| Feature Interactions in
Telecommunications and
Software Systems V

Edited by

K. Kimbler

Department of Communication Systems, Lund University, Lund, Sweden

and

L.G. Bouma
) KPN Research, Leidschendam, The Netherlands

- Y -
-
s Q
(7]
2N

W

Q>
%:: K
1] 4

Amsterdam e Berlin @ Oxford @ Tokyo ¢ Washington, DC

Feature Interactions in Telecommunications 187
and Software Systems V

K. Kimbler and L.G. Bouma (Eds.)

10S Press, 1998

Feature Interaction Detection Using
Permutation Symmetry

Masahide Nakamura®, Yoshiaki Kakuda, Tohru Kikuno
Department of Informatics and Mathematical Science, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka, 560-1531, Japan
Phone: +81 6 850 6567 Fax:+81 6 850 6569
Email: {masa-n, kakuda, kikuno} @ics.es.osaka-u.ac.jp

Abstract: Most of conventional interaction detection methods on FSM model utilize
an exhaustive search to identify undesirable states at which interactions occur. The
exhaustive search is fundamentally very powerful in the sense that all interactions are
exactly detected. However, it may suffer from the state explosion problem due to the
exponential growth of the FSM when the number of users and the number of features
increase.

In order to cope with this problem, we propose a new detection method using a state
reduction technique of the FSM. By means of a symmetric relation, called permutation
symmetry, we succeed in reducing the size of the FSM with preserving the necessary

| information for the interaction detection. As a result, we can exactly identify any
interactions defined on the original FSM with smaller state space and time.

Experimental evaluation shows that, for practical interaction detection with three
users, the proposed method achieves about 80% reduction in space and time, and is
more scalable than the conventional ones especially for the increase of the number of
users in the service. Thus, the proposed detection method enables us to verify complex
services with many users.

1. Introduction

i Feature interaction detection is one of the most important steps to realize consistent creation
and deployment of new telecommunication services. So, it is strongly required to develop
systematic method for effective and efficient interaction detection[9].

As discussed in [12][14], telecommunication services are often modeled by a finite state
machine (FSM), in which a global state consisting of user’s local states successively moves to
a next state by the occurrence of user’s event. Then, the interactions are usually defined on
certain states in the FSM at which undesirable properties such as deadlock hold[8][12].
Therefore, a straightfoward approach to the interaction detection is to identify such undesirable
states by exhaustively exploring all possible reachable states. Since this approach is quite
simple but powerful, it is adopted by most of the conventional detection frameworks based on
the FSM[3]{4][8]1[12]. However, the number of states in the FSM grows exponentially in the
number of the users and the number of features. Hence, the application of this approach may be
limited to relatively simple services with small number of users.

In order to make it possible to deal with more complex services with many users, it is
necessary to reduce the state space needed for the detection in a certain manner. For this, two
policies can be considered, which we call efficiency-oriented and effectiveness-oriented.

* This work is partly supported by JSPS Research Fellowships for Young Scientists

188 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

The efficiency-oriented reduction mainly focuses on the large reduction of the state space
rather than the optimal interaction detection. Cameron et.al[2] proposed the tool CADRES-FI
which abstracts the details of the service model by means of a kind of heuristics. Kimbler
introduced a concept of interaction filtering[9] that makes rough and quick pre-evaluation of
the interaction-prone service combination before the detection process. Nakamura et.al[11]
proposed a Petri Net based method using only necessary condition for the non-deterministic
interactions. In general, the efficiency-oriented reduction will attain drastic state reduction
and semi-optimal detection as shown in [11]. Instead, the detection algorithms may miss
some interactions, or may detect the redundant interactions which do not actually occur. Also,
the types of detectable interactions may be limited.

On the other hand, the effectiveness-oriented reduction attempts to reduce the state space
with completely preserving necessary information for the interaction detection. To the best of
our knowledge, the feature interaction detection based on this policy has not been proposed
yet, but there are several state reduction techniques based on this policy such as partial order
reduction[6] and symbolic model checking[10] in other research fields. The effectiveness-
oriented reduction will realize the exact (optimal) interaction detection and it can be applied
to any types of interactions defined on the FSM. Instead, the reduction ratio may not be so
significant as that of the efficiency-oriented reduction. The relationship between two policies
is clearly trade-off, thus, they should be chosen for different purposes.

In this paper, we propose a new effectiveness-oriented reduction method for the interaction
detection. The key idea to achieve the reduction is to utilize a permutation symmetry{T] with
respect to users. In the telecommunication systems, there exists a specific constraint that all
subscribers of a service X are guaranteed to be able to use the same functionality of X. Under
this constraint, suppose that both users A and B are subscribers of X. If we know A’s possible
behavior on X, then we can infer B’s behavior on X from A’s, because B can use X in the
same way as A. Therefore, we can discard the state transitions for B’s behaviors since they
can be reproduced from A’s. Based on this idea, we define a relation symmetrical on the states
and transitions for the state reduction, and then provide theorems for the detection of three
types of interactions: deadlock, loop, and non-determinism.

Also, we evaluate the proposed method through two experiments. The first experiment
shows that, for the practical interaction detection with three users, the proposed method can
exactly identify all interactions and realizes about 80% reduction of the space and time in the
original FSM. The second experiment shows that the proposed method is very scalable for
the increase of the number of users. These imply that the proposed method is much more
applicable to the interaction detection of complex services than the conventional exhaustive
methods.

The rest of this paper is organized as follows: Section 2 provides the necessary definitions
for the interaction detection. Section 3 discusses the conventional detection method based on
the exhaustive search. In Section 4, we propose a new interaction detection method using
permutation symmetry. In Section 5, we perform the experimental evaluation. Finally,
Section 6 concludes this paper with future research.

