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Abstract

A large and complex protocol is constructed by inte-
grating components, each of which corresponds to sub-
function specified in a service specification. The con-
ventional approach to this construction is to integrate
components on the protocol level using the ezisting pro-
tocol integration methods. In this approach, the reach-
ability analysis of protocol components is required tn
the integration stage. So if the size of components be-
comes large, the integration stage would be a bottleneck
because of the state explosion problem of the reacha-
bility analysis.

Therefore, we propose a new approach to construct
the target protocol which at first integrates components
on the service specification level and then transforms
an integrated service specification into the target pro-
tocol by protocol synthesis technique. As the result,
the construction of the target protocol from compo-
nent service specifications can be efficiently ezecuted
in small state space without paying special attentions
to the timing of protocol messages.

1 Introduction
The trend toward the enrichment of communication
services in ISDN and IN has greatly increased the size
and complexity of communication protocols which re-
alize the services. In order to facilitate the design of
such protocol specifications, the “component integra-
tion approach” is one of the most promising ones. The
component integration approach involves the following
three steps:
(1) Divide the functionality of the required service into
subfunctions,
(2) Develop service specifications for the subfunctions
as components (we call them component service spec-
ifications), and
(3) Obtain the target protocol (we call it integrated
protocol specification) by the integration of subfunc-
tions based on the component service specifications.
Major advantage of this approach is that we can
develop each component with relatively smaller size
and focus on single function without considering the

interaction with other functions. The third step of
deriving the integrated protocol specification from the
component service specifications is the most difficult
and interesting problem. Figure 1 shows the third step
of derivation process schematically.
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Figure 1: Derivation of integrated protocol specifica-
tions

Two approaches can be considered to obtain the
integrated protocol specification from the component
service specifications. Figure 1(a) shows the first and
conventional approach: After transforming each com-
ponent service specification into a component protocol
specification one-by-one by applying conventional de-
sign and analysis techniques, we integrate them into
single protocol specification. In this approach, we can
utilize the existing methods for the integration of com-
ponent protocol specifications. Several component in-
tegration methods on the protocol specification level
have been proposed. Chow et.al. [3, 4] proposed a
method for constructing multiphase protocol, which se-
quentially executes multiphases of behavior perform-
ing a distinct subfunction in each phase. Lin proposed
two methods for integrating the component protocol
specifications. One is for alternating function protocol
[8] such that the user can select any one from mul-
tiple functions, but is restricted to execute only one
function at a time. Another is for concurrent function
protocol [9] which performs multiple functions concur-
rently. All of these methods require the validation of
component protocols based on the reachability anal-
ysis to ensure the safety of the integrated protocol
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specification. Unfortunately, if the analyzed protocol
becomes large, it is known that the reachability anal-
ysis exponentially takes a lot of time and cost because
of state explosion problem[l, 7]. Thus, if the com-
ponent protocol specifications become large, then the
integration of the components would be bottleneck of
the first approach.

On the other hand, Figure 1(b) shows another ap-
proach: At first, we integrate the component service
specifications into single integrated service specifica-
tion, then transform it to the integrated protocol spec-
ification. In this approach, the component integration
is carried out on the service specification level which
has much smaller state space and is more abstract
than protocol specification level . Even if some anal-
yses of components are required in the integration of
the service specifications, it is much easier than that
on the protocol specification level. However in this
approach, since the integrated service specification be-
comes large, it is difficult to transform the integrated
service specification into the integrated protocol speci-
fication. Therefore, an efficient and reliable procedure
is required for the transformation.

In this paper, we try to implement the second
approach and present three integration methods on
the service specification level which correspond to
the existing protocol integration methods proposed in
(8, 3, 4]. Moreover, we use a protocol synthesis in the
transformation from an integrated service specifica-
tion to the integrated protocol specification. Protocol
synthesis [2, 6, 11, 13] is one of the most reliable and
efficient techniques that automatically derives a pro-
tocol specification from a service specification without
specification errors.

