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Abstract. This paper proposes a new Feature Interaction (FI) filtering
method at the requirements level. FI filtering is to screen out some
irrelevant feature combinations before the FI detection process, by using
simple indications that certain combinations are likely to cause FI.

To achieve this, we extensively utilize a requirement notation method,
called Use Case Maps (UCMs), which helps designers to visualize a
global picture of call scenarios. Individual features are added to the
basic call by using the stub plug-in concept of UCMs. That is, a set
of UCMs describing the feature’s functionality are plugged into certain
parts (called stubs) of the basic call scenario in a “root” UCM. Thus,
each feature is characterized by the stub configuration. Then, we pro-
pose a composition method of different stub configurations in terms of
a matrix, called a stub configuration matrix. Finally we present an FI
filtering method for a given combination, which gives a verdict: (a) FI
occurs, (b) FI never occurs or (¢) Fl-prone.

Experimental evaluation using examples taken from the recent FI
detection contest shows that almost half of the feature combinations
can be filtered without costly feature analysis. This suggests that the
number of feature combinations to be analyzed with more expensive FI
detection methods can be reduced to half, by using the proposed method
as a front end of the detection process.

1 Introduction

In order to exactly detect all Feature Interactions (FIs, in short) in given features, the
FI detection process requires sophisticated methods. A number of detection methods
have been proposed so far (see survey [7]). It is known, however, that most of the
detection algorithms need a significant amount of work due to the need of considering
all possible combinations of behaviors. To make matters worse, the inclusion of new
features increases further the number of feature combinations to be analyzed. Thus, FI
detection can be an expensive and even infeasible task.

Therefore, it would be helpful to have a method that can be used before FI detection
to estimate briefly “which feature combinations have a possibility of FI”. Based on this
motivation, Kimbler[9] proposed a notion of FI filtering. The aim of F1I filtering is to
screen out some irrelevant feature combinations before the detection process. In general,
the filtering is performed in an inexpensive way by using simple indications that certain
feature combinations are likely to cause FI or not. Since FI filtering enables us to
narrow down the scope of FI detection to only FI-prone combinations, the cost in the
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detection process can be significantly reduced by using filtering as a front end of the
detection process.

In this paper, we propose a new FI filtering method at the requirements stage. To
achieve this, we first employ a requirements notation method, called Use Case Maps
(UCMs, in short) [2, 3], for the service description. The UCMs provide system-wide
path structures that enable requirements engineers to get a global understanding of
large scale dynamic situations.

Many service description methods have been proposed so far. Aho et al. [1] pro-
posed an event-based language at the requirements level, called Chisel. Its well-defined
semantics based on trace equivalence provides an FI detection framework. However,
due to the nature of the method, it is difficult to represent concurrent behaviors. More-
over, feature addition is performed by “glueing nodes” in the Chisel diagram, which
results in difficulty to achieve global visualization in one picture. The other well-known
methods, such as SDL, LOTOS [2], State Transition Rules (STR) [13] are categorized
at the software specification level rather than at the requirements level [1]. Hence, they
need some sophisticated requirements elicitation procedures. The reasons why we chose
UCMs for the FI filtering are summarized as follows:

(1) UCMs help to visualize global call scenarios at the requirements level without
knowing the detailed system behaviors or complex semantic models.

(2) UCMSs possess adequate characteristics for service description at the requirements
level such as concurrency, alternatives and hierarchical design.

(3) There is a tool called UCM Navigator [10], which helps designers to draw syntac-
tically correct UCMs.

The key idea for the FI filtering is to use one of the concepts of UCMs, called a
stub plug-in. We have two kinds of UCMs in this framework. One is a root UCM
(or simply root map), which specifies the scenario path structure commonly used by
all features in the system. The other is the sub UCM (or simply submap), which
represents functionality specific to each individual feature. Once a feature is specified
by a collection of submaps, these submaps are plugged in certain parts of the root map,
called stubs, to complete the call scenarios. Thus, a feature is characterized by its stub
configuration, i.e. which submap is plugged in which stub in the root map.

Next, we propose a composition method for different stub configurations in order
to examine FI filtering between different features. For this, we define a new matrix
representation, called a stub configuration matriz. Feature composition is carried out
with the matrix composition. Then, we present a filtering method. Using simple
indications with respect to user’s call scenarios, the method not only screens out some
irrelevant combinations free of Fls, but also identifies feature combinations causing non-
deterministic FIs [12]. This enables us to reach one of the following verdicts: (a) FI
occurs, (b) FI never occurs or (c) Fl-prone.