2. Preliminaries

2.1. Service Specification

In this paper, we adopt a rule-based service specification for a service description method. In
this method, the functionalities of the service (or feature) are described as a set of rules, each
of which prescribes a state transition. The rule-based descriptions are studied for the practical

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

U={AB)
V={xyl

P = [idle, dialtone, calling, busytone, talk}

E = {offhook, onhook, dial}

R={ /* (pre-condition)
potsl: idle(x)
pots2: dialtone(x)

pots3: dialtone(x) , idle(y)
pots4: dialtone(x) , ~idle(y)

pois5: calling(x.y)
pots6: calling(x,y)
pots7: talk(x,y), talk(y.x)
pots8: busytone(x)

sp= idle(A), idle(B).

(event)
[offhook(x)]
[onhook(x)]
[dial(x,y)]
[dial(x.y)]
[onhook(x)]
[offhook(y)]
[onhook(x)]
[onhook(x)]

(post-condition) */
dialtone(x).

idle(x).

calling(x,y).
busytone(x).

idle(x) , idle(y).
talk(x,y), talk(y,x).
idle(x) , busytone(y).
idle(x). fi

Figure 1. Rule-based specification for POTS

189

use, as shown in STR[12] and declarative transition rules(4]. Note that the following notation

is similar to STR, but is slightly different from STR.

A)

Definition 1: A service specification S is definedas § = (U, V, P, E, R, sg) » where

Notation

(a) U is a set of constants representing service users.

(b) V is aset of variables.

(c) P is a set of predicate symbols.

(d) E is a set of event symbols.

(e) R is a set of rules. Each rule r e R is defined as follows:

r: pre-condition [event] post-condition.
Pre(post)-condition is a list of predicates p(x,, ..., x;) s, where pe P, x;€ V and k is
called arity which is a fixed number for each p. Especially, pre-condition can include
negations ~p(x,, ..., x;)’s which implies p(x,, ..., x;) does not hold. Event is a predicate

e(xy, ...x;), where ee E, x;e V. For convenience, we represent pre-condition, event and
post-condition of rule r as Pre[r], Ev[r] and Post[r], respectively.

(f) sy is the (initial) state. A state is defined as a list of instances of predicates
p(a,, ...,a;)’s, where pe P, a;e U. We think of each state as representing a truth valua-

tion[10] where instances in the list are true, and instances not in the list are false.

Example 1: Figure 1 shows a service specification for POTS. For example, take a rule
pots4. Then, Pre[pots4] = dialtone(x), ~idle(y), Ev[pots4] = dial(x,y) and Post[potsd] =
busytone(x). Intuitively, pots4 describes a functionality of POTS meaning that “Suppose that
user x receives dialtone and y is not idle. At this time, if x dials y, then x will receive a
busytone”. In state sq, two instances idle(A) and idle(B) are true because they are included in
sg- On the other hand, any other instances (e.g., dialtone(B) or calling(A,B)) are false since
they are not included in sg. State sy means that two users A and B are idle.

190 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

B) State Transition Model

Here we define the state transitions prescribed by the service specification.

Definition 2: Let S = (U, V,P,E R s)) be a service specification. For re R, let
Xy X, (x, € V) be variables appearing in r, and let 8 = (x|a;, ...,xn|an) (a;e U) be a
substitution replacing each x; in r with a;. Then, an instance of the rule r based on substitu-
tion 6 (denoted by r6) is defined as a rule obtained from r by applying
0= (x||al, ...,xn|an) to r.
Definition 3: Let s be a state and let 76 be an instance of the rule r based on substitution 6.
Then, we say rule r is enabled for 6 at s iff all instances in Pre[r@] are included at s (i.e., all
instances take true value at s).

When r is enabled for 8 at s, next state s’ of s can be generated by deleting all instances in
Pre[r6] from s and adding all instances in Post[r8] to s. For convenience, we describe it by

s’ = s— PrelrB] + Post[rB]

where + and - respectively represent addition and deletion operators on the list. These
operators work in the same way as union and subtraction operators on the set, respectively.
At this time, we say a state transition from s to s’ caused by an event Ev[r6] is defined on S.
We represent this state transition by a triple (s, Ev[re], s’) for simplicity.

We say that state s is reachable from sy iff s=sy or a sequence of state transitions
(sp.€0:51) (Sp€1.82) (s,.€,5) is defined on S. For a given service specification S, we use
RS(S) to denote a set of all reachable states from s;.

Example 2: Let us consider again POTS specification in Figure | and take rule pots/. If we
apply a substitution 8 = (x|A) to pots/, then we obtain an instance of pots] based on 6:

potsl6: idle(A) [offhook(A)] dialtone(A).
Since idle(A) is true at the initial state s, pots/ is enabled for 6 at sq. If we apply potslo
{0 5, We can get the next state s, by deleting idle(A) from sy and adding dialtone(A) to s¢:
s; = sg- Pre[pots]8] + post[post] 8] = “idle(A), idle(B)" - “idle(A)” + “dialtone(A)”

= dialtone(A), idle(B)
At this time, a state transition (s, offhook(A), s;) is defined meaning that “Suppose that A
and B are idle. If A offhooks, then A will receive a dialtone™.
Similarly, pots3 is enabled for 8" = (x|A, y|B) at s). If we apply pots36’ to sy, a state
transition (s, dial(A,B), s,) is defined where

s, = calling(A,B)

This means that “Suppose that A receives dialtone and B is idle. If A dials B, then A will be
calling B.” Both s, and s, are reachable from sg, thus, s,, s, € RS(S).

2.2. Problem Formulation

In this paper, we especially focus on the following three types of interactions. These are very
typical cases of interactions and are discussed in many papers(e.g., [S1[81[12]):

(a) deadlock: Functional conflicts of two or more services cause a mutual prevention of
their service execution, which result in a deadlock.