Major advantages of the proposed method are sum-
marized as follows:
(a) Since the integration of the components is carried
out on the service specification level, we can operate it
in small state space without paying special attentions
to the timing of synchronizing messages (protocol mes-
sages).
(b) Since the sufficient conditions for ensuring cor-
rectness of the integrated protocol specification are
presented in this paper for component service spec-
ifications, we can easily check the sufficiency of the
conditions without complicated analysis.
(c) The automated transformation is applied for the
integrated service specification to get the target pro-
tocol specification.

This paper is organized as follows. Section 2 gives
definitions of service and protocol specifications and
Section 3 formulates the protocol derivation problem
to be discussed in this paper. In Section 4, the proto-
col synthesis method is proposed, and Section 5 dis-
cusses component integration methods on the service
specifications level. Finally Section 6 concludes the
paper with future researches.

2 Preliminaries
2.1 Communication Model

Figure 2: Communication architecture model

As shown in Figure 2, a communication service
is specified by service primitives exchanged between
users in the higher layer and processes in the lower
layer through service access points(SAPs). The pro-
cesses are also called protocol entities which are de-
noted by PEs in the following. A service is provided
to Users by PEs through SAPs and is defined by ser-
vice specification. A protocol is a rule that govern
the exchange of the protocol messages among the PEs
through the communication channel and is defined by
protocol specification.

In this paper, we assume that the number of PEs
is two, that the communication channel is reliable and
that message is delivered in FIFO order.

2.2 Service Specification

A service specification defines sequences of primi-
tives to be realized as communication services, which
are exchanged between users and processes through
SAP.

A service specification S is modeled by a Finite
State Machine(FSM) and is represented by a directed
graph, which includes two types of transitions. One is
a primitive transition p, which has, as an attribute, an
index of SAP through which p passes. If primitive p
passes through SAP7 (i = 1,2), then we define a func-
tion sap(p) = ¢, and also represent it by p;. Another
is an L transition denoted by Lp;. L transitions Lp;’s
are the auxiliary transitions for the protocol synthesis
procedure, which are translated into receptions of a
message caused by execution of primitive p;. For sim-
plicity, a transition labeled by p from node u to w is
denoted by (u, p, w) in the following discussion.

We assume that all service specification S are
deterministic, that is, no two outgoing transitions
from any node have identical labels.

A node of S is a final node iff there is no outgoing
transition from it. A node of S is a parallel node iff
more than one primitive transition through different
SAPs is leaving from it.

For any path p =(v,p,v")(v',q,v”) ... (w,r,w') in
S, nodes v and w' are called head node of p and tail
node of p, respectively, and primitive r is called last
primitive of p.

9c¢.3.2
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A path of S from a node w is a SAP1(or SAP2)-
path from w iff the path consists entirely of SAP1’s
(SAP2’s) primitives. A SAP1(or SAP2)-path is a
SAPI(or SAP2)-cycle iff its head node and tail node
are identical. A SAP1(or SAP2)-path is a reachable
SAPI1(or SAP2)-path iff its tail node is final node.

A service specification S is well-formed iff S includes

no parallel node or the following condition PL holds
for any parallel node w in S.
Condition PL Consider a SAPi-path p and a SAPj-
path g from w (i,j = 1,2,i # j). Let P, and Q;
be last primitives of p and u, respectively. Then, (1)
both p and p form neither SAPk-cycle nor reachable
SAPk-path (k = 1,2), (2) For any node v on p, an
L transition (v, LQj,v) exists in S, and (3) For any
node r on p and the tail node t of p, an L transition
(r,LP;,t) exists in S.

Rel_indl C_reql

C_ind2
C_rej2

C_resp2

s  C.confl

Figure 3: A service specification S

An example of S is shown in Figure 3. All of
the transitions are primitive transitions, and node
5 is a final node. Since there is no parallel
node (Note that node 3 is not a parallel node be-
cause both outgoing primitives pass through iden-
tical SAP2), S is well-formed. ~From node 1,
there is SAP1-path (1,C_reql,2), and from node 2
there are two SAP2-paths (2,C.ind2,3)(3,Crej2,6)
and (2,C.ind2,3)(3,C_resp2,4).