We conducted an experimental evaluation by using the features of the recent FI
contest [4]. The experiments are carried out by using a tool, the UCM Navigator. It
is shown that almost half of all feature combinations can be filtered in an inexpensive
way. This fact implies that the number of feature combinations to be analyzed in the
FI detection process can be significantly reduced by half, by using the proposed method
as a front end of the detection process.
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2 Use Case Maps for Service Description
2.1 Basic Principle

UCMs! describe the structure of behavior for a system based on scenario paths, in
diagrams that are above the detailed level of messages and protocols. Figure 1 represents
UCMs for the Basic Call Model, (or POTS — Plain Ordinary Telephone Service),
according to the first FI detection contest specifications [4]. There are seven UCMs in
Figure 1 and each is identified by a name (identifier), e.g. root, defs.

The core notation consists of only scenario paths and responsibilities along the paths.
In the diagram, the scenario paths are represented by wiggly lines. A path starts at a
starting point (depicted by a filled circle) and ends at an end point (shown as a bar).
Between the start and end points, the scenario path may perform some responsibilities
along the path, which are depicted by crosses x with labels. Responsibilities are ab-
stract activities that can be refined in terms of functions, tasks, procedures, events, and
are identified only by their labels. Tracing a path from start to end is to explain a sce-
nario as a causal sequence of events. For instance, take UCM def; in Figure 1(b). This
explains a scenario where busytoneA occurs first and then onhookA is performed. Each
scenario path can be associated with a pre-condition. The pre-condition is a condition
for the path to start with. For example, a pre-condition “[A is idle]” in root means that
the scenario starts only when A is idle.

Several paths can be composed by superimposing common parts and introducing
fork and join. There are two kinds of forks/joins. One is the OR-fork/join, depicted
by branches on paths. It describes alternative scenario paths, which mean that one
of the paths is selected to proceed at each branch. For example, UCM def, in Figure
1(b) contains an OR-fork describing two possible scenarios: “dialtoneA occurs and
the scenario ends at OUT11” or “dialtoneA occurs, followed by onhookA”. 1t is also
possible to explicitly specify conditions for path selection. This is done by using guards,
represented by italic text with brackets [] at the OR-fork. For example, a guard [Y is
idle] at an OR-fork in UCM root implies that the scenario proceeds to the upper path
when Y is idle.

The other types of fork/join is the AND-fork/join, depicted by branches with bars,
which describes concurrent scenario paths. UCM defs contains one AND-fork and
one AND-join. After offhookY occurs, three scenario paths start concurrently. As a
result, LogBeginAYA, StopARingAY and StopRingYA are performed in any order (by
the interleaving semantics). The concurrent paths are synchronized at the AND-join,
and then the scenario ends at QUT51.

A stub plug-in concept allows UCMs to have a hierarchical path structure, to defer
details, and to reuse the existing scenarios. A stub, depicted by a dotted diamond,
identifies a place where path details in the UCM are described by other UCMs, called
submaps (or sub-UCMs). On the other hand, the UCM with that stub is called a root
map (or root-UCM). In this paper, we assume that submaps are not allowed to contain
stubs. This assumption is just for simplicity, and will be relaxed in future research.

A submap can be plugged into a stub in a root map. This is done by binding the
start and end points of the submap to the corresponding entries and exits of the stub
in the root map, respectively, in accordance with labels on the start and end points.

For example, the root map in Figure 1(a) contains six stubs. All other UCMs are

IStrictly speaking, UCMs discussed here are unbound UCMs without system components shown
explicitly, since this paper focuses on the requirements entities for FI filtering.
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Figure 1: Use Case Maps for Basic Call Model

submaps. Let us plug a submap def; into stub 1 (Pre-dial stub) in root. The start
point IN11 is connected to the stub entry I/N11, and end points OUT11 and OUT12
are connected to the exits OUT11 and OUT12, respectively. Similarly, other submaps
def,(2 < i < 6) are plugged into the corresponding stubs i(2 < ¢ < 6), which completes
the whole scenario path structure of the basic call model. For convenience, we call
submaps describing the basic call scenarios default submaps.

Symbols A, B, C, D refer to constants representing actual users (subscribers). Sym-
bols V, W, X,Y are variables to which constant values are assigned dynamically.

The basic call model in Figure 1 is the so-called global call model of end-to-end view
[5], which contains both caller’s and callee’s scenarios in one model. The responsibilities
in the diagram are those explained in [4]. In this example, A is the caller, whereas Y
is the callee. Since Y is a variable, the callee may change depending on the destination
of the call. When A calls B, for instance, then Y is B.