(b) loop: The service execution is trapped into a loop from which the service execution
never returns to the initial state.

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 191

(c) non-determinism: An event can simultaneously activate two or more functionalities
of different services. As a result, it cannot be determined exactly which functionality
should be activated.

Before formally defining the above interactions, we define a combined operator of two
service specifications. Because of the good modularity of the rule-based specification, we can
easily combine two specifications as follows.

Definition 4: For two specifications S, = (U, V,,P,E,R;,s)p) and S, =
(Uy, Vy, Py, Ey Ry, 5500 » We define a combined specification S, ® S, = (U, V, P, E, R, sy)
such that U = U;vU,, V= ViuV,, P=PUP,, E=EUE,, R=R UR, and
So = S0+ S0 Where + denotes the addition operator in Definition 3.

Now, we are ready to define the feature interactions on the rule-based service specification.
For each of three types of interactions mentioned above, we define the undesirable states each
of which causes the corresponding interaction.

Definition 5: Let S = (U,V,P,E,R,s5) be a given service specification. For any state
se€ RS(S),sissaidtobe a

(a) deadlock state: iff norule r e R is enabled for any substitution 6 at s.

(b) loop state: iff there exists a sequence of state transitions (s,e|,53), (52,€2,53)...,
(s,p€ms) and sq is not reachable from s.

(c) non-deterministic state: iff there exists a pair of rules r, 7" € R such that r and r’ are

enabled for 6 and 6’ at s, respectively, and that Ev[r8]=Ev[r’8’].

A service specification § is called safe iff S has none of the above states.

For two service specifications S| and S,, we say that S, interacts with S, iff both §; and
S, are safe and S, @ S, is not safe.

3. Interaction Detection by Full Reachability Graph

A straightforward and conventional approach for detecting interactions between given two
specifications §; and S, is to identify the undesirable states defined in Definition 5 by
exploring all possible reachable states in RS(S; @ S,). This approach is very powerful since
it can exactly detect any interactions. We show that this interaction detection can be
performed by using full reachability graph.

'3.1. Full Reachability Graph FRG

For a given service specification § = (U, V,P,E, R, s - the rule applications from initial
state s, construct a finite state machine(FSM) consisting of all reachable states from s in
which a state moves to the next state by occurrence of an event. Since an FSM can be
described by a labeled directed graph, here we directly define such an FSM as a directed
graph. In the following, we represent a directed edge from s to 5" labeled by ¢ as a triple (s, e,

s’).

Definition 6: A labeled directed graph is defined as G = (N, L, T) where:
(a) N is a set of nodes.
(b) L is a set of labels attached to the directed edges.
() TcNxLxN is aset of directed edges.

For any directed graph G = (N, L, T), a directed paih p is a sequence of directed edges:
p=(5),€1,52), (50,€0,53),.., (Sp€p,Spy1). For this, the node s, is called head node of p, while
5,41 is called tail node of p. n is called a length of p. A directed path is a directed cycle iff its

192 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

N1 omfook(A) onhod!

onhook(A) (SEv(p261D (=Evip onhook(B)
(=EvipSe3 (=Evipsed])
offhook(B) offhooki
vipl82]) i&ll"
di_aI(A‘J?) Sial A onhook(A) dial(B.A)
(=Evlp36il) onhook(B) (=Evip262]) ialtone(A), N~ =Evin26ih b ook (A) - =EVIPID

dialtone(B) (=Evipket 1)

(=Evjpsa2})

dial(B,A) N9 dial(A,B) N6
dialtone(A), -Evpsen =Exrd83 / busytone(A)) calling(B.A)
busytone(B}/dial(A B) dial(B,A)\dialtone(B) ’
pa

=Evipeoip NIO =Eq

N

calling(A,B)

busytone(A),
busytone(B)

offhook(B) onhook(B)

=Ev{pla2l) (=Ev{pR81i)

offhook(A) onhook(A)
t=Evipia(h (=Ev{p&61])

ofttg::kiﬁ!?) onhook(A) qnhook(B N7 offhook(A)
=Evip6adf (=Evip8vil (=Evipkozi) busytone(A), (=Ev{p6bal)
onhook(A) onhook(B) NgI(8)
(=Evip703]) (=Evip764}) Legend

B . .
la:t(g.A) onfook(A) Evp#,1=Evipots;|
(=EvIpRO21) talk(B.A) (=EipKBID l=<xliA> B2=<xiB>
NI \J B3=<xiA.yIB> B4=<xIB.ylA>
To NO To NO

Figure 2. Full reachability graph for POTS specification

head node and tail node are identical. A node is called a terminal iff it has no outgoing edge.

Definition 7: Let S = (U,V,P,E,R, 5, be a service specification. A Full reachability
graph for a given S is a labeled directed graph FRG(S) = (N, L, T) such that:

(a) N = RS(S).

(b) L is aset of all instances of events.

(¢) T = {(s, Ev[rB],s")| (s, Ev[r6}, §’) is definedon S} .
Example 3: Figure 2 shows a full reachability graph for the POTS specification in
Figure 1. In the figure, ovals represent nodes, arrows represent labeled directed edges. From

the graph, we can see that 12 reachable states (represented by the nodes) and 30 state
transitions (represented by the edges) are specified by POTS specification

3.2. Proof Rules for Interaction Detection

Using the full reachability graph FRG, we can easily identify the undesirable states in
Definition 5 as follows.

Lemma 1: The following properties are satisfied for FRG(S):
(a) sisaterminal. & sisa deadlock state.

(b) there exists a directed cycle starting from s, and there exists no directed path from s !
tosg. < sisaloop state.