This example represents a call setup function for
one-way communication from user 1 to user 2. Primi-
tives C_req, C-ind, C_resp, C_conf, C_rej and Rel.ind
describe connection request, indication, response, con-
firmation, reject and release indication, respectively.

2.3 Integration Expression

As discussed in Section 1, several service specifica-
tions (component service specifications), each of which
specifies a subfunction of the target protocol, are inte-
grated into one. Integration ezpression gives an infor-
mation on how to integrate the components into one.
The syntax of the integration expression is defined by
a context free grammar IG shown in Table 1, where E
is a start symbol and there are eight production rules.

For example, let S, Sp, Sc and Sp be compo-
nent service specifications, then expressions S 41SB,
SalSp|Sc and (Sa |(SBLSC)3315})|SD are all integra-

tion expressions.

Table 1: Grammar IG for integration expression

Rulel | Eu=T Ruleb | T ::=(E)

Rule2 | E:=T|E Rule6 | T ::= s-spec

Rule3 | E :=T|zE || RuleT | F ::= set of integer
Ruled | E :=Tp Rule8 | F u=¢

Note that there are three kinds of operators in the
integration expression, that is, “|”, “|” and “*”. These
represent the following three integration operations on
component service specifications: an alternative inte-
gration S4|Sp, a sequential integration Su|Sp and a
recursive integration S. The definition of these oper-
ations will be presented in Section 5.

2.4 Protocol Specification

A protocol specification (or simply protocol) P con-
sists of two FSMs and is represented by two directed
graphs PE; and PE,;. PEi(i = 1,2) includes three
types of transitions. The first is a primitive transi-
tion which is the same as that of the service specifica-
tion. The second is a sending transition labeled by !m,
which means that a message m is transmitted to an-
other PE. The third is a receiving transition labeled by
?m, which means the reception of a message m from
another PE.

A node of PE;( or PE,) is a final node iff there
is no outgoing transition from it. A node of PE;( or
PE,) is a receiving node iff all outgoing transitions
from it are receiving transitions.

A global state of protocol P = (PEy,PE,) is a
quad-tuple ¢ = [v,w,z,y], where v and w are nodes
in PE;, and PE,, respectively, and z and y are the
concatenations of the protocol messages (Intuitively,
v and w represent the current states of PE; and PEy,
respectively, and z and y represent messages stored
in a communication channel from PE, to PE; and
those from PE; to PE,, respectively). The initial
global state is go = [vo, wo,€,€] where vo and wo are
the initial nodes of PE; and PE,, respectively, and ¢
is the empty string.

Assume that g = [v, w, z,y] is a global state of pro-
tocol P = (PE;, PE;). The next global state g’ of g
is defined iff exactly one of the following six condi-
tions is satisfied. In the following, E; and E; are the
primitives in PE; and PEj, respectively, e represents
a protocol message, and - is concatenation operator.
(DIf (v, Ey,v') exists in PEj, then ¢' = [v/, w,z,y].
(2)If (w, Ea, w') exists in PEy, then ¢’ = [v,v', z, yl.
(3)If (v,'e,v’) exists in PEy, then ¢’ = [v/, w,z,y - €].
(4)If (w, le, w') exists in PEy, then g’ = [v,w',z-¢,y].
(5)If (v,%,v') exists in PEy and z = e - z', then
gl = [v,’ w’ z,’y]'

(6)If (w,?e,w') exists in PE; and y = e -y, then
g =[v, z,y]
A global state g is reachable iff g is an initial global
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state or there exists at least one sequence of global
states go,g1,...,9.(= g¢) such that go is the initial
global state and g,4+1 is the next global state of g,
(r=0,..,n—1).

A reachable global state g = [v, w, z,y] of protocol
P = (PF,,PE,) is an unspecified reception state iff it
satisfies at least one of the following conditions.