2.2 Adding Features

Adding features extends scenarios in the basic call model. In our framework, this is
achieved in a simple way by using the stub plug-in concept of UCMs. Intuitively, we
only replace some default submaps with specific ones, called feature submaps describing
the feature’s scenarios. Figure 2 shows feature submaps for the following features:
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Figure 2: Submaps for supplementary features

(a) Originating Call Screening (OCS): OCS allows a subscriber A to screen originating
calls based on a screening list. If a callee Y is in A’s OCS list, the outgoing call
from A to Y is screened.

(b) IN Freephone Billing (INFB): INFB allows the subscriber V' to be charged for
incoming calls instead of caller A. The scenario is activated only when the callee
Y matches the subscriber V. The responsibility LogBegin AYY means that the
call from A to Y is charged to Y.

(c) Calling Number Delivery (CND): CND enables the subscriber V' to receive and
display the number of the originating party A on an incoming call. The scenario
applies only when the callee Y is the subscriber V. The responsibility Display
YA means that the number of A is displayed on Y’s phone.

(d) Charge Call (CC): CC permits the subscriber A to charge a call to a different
address W than the originating address A, if the correct PIN is entered.

Each feature is described as a set of submaps describing scenarios specific to the feature.
Each feature submap has an identifier with index that represents into which stub the
submap can be plugged. For example, let us add CC to the Basic Call. This is done by
plugging feature submaps ccA; and ccAs into stub 2 and 5 of the root map in Figure
1(a). As a result, defy and defs are replaced by ccA; and ccAs, respectively, and all
other submaps def;(: = 1, 3,4, 6) remain to be reused in the corresponding stubs.

In UCMs, a stub is allowed to contain multiple submaps, whose selection can be
determined at run-time according to a submap selection policy ?, which helps to describe
some dynamic situations in scenarios. The selection policy is usually described with
pre-conditions of submaps. When there are several submaps for one stub, exactly one
of those, whose pre-condition takes true value, is chosen to be plugged into the stub.
For convenience, let pre(f;) denote a pre-condition of a submap f;.

2In this sense, the stubs discussed here are called dynamic stubs, strictly speaking.
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Figure 3: Plugging two submaps into one stub

For example, suppose that B is an INFB subscriber. If the caller A makes a call to
B, the call is charged to B. When A calls C, A pays the fee normally. The call scenario
dynamically changes depending on to whom A makes a call. To explain this, let us take
a submap nfbVs shown in Figure 2(b). The variable V in ¢n fbV; represents an INFB
subscriber. We assign a value B to V. Then, the submap n fbV;s and its pre-condition
pre(infbVs) = [Y = V] are instantiated to infbBs and [Y = B]. infbBs is plugged
into stub 5 only when [Y = B] holds, i.e. the callee Y is B. On the other hand, a
submap def; in Figure 1(b) is also for the stub 5, which describes default scenarios in
the Basic Call. The pre(defs) is default, which means defs is plugged in when none of
other submap’s pre-condition holds. One of infbB; or defs is chosen to be entered in
stub 5 depending on whom A calls (see Figure 3). This shows that INFB applies only
when A calls B. If the callee Y is C, the call proceeds to the default scenario.

For different submaps f; and g;, if pre(f;) and pre(g;) hold simultaneously, then the
submap selection policy does not work correctly. When two pre-conditions are satisfied
at the same time, a non-deterministic behavior occurs regarding which of fi. and g;
should be chosen to plug into stub . If pre(f;) and pre(g;) are not simultaneously
satisfiable, we say that f; and g¢; are mutually ezclusive, denoted by mez(f;, g;). In
general, since UCMs do not force any formalism on pre-conditions, it would be hard to
evaluate them without human input. So, we assume that for any pair f; and g, given,
the scenario designer can always tell whether mez(f;, g;) holds or not. All the submaps
for the same stub must be mutually exclusive to achieve a consistent selection policy.

For instance, defs and in fbBs are mutually exclusive as shown above, thus mez(defs,
infbBs). However, ccAs and infbBs; are not, since pre(ccAs) = true always holds. As
a result, scenarios in ccAs and infbBs cause non-determinism when [Y = B] holds.
The non-deterministic behavior is well known as a typical situation of FI [12].