(c) s has a pair of outgoing edges (s, e, s')and (s, 5, s”) such that e)=¢;. & 5 is a
non-deterministic state.

Thus, in order to detect the interactions between given two specifications § and S,, we first
construct FRG(S, @ S,), then identify the undesirable states using Lemma 1.

Although the interaction detection using FRG is quite simple and powerful, it may suffer

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 193

from the state explosion problem. That is, the size of the FRG exponentially grows when the
number of users and the number of rules in the specification become large (numerical studies
will be presented in Section 5). Therefore, the application of the detection using FRG is
limited to relatively simple services with small number of users.

4, State Reduction by Permutation Symmetry

In order to cope with the state explosion problem, we try to reduce the size of FRG without
losing the necessary information for the interaction detection. The key idea to achieve this
reduction is to utilize a relation among states called permutation symmetry. Although the
basic idea of the permutation symmetry was originally proposed in several fields such as
colored Petri Net verification[7], we show in this paper that the state reduction is successfully
realized by means of a specific constraint on telecommunication services.

4.]1. Key Idea

In the telecommunication services, there exists a specific constraint that “all subscribers of a
service X are guaranteed to be able to use the same functionality of X”. For example, if users
A and B are subscribers of POTS, then both A and B can use the same functionalities of POTS.
Let us consider that A uses POTS’s dialing functionality to B: “Suppose that A receives a
dialtone and B is idle. At this time, if A dials B, then A will be calling B”. Similarly, when B
uses this functionality, the situation is: “Suppose that B receives a dialtone and A is idle. At
this time, if B dials A, then B will be calling A.” We can easily convince that two situations
are symmetrical with respect to users, that is, the one can be inferred from the other only by
swapping A and B

In terms of our service specification, we can observe the symmetry on states and state
transitions. For example, consider the following two states s and s,:

s, = dialtone(A), idle(B), busytone(C) so= dialtone(C), idle(A), busytone(B)

We see 5| and s, are symmetrical, in the sense that s, is obtained from s, just by substituting
A for C, B for A, C for B. In other words, letting U={A,B,C}, there exists a permutation
¢;U — U such that ¢ (A)=C, ¢ (B)=A, ¢(C)=B from s, to 55.

Now, let us apply the following rule to s and s;:
pots3: dialtone(x), idle(y) [dial(x,y)] calling(x,y).
pots3 is enabled for 81 = (x|A, y|B) at s, and is also enabled for 62 = (x|C, y|4) ats,.
pots361: dialtone(A), idle(B) [dial(A,B)] calling(A,B). '
pots362: dialtone(C), idle(A) [dial(C,A)] calling(C,A).
As a result, the following next states s,” and s,’ are obtained from s, and s,, respectively.
§y" = calling(A,B), busytone(C) | sy’=calling(C,A), busytone(B).

We can observe that there also exists the same permutation ¢ from s’ to s,”. Roughly
speaking, this fact implies that state transition (s,, dial(C,A), s,’) can be reproduced from (s,,
dial(A,B), s;’) in terms of (¢ (s1), ¢ (dial(A,B)), ¢ (s1’))- Therefore, we need no longer to store
either states s,, s," or transition (s, dial(C,A), s;’) in the reachability graph.

From this observation, we reach a hypothesis in general case that if we have a state
transition (s,e,s’), then we also have (¢(s),¢(e), ¢ (s’)) for any permutation ¢ on U. If the

* Note that the symmetry cannot be applied to systems such like “only supervisor C is allowed to execute a
command Y, others are not”, since the symmetry among users is broken.

194 M Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

hypothesis is true, then it is sufficient to have only states s and s” and a transition (s,e,s’) in a
reachability graph, since we can infer any symmetric states and transitions from s, s” and
(s,e,s'). Actually we can verify all interactions defined in Definition 5 by using a new
reachability graph, which is much smaller than FRG (to be shown in Section 4.5).

4.2. Permutation Symmetry

In this section, we formally define the permutation symmetry. Throughout this section, we
assume that a service specification § = (U, V,P,E,R,sp) is given unless especially
specified. First, we define all permutations with respect to users.

Definition 8: Let Perm(U) denote a set of all permutations ¢;U = U. Each element ¢ of
Perm(U) is called a permutation symmetry.

Example 4: Let U = {A, B, C}.Then,
Perm(Uy =4 |[ABC| |ABC||ABC |ABC ABC||ABC l
ABC||ACB| |BAC|{BCA CABl |[CBA }
Each permutation symmetry of Perm(U) specifies a bijection ¢ from U to U. For example,

k B C} specifies a bijection ¢ such that (4) = C. ¢(B) = A,¢(C) = B.
A B

Next, we extend ¢ € Perm(U) for states, rules and substitutions as follows.

Definition 9: Let ¢ e Perm(U) be a permutation symmetry. Then, for any instance
play, ay, - ay) of a predicate with pe P, q;€ U, we define o(p(a,, ayq;))

(a) For any state s, we define ¢(s) to be a state obtained by applying ¢ to each instance
of predicate in s.

(b) For any instances r8 of rule re R, we define ¢(r8) to be an instance of rule
obtained by applying ¢ to each instance of predicate in r8. Similarly, we define
d(Pre[r8]), ¢(Post[r8]) and o(Ev|[r8]).

(¢) For any substitution 0= (xl‘al, ...,xnlan), x;€ V,ae U, we define
0(8) = (x,[0(a)). o x,|0(a,)) -
Two states s, and s, are symmetrical iff there exists ¢ € Perm(U) such that ¢(s,) = 52.*

For a given state s, the symmetric class of s, denoted by [s], is a set of all states symmetrical
with s. For [s], s is called a representative of [s].