(1) v is either a receiving node or a final node, = = e-2’
and no transition (v, 7e,v’) exists in PE,.

(2) w is either a receiving node or a final node, y = e-y’
and no transition (w, ?e, w') exists in PE,.

A reachable global state ¢ = [v,w,z,y] of P =
(PE,,PE;) is a deadlock state iff both v and w are
receiving nodes and £ = y = ¢. Then, a protocol
P = (PE,,PE,) is safe iff any reachable global state
of P is free from both unspecified reception states and
deadlock states.

(Userl PEI  PEZ  User2)
Cregll crolc ing2
Rel_ind1 C_reql CRQ
IREJ ey LS
Rel_ind -
ICRQ ey €2 b
%] . Py
El - J@ > Connection Rejected <
9CRE Coresp2 Userl PEL PE2  User2
Cregl cro C_ind2,
C_confl ICRE I res
p3
Cjconf CRE. (g~
PEI PE2 (¢ Established)
(a) A protocol specification (b) Sequence charts

Figure 4: A protocol specification P = (PE,,PE,)

An example of protocol specification is shown in
Figure 4(a). This example is a safe protocol specifi-
cation which realizes a connection setup function pre-
scribed by the service specification in Figure 3. The
protocol messages CRQ, CRE and REJ mean connec-
tion request, response and reject, respectively. Two
sequence charts in Figure 4(b) describe two execution
sequences “connection rejected” and “connection es-
tablished” performed by this protocol.

Because of its definitions, protocol specification
generally has much larger operational state space(i.e.
the number of reachable global states) than that of
service specification (¢.e. the number of nodes in ser-
vice specification).

3 Overview of Proposed Method

The protocol derivation problem in this paper is
formally defined as follows:
Input: A set of service specifications (component
service specifications) {S4,Sp, ..., Sc} and an integra-
tion expression ezxp.
Output: A protocol specification (integrated proto-
col specification) P = (PE;, PE,) satisfying the fol-
lowing two conditions C1 and C2.
Condition C1: P is safe.

Condition C2: In P, the execution ordering of prim-
itives prescribed in the component service specifica-
tions is kept in accordance with ezp.

A protocol specification P=(PE}, PE,) is correct
iff both of conditions C1 and C2 are satisfied.

The proposed method consists of the following two
stages.

Stage 1(Component Integration) All of the com-
ponent service specifications are integrated into one
integrated service specification in accordance with the
given integration expression.

Stage 2(Protocol Synthesis) The integrated ser-
vice specification obtained at Stage 1 is transformed
into an integrated protocol specification.

Since the result of the protocol synthesis is needed
to illustrate the dynamic behavior of the result of com-
ponent integration, at first we explain the protocol
synthesis stage in the next section, and then we dis-
cuss the component integration stage in Section 5.

4 Protocol Synthesis Stage
4.1 Protocol Synthesis Method

In this section, we discuss the protocol synthe-
sis method to be applied in the “protocol synthesis
stage”, in which the transformation from an integrated
service specification into an integrated protocol spec-
ification is performed.

The input/output relation of the protocol synthesis
1s as follows.

Protocol Synthesis:

Input:  An integrated service specification S ob-
tained at the component integration stage.

Output: An integrated protocol specification P =
(PE\, PE,) satisfying the following conditions R1 and
R2.

Condition R1: P is safe.

Condition R2: The execution ordering of primitives
prescribed in S is kept in P.

For limited pages, we will briefly explain the pro-
tocol synthesis. The detail of protocol synthesis can
be referred in [6, 11]. In the following discussion, we
suppose ¢,J = 1,2, 7 # j unless especially specified.

Protocol synthesis in the proposed method consists
of the following three steps.

Step 1: This step obtains two service specifica-
tions SAPi-S (i = 1,2) by projecting a given service
specification S onto each SAP: (i = 1,2). In the pro-
Jection, each primitive transition of S not associated
with SAPi is substituted by ¢ in SAP3:-S.