3 Feature Interaction

Researchers agree on an informal definition of FI: FI occurs iff the combined use of
multiple features changes the requirements properties of each feature in isolation. The
definition is not formal enough to perform FI detection. Hence, researchers have been
trying to give formal definitions of FIs. As a result, different definitions are proposed
for different FI detection frameworks.

However, the aim of this work is not to present an FI detection method, but to
propose an FI filtering method, which is supposed to be a quick and rough evaluation
used before the FI detection process. In order to make the proposed method generic,
i.e. applicable to different FI detection frameworks, we do not give in this paper an
exact definition of FI. Instead of giving such a definition, we briefly characterize FIs by
a necessary condition and a sufficient condition with respect to call scenarios of users.
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Condition 3.1 FI occurs = Composition of features changes some user’s call scenar-
ios in an individual feature.

Condition 3.2 FI occurs <= Composition of features enables different call scenarios
to be performed under the same conditions.

Condition 3.1 means that if no scenario changes occur in individual features, then FI
does not occur. But the reverse does not necessarily hold, since scenario changes do
not always contradict the requirements, and are sometimes acceptable. Condition 3. 2
characterizes non-determinism [12], which is one of the most typical situations of Fls.
However, the reverse does not hold, since not all Fls are caused by non-determinism.

4 Proposed Feature Interaction Filtering
4.1 Stub Configuration Matriz

The stub plug-in concept in UCMs enables us to isolate specific scenarios of features
from common scenarios between features. That is, the specific scenarios for a feature
are given as a set of feature submaps, while the common scenarios are given as a root
map with default submaps, into which the feature submaps are plugged. We can then
characterize features in terms of stub configurations, i.e. information regarding which
feature submap is plugged into which stub in the root map. In this section, we propose
a matrix representation, called a stub configuration matrix, to characterize features.

Definition 4.1 Let SM denote the set of all given submaps. A matriz element is
recursively defined as follows: (a) f € SM is a matrix element, (b) if p and ¢ are matrix
elements, then p|q are matrix elements, where | is a (deterministic) choice operator.

The matrix elements are regarded as expressions in the language composed by submap
identifiers and operator |. They are used to represent which submaps are plugged into
each stub. A matrix element f1|fs|...| fx represents the fact that exactly one submap f;
of fi,..., fx is deterministically chosen and plugged into the stub, according to a certain
selection policy. Consider again all UCMs in Section 2. Then, for instance, defs, ocsAs,
defs|infbBs are all matrix elements.

Next, we express the configuration of all stubs in a root map, in terms of a vector
representation, which describes a subscriber profile intuitively speaking.

Definition 4. 2 Suppose that a given root map has n stubs. A stub configuration
vector (or simply SC-vector) is an n-dimensional vector h = [hy, ..., h,], where h; is a
matrix element for ¢-th stub.

Consider again all UCMs in Section 2. Let us briefly characterize A’s scenarios for
individual features, in terms of an SC-vector. First consider the stub configuration
where A is a CC subscriber. Submaps ccA; and ccAs are plugged into stub 2 and
5, respectively, and each other stub ¢ contains the default submap def,. Hence, A’s
scenarios are characterized by an SC-vector:

[de f1, ccAg, defs, de fi, ccAs, de f]

If B subscribes to INFB, then the call scenarios where A is a caller is characterized by:

[defy,defs, defs, defy, defs|infbBs, de fo]
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Figure 4: Extending a root map for three users, supposing that B subscribes to INFB

where the inclusion of infbBs or defy is determined by whether A calls B or a user
who does not have INFB. Thus, the individual features on A’s scenarios are concicely
characterized by SC-vectors.

In order to represent clearly all possible user scenarios, we replicate the root map
for each user’s scenarios, as shown in Figure 4. The replication of the root map makes
sense, since common scenarios described in the root map are the same for all users, due
to the “equivalently-served” constraint [11]® in telecommunication services. The stub
configuration describes the allocation of feature submaps to stubs in the root maps of
all users. Accordingly, the SC-vector is extended to a matrix form, called SC-matrix.

Definition 4.3 Suppose that a given root map has n stubs, and that we have m users.
A stub configuration matriz (or simply SC-matrix) is an m X n-dimensional matrix:

h, hiy hiy - Ry,
hm hml hm? te hmn

where h; is an SC-vector for the i-th user, and hi; is a matrix element for the j-th stub
in the i-th user’s root map. Usually an SC-matrix for a feature is specified on the basis
of the feature name F and of its subscriber u. For convenience, we introduce a notation
F, to denote an SC-matrix where user u subscribes to feature F.