Example 5: Consider again the example discussed in Section 4.1. Then, for a permutation

symmetry ¢ = \:A B C} e Perm(U), we can see that (a) ¢(s;) = 5, and ¢(s,") = 5,7, (b)

CAB
®(pors381) = pots362,and (c) 6(81) = (x|0(A), ¥y|6(B)) = (x|C, y|lA) = 62.

Lemma2: Let a permutation symmetry ¢ € Perm(U) be given. Then, for any rule re R

The relation symmetrical (s| sym s) 1s an equivalence relation on states since (1) 5| sym sy (reflexive), (1) 54

sym s, implies s, sym 5| (symmetric) and (iii) 5| sym 5, and s, sym s3 imply 5 sym s3 (transitive).

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 195

and any substitution 0, ¢(r8) = ro(0) holds. Also, ¢(Pre[r8]) = Pre[r$(0)],
o(Post[r8]) = Post[rd(8)] and 6(Ev[r8]) = Ev[r¢(8)] hold.
Intuitively, Lemma 2 implies that it does not matter whether we use a permutation

symmetry ¢ before or after the instantiation of the rule r based on the substitution 8. Now,
we are ready to provide an important theorem for a state transition.

Theorem 1: For any permutation symmetry ¢ € Perm(U), the following property is
satisfied for any state transition on S:

(s,Ev[r8],s’) is definedon S < (0(s).¢ (Ev[r6]),¢(s’)) is defined on S.

Proof: (=) Assume that the state transition (s,Ev[r6],s’) is defined on S. Since r is
enabled for 8 at s, all predicates of Pre[r0] are included in s from Definition 3. From (a)
and (b) of Definition 9, all predicates of ¢(Pre[r8]) are clearly included in ¢(s). From
Lemma 2, all predicates of Pre[r¢(6)] are included in ¢(s). This implies that r is enabled
for o(8) at ¢(s).

Hence, from Definition 3 and Lemma 2, the next state s* of ¢(s) is obtained as follows:
s* = &(s) - Pre[r$(8)] + Post[r$(8)]
= ¢(s)- ¢ (Pre[rB]) + ¢ (Post[r6])
= ¢ (s - Pre[r8] + Post[r8]) = ¢(s’)
Therefore, a state transition (& (s),Ev[r¢ (8)],6(s’)) is defined on S. From Lemma 2,
(0(s),Ev[ré (8)],9(s’) = (0(s), 6 (Ev[r6]),¢(s’)), as required.
(<) It follows by means of inverse ¢_'.
Theorem 1 clearly explains the hypothesis discussed in Section 4.1 is true. That is, if we
have a state transition t=(s,e,s’) on S, then we can confirm that all of ’s symmetric transitions

(d(s),d(e).d(s’))s are defined on S. We can easily extend Theorem 1 for the sequences of
state transitions.

Theorem 2: Let S =(UV,PER,sy) be a service specification. For any

permutation symmetry ¢ € Perm(U), all of the following properties hold.
(i) a sequence of transitions (s|,€1,53), (52,€2,53),.... (S, Syy1) is definedon §. <

a sequence of transitions (¢ (s1), ¢ (€),0(5)), (0(52), ¢ (€2), & (53))r.e, (9 (5p), 0 (). 0 (Sps1))
is defined on S. '

(ii) s’ is reachable from s. < ¢ (s’) is reachable from ¢ (s).

(iii) If sg=¢(sy) then [s€ RS(S) & o(s)e RS(S)]

Proof: Property(i) follows by repeated use of Theorem 1. Property(ii) is a direct
consequence of Property(i). Property(iii) follows from Property(ii) supposing that ¢ (sg)=sp.

Thus, if we have only one transition sequence 7on S, then we can confirm the existence of
all transition sequences symmetrical with by Theorem 2.

4.3. Self Symmetry on Initial State

If the initial state sq is symmetrical with itself, i.e., for any ¢ € Perm(U), sp=¢ (so), then we
can utilize the strong property s € RS(S) < ¢(s) € RS(S) by Theorem 2(iii). This means that
if we know a state s is reachable from the initial state, all of states symmetrical with s are also
reachable. Generally, in the telecommunication services, it is reasonable to assume that all
users are idle at the initial state. That is, we may describe s as follows:

196 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

s = idle(a)), idle(a,), ... , idle(a,).

Clearly, it satisfies so=¢ (so) for any ¢ € Perm(U). However, a question might arise: “How
should we deal with the case that each user subscribes to the different supplementary
service?” For example, consider the case that user A is a subscriber of CW (Call Waiting), B
subscribes to DT (Denied Termination) and C is a terminal on a police station which uses
EMG (Emergency Call). Then, the initial state s, might be:

5o = idle(A), idle(B), idle(C), CW(A), DT(B), EMG(C).

which is asymmetrical with itself. In order to cope with this case, we put on an assumption
that all users can subscribe to any services. This assumption is quite reasonable since we
never see such a situation that only user C cannot subscribe to a service X. Based on this
assumption, we start with an initial state in which none of users subscribe to any services yet.
Also, we add the following two rules to each service X for the registration/withdrawal of X.

X-reg: idle(x}, yet-X(x) [regist-X(x)] idle(x), X(x).
X-wdr: idle(x), X(x) [wdraw-X(x)] idle(x), yet-X(x).

yet-X(x) means that user x does not yet subscribe to the service X, while X(x) means x is a
subscriber of X. X might be CW, DT, EMG and so on. By doing this, we can obtain an initial
state in which each of users has a possibility to subscribe to any service, for example:

s = idle(A), idle(B), idle(C), yet-CW(A), yet-CW(B), yet-CW(C), yet-DT(A),
yet-DT(B), yet-DT(C), yet-EMG(A), yet-EMG(B), yet-EMG(C)

which clearly satisfies sy=¢ (s¢) for any ¢ € Perm(U), as required.