Step 2: This step synthesizes the protocol speci-
fication P = (PE;, PE;) from the projected service
specifications. This synthesis is performed by apply-
ing transition synthesis rules shown in Table 2. In
Table 2, E'i denotes some primitives in SAPi-S, and e
denotes a protocol message which is uniquely gener-
ated by a primitive. Additionally, we define a function
OUT(w) which returns a set of indices of primitives

9c.3.4
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outgoing from a node w in the service specification.
Each pair of rules Ak and Bk (1 < k < 3) is ap-
plied to pairs of transitions (v, ¢, w) in SAPi-S and
(v,€,w) in SAPJ-S, respectively.

Table 2: Transition Synthesis Rules

Rule Input Condition Qutput
Al |[©OEe® OL®
SAPi-S OUT(W=(i} PEI
B.I . O—=—®
SAP}-S PEj
Ei Ei te
2 |OZ® o e=0)
SAPI-S 2,‘”‘“*“’ PET
i OUT(w={1.2) e
B2 |O—=W® O+
SAPj-S PEj
A3 Qg ®
SAPI-S Message e is @ PEi @
caused by Ei .
B3 |Opr® OL®
: SAPj-S PEj

Step 3: Finally, ¢ transitions are removed from
the protocol specification by applying the ¢ removal
algorithm in [5]. Using this algorithm, the protocol
specification obtained in Step2 can be reduced to an
equivalent FSM.

Figure 4 shows a protocol specification which is syn-
thesized from the service specification shown in Figure

3.

4.2 Well-Formed Service Specification

In general, protocol specifications satisfying the
conditions R1 and R2 cannot be always obtained from
any service specifications by the protocol synthesis. In
other words, a service specification from which a pro-
tocol satisfying R1 and R2 is synthesized belongs to
a special class of the service specifications defined as
well- formed(see Section 2.2).

Consider a service specification S shown in Figure
5(a). According to the definition, S is not well-formed
because Condition PL is not satisfied for parallel node
1. This service specification specifies a connection
setup function for two-way communication: from user
1 to user 2 and from user 2 to user 1. A protocol
specification P = (PE;, PE,) shown in Figure 5(b) is
synthesized from S. P performs correctly if only one
of two connection requests is triggered by one user.
However if user 1 and user 2 simultaneously execute
two primitives C_reql and C_req2, respectively, then
two connection requests cause a collision as shown in
Figure 5(c) and P may reach an unspecified recep-
tion state via the following sequence of global states:
(1,1,¢,€], [100,1,¢, €], [100,106,¢,¢€], [2, 106,¢, CRQ),
[2,7,CRQ',CRQ)]. Then P is not safe.

In order to resolve the unspecified reception caused
by the above parallel execution of primitives, some

Rel_ind1 Rel_ind2
o o o Rel_indl
C1_ine
. @

C_m'zd b C_rejl ‘ 'CRQ C_ind

'RRE o 7RRE
Dy m‘ m“;

©
]‘

C_ind2 C_indl /™ IREY : C_rejl

() s o
C_resp2 C_respl cgrt
C_confl C_conf2

(a) A service specification
(Not well-formed)

Collision
(& Unspecified Reception )

(b) Unsafe protocol

(c) Sequence Chart

Figure 5: Example of parallel execution

receiving transitions must be added to the protocol
specification. Before applying protocol synthesis, if
we add some L transitions to the service specification
so that Condition PL holds for any parallel state, we
can avoid the unspecified reception. L transition Lp;
is such an auxiliary transition in a service specification
which is translated into receiving transitions of a mes-
sage caused by execution of primitive p;(see transition
synthesis rule A3,B3 shown in Table 2).