For example, consider all submaps in Figures 1 and 2, and root maps in Figure 4.
Here we suppose that there are three users, A, B and C, as introduced in [4]. Since the
root map has six stubs, an SC-matrix is a 3 x 6 matrix. Let us express the stub config-
uration where A is a CC subscriber. Submaps ccA, and ccAs are respectively plugged
into stubs 2 and 5 in A’s root map. Similarly we can describe the stub configuration
that B is a CC subscriber just by swapping 4 and B.

defy ccAy, defs defy ccAs defs def, def, defs def, defs defs
CCa = | defy defs defs defy defs de fe CCp= | defy ccBy defs defs ccBs defs
defi def: defs defy defs defs defy defy defs defy defs defs

3Suppose that A and B subscribe to the same feature F. Then, A and B are guaranteed to use F
in the same way.
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By looking at the matrix row-wise, we can visualize how each user’s scenario is con-
figured, under a certain feature subscription. Next, let us give an SC-matrix, /N FBg:

def, def, defy defs defs|infbBs defs
INFBB = d(:’fl d6f2 d€f3 d€f4 d6f5 d€f6
def1 d€f2 d€f3 d€f4 def5|mbe5 defa

Note that B’s subscription to INFB affects call scenarios of both A and C, since INFB
applies when A (or C) calls B (i.e. the condition [Y = B] holds). Figure 4 shows a
correspondence between the root maps for this subscription and their SC-matrix. The
shaded stubs imply that the submaps for INFB are plugged into those stubs.

One of the useful guidelines to construct systematically an SC-matrix is to classify
the features into two categories: originating features or terminating features. The orig-
inating features are the features whose subscriber is on caller side, while terminating
features are the features whose subscriber is on callee side. In our example, OCS and
CC are originating features, whereas INFB and CND are terminating features [4]. Note
that the root map in our example is described from the caller’s viewpoint. Subscrib-
ing to originating features affects the scenarios of the subscriber only. On the other
hand, subscribing to terminating features effects the scenarios of all users, except the
subscriber. Based on this observation, let us give SC-matrices OCSg and CN D y4:

defy defo defs defs defs defs defy defo defs defs defs defs
OCSp = | defi ocsBz defs defs defs defs CNDy = | defi def: defslcndAs defs defs defs
de f1 defo defs defs defs defs defi defo defslecndAs defs defs defs

Note that it is possible to represent feature configurations for arbitrary subscribers
in terms of SC-matrices. This is done by instantiating feature submaps with a value of
the subscriber and allocating them to appropriate rows of the SC-matrix. For instance,
INF B¢ can be obtained from I N F Bg by swapping the second and third rows, and by
letting V = C instead of V = B in submap in fbVs.

4.2  Feature Composition

Once each individual feature is characterized by an SC-matrix, we compose different
configurations, in order to examine FI filtering between multiple features. The com-
position is carried out by well-defined SC-matrix composition as shown in this section.
First of all, we define the composition operator for two submaps:

Definition 4. 4 Suppose that f and g are given submaps plugged into the same stub
in a root map. Let def denote any default submap describing basic call scenarios. Let
ng * denote a special identifier not contained in the given submaps. Then, composition
of f and g, denoted by f - g, is defined as follows:

[ Gff=g) (A1)
fog=g-f= [ (if g = def) (A2)
flg G [f # g,1f, g # def] and [mexz(f,g)]) (A3)
ng (if [f # g],[f, g # def] and [~mez(f,g)]) (A4)

The intuitive semantics of the composition is explained as follows: (A1) composition
of the same submaps yields the same submap, (A2) a feature submap f can override

4The ng here stands for “no good”.
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a default map for the basic call scenario, (A3) two different feature submaps can be
composed with a deterministic choice when f and g are mutually exclusive and (A4)
two different feature submaps cannot be plugged into the same stub when f and g are
not mutually exclusive, since a non-deterministic behavior arises between f and g.

Then, the composition operator is extended for matrix elements containing “|”, by
the following definition:

Definition 4.5 Let p = fi|fs|-..|fx and ¢ = g¢1]gz]...|g; be matrix elements. Then,
composition of p and q is definied by applying - to all pairs of submaps f; and g;:

p-a=fi-qlfi-gl-|fe g (A5)
The following proposition is useful for simplifying the composition results.

Proposition 4. 6 Let p,¢ and r be matrix elements. The following properties are
satisfied: (B1) plp = p, (B2) plg = qlp, (B3) (plg)lr = pl(glr), (B4) p|ng = ng.