Using this consideration, in the following we assume that sy=¢ (sy) for any ¢ € Perm(U)
for a given service specification S = (U, V, P, E, R, so) .

4.4. Symmetric Reachability Graph SRG
Here, we define a reachability graph called symmetric reachability graph SRG.

Definition 10: Let S = (U, V, P, E, R, s) be a service specification. A symmetric reachabil-
ity graph for a given § is a labeled directed graph SRG(S) = (N, L, T) such that

(@) N = {[s]|] se RS(S)} (thatis, N is a partition of RS(S)),
(b) L is a set of instances of events, and
(¢) T = {(Is), Ev[r0], [s"D|(s, Ev[r0], s*) is defined on S and s* € [s°}]}.

In SRG, each node represents a symmetric class [s] with a representative (state) s, and each
arc outgoing from [s] represents a state transition which occur at the representative s. Also,
from the assumption in Section 4.3, Theorem 2(iii) and the above (a), each node [s] in
SRG(S) implies that all states belonging to the class [s] are reachable from the initial state So-

The following algorithm constructs a SRG. In the algorithm, we define Waiting to be a set
of nodes.

SRG construction algorithm.
Input: A service specification § = (U, V, P, E, R, 50
Output: A symmetric reachability graph SRG(S) = (N, L, T)

Procedure:
Waiting := {[55]} ;N := {[sol}
Repeat
select [s] from Waiting ;
for any r € R which is enabled for some 0 at 5 {

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 197

generate the next state s” by applying r to s

add Ev[r8] to L ;

if [s*]1€ N s.t. s" € [s*] then {
add [s"]) to N ; add [s’] to Waiting ;
add ([s), Ev[r0],{s'D to T ;)

else add ([s), Ev[r0],[s*]) 1o T ; }

delete [s] from Waiting ;
Until Waiting = &

Example 6: Figure 3 shows a symmetric reachability graph SRG for POTS specification in
Figure 1. Each of nodes N4, N5, N6 and N7 represents a symmetric class with two states,
while each of other nodes represents a class with only one state. For example, N4 actually
represents two symmetrical states “dialtone(A),idle(B)” and “dialtone(B),idle(A)”, while NO
does one state “idle(A),idle(B)”. Compared with FRG in Figure 2, SRG has smaller number
of nodes(8 nodes) and edges(20 edges) (though it might be a small reduction in this
example).

From Theorems 1, 2 and Definition 10, the following lemma holds:

Lemma 3: The following properties are satisfied for SRG(S).
(i) Each directed path p in SRG(S):
pP= ([Sl]re]v[szl)v ([S2],62,[S3]) reres ([sn]:enr[Sn+]])

has, for each state s|* € [s], a corresponding sequence of state transitions Ton S:
T=(51%0, (€1).52%), (52% 95 (€2),53%) ».., (5,%.0,, (en):Sp1 ™)
where ¢, € Perm(U) and s* € [s;] (1<i<n+1).

(ii) Each sequence of transitions ton S:
T=(5),€1,52), (50,€2,83) ..., (5,.€,,5,,'1), where s, € RS(S)

has a corresponding directed path in SRG(S):
pP= ([s] *]’ ¢] (el),[SZ*]), ([SZ *]» ¢2 (eZ)’ [53 *])) yeuey ([sn *]r ¢n (en)’[sn+ I *])’

fidle(A),
2 idle(B)]

o vlpm) ff;l:g\?[!(l ?I?

onhook(A) N
(=Ev|p583])

onhook(A)
(=Ev[p201})

[dialtone(A), NI
dlallone(B)

Bl

dial(A.B?
(=Evip303])

N7
[calling(A,B)]

e
onhook(B) v
—Ev(pKGZ])

ffh A} onh k busytone(A))
© (—g\(l)lpl(elR ('%?Ipﬂ 3 busytone(B) N2
offhook(B)
(=Ev|p603)) Ng On(llg\(«l)hl%;\[? g%b(?l%‘%lgB)

onhook(A) onléoo7 Legend
(=Evip163)) (=Evlp Evlp8)1-Evlpots9)
[talk(A,B), N3 Blz<xlA> 62=<xIB>
0'12835 B) talk(B,A)] 83=<xlAylB> 84=<xIB,ylA>

v
To NO
Figure 3. Symmetric reachability graph for POTS specification

198 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry

where ¢, € Perm(U) and s* = ¢(s) (1<isn+1).

Lemma 3(i) tells us that a directed path from [s] to [s’] in SRG(S) implies the existence
of a sequence of transitions on § from each s* € [s} to some s”* € {s’]. On the other hand,
Lemma 3(ii) tells us that a sequence of transitions from s to s’ on § implies the existence of a
directed path from [s*] to [s"*] in SRG(S), where s € [5*] and s € [s"*].

4.5. Proof Rules for Interaction Detection

Using the symmetric reachability graph SRG, we can identify the undesirable states in
Definition 5 as follows:

Theorem 3: The following properties are satisfied for SRG(S).
(a) [s] isaterminal. < each s* e [s] is a deadlock state.

(b) there exists a directed cycle starting from [s], and there exists no directed path from
[s] o [s5p]. & each s* € {s] is a loop state.

(c) [s) has a pair of outgoing edges ([s], e}, [s']) and ([s], e, [s”]) such that e|=e5.
< each s* € [s] is a non-deterministic state.

Proof: Properties (a)(b) directly follow from Lemma | and Lemma 3.