In the example of Figure 5(a), if two L transitions
(2, LC_req2,2) and (7, LC reql,2) are added to S be-
fore applying protocol synthesis, two extra transitions
(2,7CRQ’,2) and (7,7CRQ, 2) are synthesized in PE;
and PEj respectively. Then, we can avoid the un-
specified reception even if the parallel execution of
C_reql and C_req2 occurs. It is observed by the fol-
lowing sequence of global states from a global state
{2, 7, CR]Q',CRQ]: [2,7,CRQ',CRQ), [2,7,¢,CRQ),
2,2,¢,¢€, ...

Lemma 1 If a service specification S is well-formed,
then a protocol specification P = (PEj, PE;) synthe-
sized from S satisfies Conditions R1 and R2.

5 Component Integration Stage

This section presents the integration method of the
component service specifications. The component in-
tegration is carried out by the following three inte-
gration operations: alternative integration, sequential
integration and recursive integration. We explain the
alternative integration in Section 5.1, and the sequen-
tial and recursive integrations in Section 5.2. Then,

9¢.3.5
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Section 5.3 summarizes the component integration
method.
5.1 Alternative Integration (S54|55)
Alternative integration combines the initial nodes
of two component service specifications S4 and Sg.
The integrated service specification is denoted by
S4|Se. The protocol P = (PE;, PE;) synthesized
from S4|Sp can perform the functions of either S4 or
Sp, but not simultaneously.

Rel_indl C_req! C_req2 Rey ind2

C_ind2 C_indl

C_rej2 ‘f ‘: C_rejl

C_resp2 C_respl C_resp2 C_respl
C_conf1 C_conf2 C_confl C_conf2

Sa Se SalSs

(a) Component service specifications (b) An integrated service specification
(Not well-formed)

Figure 6: Example of an integrated service specifica-
tion

For example, Figure 6(a) shows two component ser-
vice specifications S and Sp. As discussed before, 5,
specifies a call setup function for one-way communi-
cation from user 1 to user 2. On the other hand, Sp
specifies the one from user 2 to user 1. By joining the
initial nodes of S4 and Sp, we get the integrated ser-
vice specification S4|Spg shown in Figure 6(b). S4|Sp
specifies a half-duplex connection setup function, that
is, either of two-way call setups can be executed.

Note that the above description is only for the min-
imal requirement of an alternative integration. It does
not necessarily maintain the correctness of the synthe-
sized protocol. To attain correctness, we must address
a problem of component competition to be explained
below.

A component competition arises when the protocol
tries to initiate the execution of both components si-
multaneously. Consider again the integrated service
specification in Figure 6(b). S4|Sp is the same as
S shown in Figure 5(a) and the protocol synthesized
from S4|Sp is the same as P = (PE;, PE5) in Figure
5(b). As discussed in Section 4.2, S4|Sp is not a well-
formed service specification and parallel execution of
C.reql and C_req2 induces the unspecified reception
in the synthesized protocol.

The reason of the unspecified reception is consid-
ered as the competition of two service functions S,
and Sp. Primitives C_reql and C_req?2 initiate the ex-
ecution of S4 and Sg, respectively. Suppose that two
primitives C_reql and C.req2 are executed simultane-
ously by user 1 and user 2, respectively. Then PE,

initiates the function of S4 (call setup from user 1 to
user 2), while PE; initiates the function of Sg (call
setup from user 2 to user 1). Thus, functions of S4
and Sg compete with each other and the coordination
between PE;, and PE; is lost.

The component competition happens when the fol-
lowing condition CC holds.

Competition Condition (CC): Let vy and wy
be the initial nodes of two component service speci-
fications S4 and Sp, respectively. If vy has at least
one outgoing edge of primitive p such that sap(p) = i,
then wo has at least one outgoing edge of primitive ¢
such that sap(q) = j (1,7 = 1,21 # j).

To resolve the competition, we prioritize the com-
ponent service specifications in advance.. When the
competition occurs, the execution of low priority func-
tion is aborted. In order to realize such mechanism,
we systematically add some L transitions to the inte-
grated service specification.

Now, we present the alternative integration. In the
following, we say that a SAPi-path p in S4|Sp is in-
herited from S4 (or Sp) iff, before the integration, p
is included in S4 (or Sp).