For example, consider SC-matrices CC4 and INF Bp in the previous section. Let us
compose two matrix elements ccAs and defs|in fbBs, with respect to stub 5.

ccAs - (defs|infbBs) = ccAs - defs|ccAs - infbBs (A5)

= ccAs|ccAs - infbBs (A2)
= ccAs|ng (A4)
= ng (B4)

Now, we define a composition operator of SC-matrices:

Definition 4. 7 Let F and G be given SC-matrices. Then, composition of F' “and G,
denoted by F' @ G, is defined as F & G = [fi;] & [95;] = [fi; - 9ij]
Composition of two SC-matrices is carried out by applying - to each pair of correspond-

ing matrix elements. For instance, let us compose OCSg and CN D, shown in the
previous section.

def1 OCSBz def3 d€f4 d8f5 defs d6f1 defz def3[cndA3 def4 d€f5 defa
def; defz def3 def4 d€f5 defa def1 defz defglcndA;; d€f4 def5 defe

[defx defa defs defs defs defs}

def1 defz def3 def4 defs defe def1 defz d8f3 d8f4 def5 defﬁ
OCSp®CND,y = ®

defi ocsBy defslendAs defs defs defs
defi defy defslendAs defs defs defs

4.3 FI Filtering

We assume that a root map, a set of default submaps, sets of submaps for features, and
SC-matrices for individual features are given.

First of all, we provide two theorems used for the proposed FI filtering method.
These theorems are derived from the FI characterizations (Conditions 3.1 and 3.2)
presented in Section 3. Let F' and G be given SC-matrices, and let H = FF & G. Let
fi, g; and h; be i-th rows in F', G and H, respectively.

Theorem 4.8 There exists ng in H = FI occurs (non-determinism).

Proof: By Definition 4. 4 , an ng entry appears in H iff a submap f;; in F' and a submap g;; in G
are not mutually exclusive. Since f;; and g;; are plugged into a stub j simultaneously, different
scenarios are possible under the same (pre-)condition with respect to user ¢. According to
Condition 3. 2, we can conclude that FI occurs.
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Feature Interaction Filtering Method
f: 9

Input : Stub configuration matrices F' = : and G = | :
Im Gm
Output : One of the following verdicts
(a) FI occurs (non-determinism). (b) FI never occurs. (c) FI-prone.

Procedure :
k,
Stepl : Make a composed matrix H = : =FodG.
hn

Step2 : If some ng elements exist in H, conclude (a) FI occurs (by Theorem 4.
8 ). Otherwise, go to Step 3.

Step3 : For each row h; of H, check a condition [h; = f; or h; = g;]-

Step3-1 : If the condition holds for all 7 (1 < i < m), conclude (b) FI never
occurs (by Theorem 4. 9). Otherwise,

Step3-2 : Conclude (c) Fl-prone.

Figure 5: Feature Interaction filtering method

Theorem 4.9 [h; = f; or h; = g;] holds for all i = FI does not occur.

Proof: Each row in an SC-matrix is an SC-vector that characterizes one user’s scenarios. The
condition [h; = f; or h; = g;] holds iff for user i, the stub configuration h; yielded by the
composition had been already expected in the individual feature F (=f;) or G (=g;). This
fact means that no stub configuration is changed by the composition. Hence, no scenario
change occurs with respect to user i. If the condition [h; = f; or h; = g;] holds for all 7, then
no user’s scenario is changed by the composition. According to a contraposition of Condition
3.1, we can conclude that FI never occurs.

Figure 5 shows the proposed filtering method. The method gives one of the verdicts:
(a) FI occurs (non-determinism), (b) FI never occurs, (¢) Fl-prone, for given two SC-
matrices F' and G. Since Theorems 4.8 and 4.9 at Steps 2 and 3 can be checked
easily, the filtering procedure is quite simple and easy to use. Step 1 is just for making
a composed matrix H from F' and G. Step 2 is to check the non-determinism caused by
the composition by Theorem 4. 8 . Step 3 is for checking if some scenario changes occur
due to the composition by using Theorem 4.9 . If we reach Step 3-2, it means that
there is no non-determinism, but some scenarios change in the composition. We cannot
definitely conclude the existence of FI at this moment. The verdict is “FI-prone” and
some detection method has to be employed.

We will show some examples to illustrate each of verdicts (a), (b) and (c). Figure 6
explains the correspondence between matrix composition and related root maps. The
stubs depicted by shaded diamonds represent that some feature submaps are plugged
into the stubs.