Property (¢) : (=) Assume that there exists a pair of the edges ([s], e, [s"]) and ([s]. e,
[s”}) in SRG(S). From Definition 10, there exists a pair of transitions (s,e,ss’), (s,e,ss’’) such
that s € RS(S), ss" € [s'], ss"" € [s”']. From Theorem 1, for any ¢ € Perm(U), there exists a
pair of transitions (¢(s).¢(e),d(ss’)), (0(s),o(e),o(ss’’)). Since se RS(S), we have
®(s) € RS(S) from the assumption in Section 4.3 and Theorem 2(ii1). Hence, from Definition
5, s* = 0(s) € [s] is a non-deterministic state, as required.

(«) Since s* is a non-deterministic state, there exists a pair of transitions (s*ess"),
(s*e,ss’’) such that s* € RS(S). From Definition 10(a), there exists a node [s] such that s =
¢ (s*) in SRG(S). From Theorem 1, there exists a pair of transitions (¢ (s*),¢ (e),0 (s5)),
(0 (s*),0(e),0(ss”’)) on S. From Definition 10(c), SRG(S) has a pair of edges
[0 1.0 (e).[s'D, ([0 (s*)],0 (e),[s”’]), where ¢(ss") € [s'], ¢(ss”) € [s”']. Thus, SRG(S)

has a pair of edges ([s], e*, [s']), ([s], %, [s”]), as required.

Thus, in order to detect the interactions between two specifications S| and S,, we first
construct SRG(S, ® S,), then identify the undesirable states using Theorem 3.

5. Experimental Evaluation

5.1. Preliminaries

We have performed two experiments in order to evaluate the interaction detection using SRG.
For the experiments, we have developed a software constructing both SRG and FRG for any
given rule-based specification. Also, based on [15][16], we have prepared the rule-based
specifications for the following six practical services (features): CW (Call Waiting), CF (Call
Forwarding), DC (Direct Connect), DO (Denied Origination), DT (Denied Termination) and
EMG (Emergency call). All of them commonly include POTS. The experiments have been
performed on the UNIX workstation Sun SS-UAT.

5.2. Experiment I(effectiveness and efficiency)

The objective of Experiment | is to evaluate the proposed method from the following two
viewpoints:

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 199

(a) effectiveness: whether SRG can exactly identify all interactions detected by FRG,
(b) efficiency: how much reduction is attained by using SRG.

First, we checked whether each of six specifications prepared in Section 5.1 is safe or not
by constructing FRG (and SRG). As a result, we have found that all services except EMG are
safe, while EMG contains the loop states, which is known as the interaction of EMG with
itself.” Next, we combined each pair of the remaining five services, then tried to detect the
interactions between any two services by constructing FRG and SRG. For all specifications,
the number of users is assumed to be three. Table 1 summarizes the result.

In the table, DLK, LOP and NDT denote the existence of deadlock states, loop states, non-
deterministic states, respectively. IN| and IT| represent the number of nodes and edges in the
graph, respectively. Time(s) represents the execution time of the software for the construction

| of the graph.

From the table, it can be seen that all interactions detected by FRG are exactly identified
by SRG. Also, we see that SRG attains about 80% reduction of FRG in both the graph size
and the execution time (e.g., as for the number of nodes in CW+CF, 1-17610/102746=0.83).

' From these, we can say that our detection method by means of SRG attains an adequate cost
reduction for the practical interaction detection with preserving the effectiveness of FRG.

5.3. Experiment 2(scalability)

| In order to investigate the applicability of the proposed method to more complex services
with many users, we compare SRG with FRG from the following viewpoints:

(a) scalability w.r.t. # of users: impact of the number of users on the graph size.
(b) scalability w.r.t. # of features: impact of the number of features on the graph size.

First we compare the scalability w.r.t. # of users. Concretely, for a fixed service
specification, we observe the growth of the graph size by varying the number of users. We
have selected the POTS specification described in Figure 1 and varied the number of users
from 2 to 8. Figure 4 shows the result. Note the logarithmic scale on the vertical axis. It can
be seen that, for the increase of the number of users, the size of FRG exponentially grows.

Table 1. Result of Experiment 1

Service FRG(S) SRG(S) .
Spec. S DLK]LOP [NDT| NI Tl |Time(s) |DLK|LOP |[NDT} INI ITt |Time(s)
CW+CF X 102746] 4461241 4706.4 X 17610] 767321 913.8
! CW+DC 95921 38424] 2704 1684] 6838 55.6
CW+DT X 7120 39036] 187.2 X 1344] 7470 43.9
CW+DO 3480] 16560 89.3 668] 3234 20.7
CF+DC 65410] 243876{ 1851.5 11065 41456] 364.7
CF+DT X 38584] 206868] 1006.1 X 6662| 35902| 213.2
CF+DO 17775] 80538] 447.6 3087] 14079 93.5
DC+DT 5390 27510 69.6 9541 4956 17
DC+DO X 4654] 23490 57.9 X 8201 4202 14.2
DT+DO 1450 9180 15.7 300] 1936 4.9
EMG X 522 2802 35 X 116 646 1.3

* Suppose that both A and B are the subscribers of EMG, and that they are talking. Then, neither A and B can
disconnect the call, and the call is trapped in a loop between the talking state and the hold state.

200 M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry
1.0EH05 - 3 1.0E+06
1.0E+04 1.0E+05
3]
3 S0 1.0E+04
e
E 1.0E+03 3
1) o |.OE+03
* 1.0E+02 *
’ 1.0E+02
1.0E+01 1.0E+01
2 J £ 6 7 8 2 3 4 6 7 8
of users # of users
(a) (b)
Figure 4. Graph size w.r.t. # of users: (a) number of nodes (b) number of edges
1.0E+06 1.0E+07
1.OE+05 | 1.0E+06
] S 1.0E+05
2 LOE+M4 S
= © 1.0E+04
S 1.0E+03 ©
EYS 3 1.0E+03
1.OE+02 1 0E+02.
1.0E+01 1.0E+H0!
1 7 3 4 5 1 2 3 4 5
of features # of features
(a) (b)

Figure 5. Graph size w.r.t. # of features: (a) number of nodes (b) number of edges

And finally, we couldn’t construct FRG with 8 users due to the memory overflow. On the
other hand, the size of SRG grows much more slowly than that of FRG. The larger the number
of users is, the more SRG attains the significant reduction. From this, we can say that our
detection method by means of SRG is much more scalable than that of FRG with respect to
the number of users.