Alternative Integration S4|Sp:

Input: Two service specifications S4 and Sg. Let vg
and wy be the initial nodes of S4 and Sg, respectively.
Without loss of generality, we assume that the priority
of S4 is higher than that of Sp.

Output: The alternative integrated service specifica-
tion denoted by S4|Sp, obtained by Procedure S4|Sp.
Procedure S4|Sp:

Step 1: S4|Sp is formed by combining the initial
nodes of S4 and Sp. The initial node of S4|Sp
is denoted by vg.wy.

Step 2: Check the condition CC. If CC is satisfied,
then repeat the following substeps 2-a and 2-b as
long as new L transitions can be added to S4|Sp.

Substep 2-a: If [v is the last node of a SAPi-path
from wvg.wp which is inherited from S4, and p; is
the last primitive of the SAPé¢-path] and [w is a
node which is reachable from v.wp over'a SAP -
path inherited from Sg], then for each w, add a
transition (w, Lp;,v) to S4|Sp.

Substep 2-b: If [¢; is the last primitive of a SAPj-
path from vg.wq which is inherited from Sg] and
[r is a node which is reachable from vg.wg over
a SAPi-path inherited from S4], then for each r
add a self loop (r, Lg;, 7).

Note that if S4 and Sp commonly include the same
primitives outgoing from the initial states, then S4|Sp
is no longer deterministic as required. However, this
problem can be resolved by relabeling the primitive in
one of S4 and Sp.

9¢.3.6
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Rel_ind1 !REJ
QQ ©,
'CRQ C_indl
IRES C_rejl
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CRE' C_respl
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OL RO
SalSe
(a) An integrated service specification
(Well-formed)
h h Rel_ind2
Userl PEI PE2 User2
Cregll crq | G-read C_rej2 R IRE
C.ing2)
CRQ' C_resp2 CRE
IC, respd
con < ‘
ICRE C_conf2
L Collision y @ PE2 @
(c) Sequence Chart (b) Half-duplex connection setup protocol

Figure 7: Illustration of alternative integration

Figure 7 (a) shows an integrated service specifi-
cation S4|Sp obtained from the component service
specifications S4 and Sp shown in Figure 6 by ap-
plying the alternative integration. Figure 7(b) shows
the half-duplex connection setup protocol synthesized
from S4|Sp. Here, we suppose that the priority of
S4 is higher than that of Sp. Therefore, the connec-
tion request of user 2 is discarded when the collision
happens as shown in Figure 7(c).

Now, we give the following lemma on the alternative
integration.

Lemma 2 An integrated service specification S 4|SB
is well-formed if [condition CC does not hold, but the
following (1) holds] or [condition CC holds and the
followings (1)-(3) hold].

(1) Both S4 and Sp are well-formed.

(2) Neither S4 nor Sp includes any SAPi-cycle con-
taining the initial node.

(3) Neither S4 nor Sp includes any reachable SAP:-
path starting from the initial node.

5.2 Sequential Integration (S4|rSB) and
Recursive Integration (5S4F)

Sequential integration combines two service speci-
fications S4 and Sp by joining some final nodes of
S with the initial node of Sp. The integrated ser-
vice specification is denoted by S4|Sp. The protocol
synthesized from S4|Sp can perform two functions of
Sa and Sp as successive two phases. On the other
hand, recursive integration combines one service spec-
ification S4 with itself. The integrated service spec-

ification is denoted by S%. The protocol synthesized
from S% can perform one function of S4 repeatedly.
In the following, we use V;(S) to denote a set of all
final nodes in service specification S. Now, we present
the sequential and recursive integrations.
Sequential Integration SylpSp:
Input: Two service specifications S4 and Sg, and a
set of nodes F C V;(Sa).
Output: The sequential integrated service specifi-
cation denoted by SalpSp, obtained by Procedure
SalpSp. If F = V;(Sa), then it is denoted by SalSgs
omitting F.
Procedure S4|Sp: Join all the final nodes of Sa
in F to the initial node of Sg. The initial node of S
becomes the initial node of Ss|rSB.
Recursive Integration Ssp:
Input: A service specifications S4 and a set of nodes
F C Vy(Sa)
Output: The recursive integrated service specifica-
tion denoted by Sa}, obtained by Procedure SaF . If
F = V;(Sa), then it is denoted by S4* omitting F.
Procedure S4F: Join all the final nodes of Sain F
to the initial node of S4.
Note that the above two integrations cannot be ex-
ecuted if S4 has no final node. As for these two inte-
grations, the following Lemmas hold:

Lemma 3 An integrated service specification S |p
Sp is well-formed if both component service specifica-
tions S4 and Sp are well-formed.

Lemma 4 An integrated service specification Sap is
well-formed if both component service specifications
S4 is well-formed.

5.3 Component Integration Method

Several component service specifications, which are
given as the input of the component integration stage,
are integrated into one by successive applications of
three integration operations according to the given in-
tegration expression. The order of the applications is
uniquely determined by syntax analysis of the given
integration expression. After the integrated service
specification is generated by the component integra-
tion operations, it is transformed into the target pro-
tocol specification in the protocol synthesis stage.

Now, we give the following theorem with respect to
the correctness of the target protocol.

Theorem 1 If the integrated service specification S
obtained at the component integration stage is well-
formed, then the protocol specification P finally de-
rived from S by the protocol synthesis method is cor-
rect.

Theorem 1 implies that the correctness of the target
protocol can be checked on the service specification
level. In other words, to check if the target protocol is
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correct or not can be reduced to the decision problem
if the integrated service specification is well-formed or
not. Lemmas 2, 3 and 4 provide the sufficient con-
ditions for the integrated service specifications to be
well-formed. So, we can find the following guideline
for designing the correct protocol specification.
Component Integration:

Step 1: Develop the component service specifications
so that all of them are well-formed.

Step 2: Based on the integration expression, se-
lect two service specifications as the components
which are integrated at this time (In the case of
recursive integration, we select one service specifi-
cation). Then, for the service specifications, check
if the integrated service specification will be well-
formed or not by using Lemmas 2, 3 or 4. If it
will not be well-formed, then abort the procedure
and redesign the component service specifications
(at Step 1 again).

Step 3: Apply the integration operation to the ser-
vice specifications. If some integration operations
still remain, then go to Step 2. Otherwise, we can
obtain the well-formed integrated service specifi-
cation, which will be transformed into a correct
protocol at protocol synthesis stage.

Step 2 can be easily implemented by using simple path
trace algorithm for the service specifications, and it
takes at most O(n) state space, where n is the total
number of nodes of the component service specifica-
tions. Additionally, all of the three integration op-
erations are quite simple procedures. These facts im-
ply that the component integration requires no special
knowledge or techniques of the protocol specification
(e.g., reachability analysis) and that it can be executed
in a reasonable time.

On the other hand, the previous component inte-
gration methods [3, 4, 8], which correspond to the pro-
posed three integration operations, require the valida-
tion of the component protocol specifications based on
the reachability analysis for checking some conditions
(just like Step 2) in order to ensure the correctness
of the integrated protocol. However, since the opera-
tional state space of protocol specification is generally
even much larger than that of service specification,
this validation exponentially takes a lot of time and
space because of the state explosion problem of the
protocol[1, 7], especially when the size of component
becomes large.

6 Concluding Remarks

In this paper, we have proposed a framework for
designing communication protocols from component
service specifications. Important advantage of the pro-
posed method is that the component integration can

be performed with in the small state space and with-
out special knowledge or techniques of communication
protocol since it s carried out on the service spec-
ification level. The proofs of lemmas and theorem,
numerical comparison with the previous method and
application to more practical protocol are delegated
to the paper[12].

Finally, we summarize the further research studies in
the following.

(a) An extension of the proposed technique to n (> 2)
entities protocol model.

(b) An examination of the integration other than the
three integrations.
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