First, Figure 6(a) illustrates the verdict (a) “FI occurs” for the combination of CCy4
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Figure 6: Illustrative examples

Figure 7: Classification of combinations
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and INFBg. After the composition, an ng entry appears in stub 5 of A’s root map.
This is a non-deterministic interaction: “Suppose that A subscribes to CC and that B
subscribes to INFB. If A calls B, should the call be charged to B or W (third party to
whom A wanted to charge)?”.

The next example in Figure 6(b) is for the verdict (b) “FI never occurs” between
CCp and INFBg. The condition [h; = f; or h; = g;] holds for i = A,B,C. In
this case, the scenarios of users A and C had been expected in INFBpg before the
composition, whereas the scenarios of user B had been found in CCy. As a result,
no scenario change occurs, and thus we can conclude that there is no FI. Note that
even if the feature combination is the same (as in (a)), we could get a different verdict
depending on who are the subscribers.

The third example in Figure 6(c) is for the verdict (c) “FI-prone” between OCSjg
and CNDj4. Due to the composition, user B’s scenarios have been changed, which can
be interpreted as follows: “Suppose that B subscribes to OCS, and that A subscribes
to CND. Even if B dials A, B’s number may not be displayed on A’s telephone, since
A could screen the outgoing call to B.” Whether this is an FI or not depends on the
exact definition of FI adopted, and will have to be decided by an appropriate detection
process. The only thing we can say here is that the system is Fl-prone.

The proposed filtering method is applied to all possible combinations of SC-matrices,
derived from given features. Figure 7 shows a classification of the combinations. In the
diagram, U represents the set of all possible combinations, and FI represents the set of
combinations that actually cause FIs. S; and S, respectively denote the sets of combi-
nations satisfying Conditions 3.1 and 3.2 mentioned in Section 3. The combinations
with verdicts (a) or (b) must be filtered. Then, Step 2 filters the inside of *S,, and
Step 3 filters the outside of S;. Consequently, the set of combinations filtered by the
proposed method can be depicted by the shaded portions. The combinations with the
verdict (c) Fl-prone are contained in the non-shaded portion, for which we would not
know if the combinations cause FI or not without further analysis. Such combinations
are left for the FI detection process after the filtering.

The number of combinations increases combinatorially with the numbers of users
and features. However, the number of combinations can be reduced by using symmetry.
For example, if we have analyzed a combination OCSg & CND,, then we no longer
need to try OCSc @ CN Dgp, since all subscribers of a feature can use the feature in
the same way. Due to space limitation, the detailed definition of symmetry is omitted
here. Interested readers can refer to relevant papers [8, 11].

5 Experimental Evaluation

We have conducted an experimental evaluation to measure the proposed method from
the following two viewpoints: (a) efficiency: how many feature combinations can be
filtered, (b) quality: whether the filtering method gives correct verdicts or not. We
have prepared UCMs for the following eight features, and performed FI filtering for
all pairs of the features: Terminating Call Screening (TCS), Originating Call Screen-
ing (OCS), IN Freephone Billing (INFB), IN Freephone Routing (INFR), Charge Call
(CC)?, Call Number Delivery (CND), IN Teen Line (INTL), and Call Forwarding Busy
Line (CFBL). The feature definitions were taken from reference [4].

Table 1 shows the filtering results. For each pair of features, we have two combi-

>We assume that the system interprets the dialed number 0+Y in CC as Y.
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Table 1: Filtering results

TCS OCS INFB INFR CC CND INTL CFBL

same diff same diff same diff same diff same diff same diff same diff same diff

TCS c ol c ¢ c cib c c* c*
0CS bl LS

0-S e © e

INFR c b

CC t c* c

CND c

INTL

CFBL

nations. The first is the case where both features are allocated to the same user (e.g.
CCg@® INF Bg), which is shown in the columns “same” in the table. The second is the
case where two features are allocated to different users (e.g., CC4 & INF Bg), shown
as columns “diff”. Each entry in the table shows one of the verdicts (a) FI occurs, (b)
FI never occurs, (c) Fl-prone, as defined by the proposed method. The entries with
asterisk * represent feature combinations that actually cause FIs, based on the results
provided in [4].

First, we evaluate the efficiency of the proposed method. As shown in the table,
there are 64 combinations in total. The number of combinations with verdicts (a) or
(b) is 31, which is almost half of all the combinations. That is, half of the combinations
can be filtered. This implies that the number of combinations to be analyzed with more
expensive detection methods can be reduced to half by using the proposed method as
a front end of the detection process.