Next, we evaluate the scalability w.r.t. # of features. For this, we first prepare the POTS
specification and fix the number of users (here we set it to be three). Then, by incrementally
adding the specifications DO, DT, DC, EMG to POTS in this order, we observe how the
graph size grows for each addition of the feature.

Figure 5 shows the result. Unfortunately, for the increase of the number of features, the size
of SRG exponentially grows as well as the size of FRG. However, it can be seen that SRG
constantly achieves more than 80% reduction of FRG (e.g., as for the number of nodes with
5 features, 1-58832/348868=0.83). In this sense, SRG is slightly more scalable than FRG
with respect to the number of features.

From Experiment 2, we conclude that the proposed detection method using SRG is more
scalable than the conventional methods using FRG especially for the increase of the number
of users. As a result, it can be applied to the interaction detection for more complex services
with many users.

i v

e

M. Nakamura et al. / Feature Interaction Detection Using Permutation Symmetry 201

6. Discussion and future works

In this paper, we have proposed a new interaction detection method using the permutation
symmetry. By using the proposed SRG, we can realize not only exact interaction detection
for given service specifications, but also efficient state space reduction especially for the
increase of the number of users. The scalability with respect to the number of features is
unfortunately not so good. We consider this is because we put an assumption that every user
can subscribe to any service, in order to eliminate asymmetry on the initial state. We are now
extending the proposed method so that SRG can deal with the asymmetric initial state by
focusing the subset of all permutations. This will enable us to choose any initial state as we
like. Then, regarding the symmetric initial state (presented in this paper) as a union of several
states, we try to divide the original problem into several smaller subproblems. We expect this
divide-and-conquer approach will significantly improve the scalability with respect to the
number of users.

We discussed only three types of interactions in this paper. However, SRG can be surely
applied to the detection of any other types of interactions if the interactions can be defined on
the finite state machine. The application to other interactions is also one of our future work.

References

{1] Cameron, E.J., Griffeth, N.D., Lin, Y-J., Nilson, M.E., Schnure W K. and Velthuijsen, H., “A feature in-
teraction benchmark for IN and Beyond,” Proc. of Second Workshop on Feature Interactions in Telecom-
munications Systems, pp.1-23, 10S Press 1994,

[2] Cameron, E.J., Cheng K., Lin, F-J, Liu, H. and Pinheiro B, A formal AIN service creation, feature in-
teractions analysis and management environment: an industrial appliction”, Proc. of Fourth Workshop
on Feature Interactions in Telecommunications Systems, pp.342-346, July, 1997.

{31 Capellmann, C., Combes, P., Pettersson., 1., Renard, B. and Ruiz, J.L., “Consistent interaction detection
- A comprehensive approach integrated with service creation”, Proc. of Fourth Workshop on Feature In-
teractions in Telecommunications Systems, pp.183-197, July, 1997.

4] Gammelgaard, A. and Kristensen E.J., “Interaction detection, a logical approach,” Proc. of Second Work-
shop on Feature Interactions in Telecommunications Systems, pp.178-196, 1994.

[5] Harada, Y., Hirakawa, Y., Takenaka, T. and Terashima, N., “A conflict detection support method for tel-
ecommunication service descriptions,” IEICE Trans. Commun., Vol. E75-B, No. 10, Oct., 1992,

[6] Holzmann, G.J., “The model cheker SPIN”, IEEE Trans. on Software Engineering, Vol.23, No.5, pp-279-
295, May 1997.

[7] Jensen, K., “Coloured Petri Nets,” EATCS Monographs on Theoretical Computer Science, Voll-2,
Springer Verlag, 1992.

(8] Khoumsi, A., “Detection and resolution of interactions between services of telephone networks”, Proc.
of Fourth Workshop on Feature Interactions in Telecommunications Systems, pp.78-92, July, 1997.

[9] Kimbler, K., “Addressing the interaction problem at the enterprise level”, Proc. of Fourth Workshop on
Feature Interactions in Telecommunications Systems, pp.13-22, July, 1997.

[10] McMillan, K.L., “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.

[11] Nakamura, M., Kakuda Y, and Kikuno T., “Petri-net based detection method for non-deterministic fea-
ture interactions and its experimental evaluation,” Proc. of Fourth Workshop on Feature Interactions in
Telecommunications Systems, pp.138-152, July, 1997.

[12] Ohta, T. and Harada Y., “Classification, detection and resolution of service interactions in telecommuni-
cation services,” Proc. of Second Workshop on Feature Interactions in Telecommunications Systems,
pp-60-72, 1994.

[13] Tsang, S., Magill, E.H. and Kelly, B., “An investigation of the feature interaction problem in networked
multimedia services”, Proc. of Third Communication Networks Symposium, pp.58-61, 1996.

[14] Zave, P., “Feature interactions and formal specifications in telecommunications,” IEEE Computer,
Vol.26, No.8, pp.20-30, 1993.

[15] ITU-T Recommendations Q.1200 Series., “Intelligent Network Capability Set 1 (CS1)”, Sept. 1990.
[16) Bellcore, “LSSGR Features Common to Residence and Business Customers I, IL, II1,” Issue 2, July 1987.

