraph of the S-SPEC
which consists of the states 1,10,11 and 12, and
PSG(1,C req3) is just state 1.

4.3 Step 2

In this step, projected service specifications PS-
SPECi (1 < i < n) are obtained from a service spec-
ification S-SPEC by substituting each transition not
associated with SAP: by . For brevity, the formal
definition of PS-SPEC is not presented in this paper
and can be referred to [5].

As an example, consider a service specification S-
SPEC shown in Figure 2. Then Figure 5 shows resul-
tant three PS-SPECs obtained from S-SPEC.

4.4 Step 3

In this step, n{> 2) fundamental protocol entity
specifications f-PE-SPECs (see Definition 4) are ob-
tained from n(> 2) projected service specifications
PS-SPECs. This transformation is performed by ap-
plying transition synthesis rules shown in Table 1. In
Table 1, E;(1 < i < n) denotes some primitives in the
PS-SPECi. Each pair of transition synthesis rules Ak
and Bk (1 < k < 3) 1s applied to n pairs of transitions

PS-SPEC2

PS-SPEC1 PS-SPEC3

Figure 5: Projected service specifications PS-SPECs.

S1, E;,S2) in PS-SPEC: and (S1,¢,52) in PS-SPECj
j # 1), respectively. Message e is uniquely generated
for each primitive £; in Rules Ak and Bk (k = 2,3).
The concepts for these rules are explained in [5].

By applying transition synthesis rules to the PS-
SPECs shown in Figure 5, a f-PE-SPECs shown in
Figure 6 are obtained.

Table 1: Transition synthesis rules.

Rule Input Condition Output
Ei Ei
Al @ @ S1 is not parallel @ @
PS-SPECi | state and QUT(82)= PE-SPEC i
——r——————— Gy,
€ €
BI |(s)—> (&)
PS-SPEC] (#i) PE-SPEC j (+ i)
Ei Ei/'e(X
A2 $1 is not parallcl (s) ()
PS-SPEC T | state and OUT(S2)# PE-SPEC i
] . eI
3 Te(d 3
B2 X=0UT(sz>-m @
PS-SPEC] (i) PE-SPEC j (j € X)|PE-SPEC k(k£ X
" YAl
23 @ @ stopmme | (G
PS-SPEC =1yiy=sap(p). - i
__ | PSSPECE A iapdGseiEn b ——— PESPECE
€ ?e(i) 3
= T
gy () xrvoume |()—="(5) ©
PS-SPEC) (¥ 1) PE-SPEC j (€ X)|PE-SPEC k(k# X
4.5 Step 4

According to the projection in Step 2 and the tran-
sition synthesis rules in Step 3, -PE-SPECs obtained
from Step 3 are based on the given S-SPEC. That is,
there exists one-to-one correspondence between any
state in PE-SPEC7 and that in S-SPEC, and between
any edge in PE-SPEC¢ and that in S-SPEC. In or-
der to avoid the unspecified reception due to parallel
execution of primitives, some transitions of message
reception are added to PE-SPECs refined at Step 3
such that the sequence of primitives with the highest
priority can be taken precedence.

T @
@' @ @
¢ Clind3 c
@ ® @

gl C_resp:
e

f-PE-SPEC!

f-PE-SPEC2

f-PE-SPEC3

Figure 6: Fundamental protocol entity specifications
{-PE-SPECs after Step 3.

A concrete method for adding transitions to PE-
SPECs is as follows :

Consider any transition (w,Ei/le(X),v)
such that it leaves from a state w in f-PE-
SPEC:, where the state w corresponds to a
parallel state in S-SPEC, and that E; is a
primitive related to SAPi. The following pro-
cedures A and B are performed.

Procedure A: Let Y be a set of indices of SAPs
through which primitives in PSG-S(w, E1) pass.
For each state v except w in each f-PE-SPECj
(j € Y), such that u is in PSG-PEj(w, E?), insert
a transition (u, ?e(7),v).

Procedure B: Consider transitions of message re-
ceptions in PSG-PEh(w, Fi) for each {-PE-
SPECh (h € Y U {i}). For each ?a(l) of message
receptions, insert transitions (s,?a(l),s) where
states s are in paths from v to states at which
another message reception from PE/ is specified.

Consider f-PE-SPECs in Figure 6. Then, Figure
7 shows resultant protocol entity specifications PE-
SPECs in which some transitions are added to f-PE-
SPECs for parallel execution of primitives.

4.6 Step 5

In this step, € transitions are removed from the PE-
SPECs. The ¢ transitions are removed by applying
the ¢ removal algorithm in [3]. Using this algorithm,
PE-SPECs can be reduced to equivalent finite state
machines in the sense that connectivity between any
pair of two states is preserved.

Figure 3 shows an example of a final protocol spec-
ification P-SPEC after Step 5.

5 Conclusion

In this paper, we have proposed a new synthesis
method of a protocol specification from a given ser-
vice specification which has an arbitrary number of

7g (1) C_resp.
e

PE-SPEC2 PE-SPEC3

PE-SPECI
Figure 7: A protocol specification after Step 4.

processes and which allows concurrent execution of
multiple primitives at different SAPs. Therefore, more
reliable protocol specifications can be efficiently syn-
thesized than the previous methods.

References
[1] Chu, P. M. and Liu, M. T., “Protocol synthe-
sis in a state transition model,” Proc. COMP-
SAC’88, pp.505-512, Oct. 1988.

[2] Chu, P. M. and Liu, M. T, “Synthesizing proto-
col specifications from service specifications in
the FSM model,” Proc. Computer Networking
Symp., pp-173-182, April 1988.

[3] Hopcroft, J. E. and Ullman, J. D., “Introduc-
tion to Automata Theory, Language, and Com-
putation,” Chapter 3, Addision-Wesley, 1979.

[4] Kakuda, Y., Igarashi, H. and Kikuno, T.,
“Automated synthesis of protocol specifications
with message collisions and verification of timli-
ness,” Proc. of Second Int’l. Conference on Net-
work Protocols(ICNP’94), Oct. 1994.

[5] Kakuda, Y., Nakamura, M. and Kikuno, T.,
“Automated synthesis of protocol specifications
from service specifications with parallelly exe-
cutable multiple primitives,” IEICE Trans. on
Fundamentals of Electronics, Communications
and Computer Sciences, Oct. 1994.

[6] Saleh, K., “Automatic synthesis of protocol
specifications from service specifications,” Proc.
Int’l. Phoenixz Conference on Computers and
Communications, pp.615-621, March 1991.