Next, we evaluate the quality of the proposed method. All the combinations that
cause Fls (entries with asterisk * in Table 1) are correctly covered by verdicts (a) or (c).
Although these percentages may not mean much on this small sample, it is interesting to
note that 42% (14 out of 33) of the interaction-prone verdicts involved actual Fls. Also,
and again accurately, there are no FIs in combinations with verdict (b). Therefore, the
proposed method achieves a good predictive quality in this case study.

6 Discussion
6.1 Scalability

One of the key issues is scalability, i.e. whether the method can be extended to realis-
tically large and complex sets of features. Although the filtering method proposed in
Figure 5 is for composition of two SC-matrices F' and G, it can be extended to more than
two matrices. Due to the well-defined composition operator @, the following properties
are satisfied: (C1) F&® G = G @ F (commutative), (C2) F& (G H)=(FoG)d H
(associative), (C3) F & F' = F (idempotent) (C4) F @ POTS = F (zero element).
Those properties allow us to analyze more than two features easily.

Also, the complexity cost in @ is linear in the number of rows and the number of
columns of SC-matrices, assuming that composition of each pair of submaps takes a
constant time (See Definition 4.4 ). This implies that even if the numbers of users
and stubs increase along with the feature’s complexity, the proposed method is well
applicable to such complex cases. Thus, the proposed filtering is scalable with respect
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to the numbers of features and users as well as to the complexity of the features.

6.2 Usefulness at Requirements Stage

The proposed method extensively uses the UCMs for filtering. Basically, paths and re-
sponsibilities are all formal elements of the UCM notation here. Additional information,
such as guards, pre-conditions and user constants/variables, or labels for start/ends
points may be associated with these elements for human use, but this information is
not formal. This lack of formality in the details makes the notation and the filter-
ing method itself lightweight, allowing requirements engineers to examine, visualize and
understand the FI analysis without having detailed implementation information or com-
plex theory/semantics. In this sense, UCM-based methods are semi-formal and they
are appropriate for FI “filtering”, but not for “detection”.

6.3 Subsequent FI Detection Process

By the nature of FI filtering, we need to perform FI detection for the FI-prone feature
combinations after the filtering process. In order to do this, it is usually necessary to
employ more formal definition and techniques. However, the characterization of Fls
described in this paper is so generic that it could be mapped to several formalisms.
Research is being conducted in the context of adapting our technique to LOTOS [2],
SDL, Petri nets and so on. These techniques are especially promising in this respect.

The proposed method gives us not only verdicts of likelihood of FIs, but also useful
information for FT detection to localize them. For example, consider again the example
shown in Figure 6(c). This combination is concluded to be Fl-prone. If there is any
FI in this combination, it must be in B’s scenarios since only B’s scenarios have been
changed by the composition. Hence, in the detection process, we can focus on B’s
scenarios only. This information can be utilized in detection processes such as guided
state space search and test case generation.

6.4 Related Work

Keck [8] proposed an FI filtering method that focuses on topological relationships be-
tween feature subscribers. Since the method examines relatively detailed information,
such as detection points and resource description, it is well applicable at a detailed spec-
ification stage, but not at the requirements stage. Heisel et al. [6] proposed a heuristic
approach at requirements level. However, this method requires sophisticated knowl-
edge elicitation to map requirements to their formal specification based on schematic
expressions, which may be a difficult task for requirements engineers. Static FI de-
tection methods (e.g. Nakamura et al.[12], Yoneda et al.[13]) using only a necessary
condition and/or heuristics might be called filtering. These methods are at the software
specification level rather than at the requirements level [1].

7 Conclusion

We have proposed an FI filtering method based on UCMs. Using the stub plug-in
concept of UCMs, we can characterize each feature in terms of its stub configuration.
This introduced a notational convention that can be useful to represent features with
UCMs. The different stub configurations are composed by means of matrix composition,
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and two simple and generic conditions are exploited for the filtering method. The
experimental evaluation shows that approximately half of the combinations can be
filtered. Basically, the matrix composition is performed by checking only pre-conditions
of the feature submaps, independently of the detail of the submaps. Thus, the proposed
method is easy to use and scalable.

Some topics for future research present themselves. Further information in the
feature submaps and more strict (and reasonable) conditions would improve filtering
quality. In addition, the assumption that submaps cannot contain stubs should be
relaxed. This would facilitate hierarchical analysis of complex feature scenarios. Also,
the application to more complex features like conference calls has to be studied.
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