
Requirements and implementation of printing subsystem in educational
computer system

Hideo Masuda, Masahide Nakamura, Akinori Saitoh, Koichi Kondo, Michio Nakanishi
Informedia Education Division, Cybermedia Center, Osaka University

1-30, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
Tel: +81 6 6850 6076 Fax: +81 6 6850 6084

Email: h-masuda@cmc.osaka-u.ac.jp

Abstract

This paper presents an effective framework to avoid
waste printing in an educational computer system. We first
point out four primary requirements to achieve the goal:
(1) easy previewing, (2) easy shrinking (e.g., page selec-
tion, n-up), (3) quota of papers (user-wise and printer-wise
accounting), and (4) authorized printer access.

Then, to meet the above requirements, we have im-
plemented a printing subsystem that consists of LPRng-
based servers with sophisticated settings, quota manage-
ment tools, and GUI applications for Linux clients. Statis-
tics show that the number of papers printed is significantly
reduced after deploying the proposed system.

1 Introduction

2 Requirements for printing system in edu-
cational computer system

2.1 Overview of educational computer system

The educational computer system of the Cybermedia
Center, Osaka University, provides computing services to
all Osaka University students. Its computer system consists
of nearly 800 Linux PCs and 10 unix server workstations.
The PC labs are distributed throughout 14 schools and fac-
ulties, including university libraries.

The educational computer system has only two gateway
servers, namely the mailserver and the proxy server, to the
Internet. The internal network, to which Linux PCs and
printers are connected, uses private network addresses.

The system is used by more than 14,000 students. Each
student is given a login account and disk space up to 20
megabytes, and can access the same computer environment

from any Linux PC. Lectures concerning the use of the cen-
ter’s facilities covercomputer literacy education as well as
advanced level education, e.g. simulation using the super
computer of the center.

2.2 Requirements for printer subsystem

We, administrators of the educational computer system,
do not simply want to reduce the running cost of printers,
but do hope that users should make good use of the limited
resources (paper and toner). To achieve this policy, it was
necessary to count the correct number of pages for each job,
and to set the upper limit of pages for each user. At the same
time, we should teach students to avoid waste printings, and
provide them with easy-to-use interface for the saving oper-
ations.

The major requirements for printer subsystem can be di-
vided into two categories. First category items are for ad-
ministrators and should be implemented in the management
system.

A1: collect the number of pages of each print job

A2: set the quota of pages for each user

A3: check the user’s quota and add up the page count in the
database

A4: limit access from unauthorized PC’s

Requirements of the second category is of the GUI tool.
The tool should be implemented so that unskilled students
can do the following operations with ease.

U1: preview all outputs in a uniform manner

U2: shrink (e.g., page selection, n-up, etc.)

U3: check the quota of papers and its balance

U4: manage printing his/her jobs in the queue.

1

3 Implementing printer servers

In this section, we show how to design and implement
the printing servers. This covers the administrator require-
ments from A1 to A4.

3.1 Subsystem design

The printers in our system are ordinary PostScript net-
work printers. The printers themselves do not have such
special features to implement mechanisms satisfying the ad-
ministrator requirements, specifically:

F1: Authentication and accounting functions.

F2: Access restriction of services (e.g., ftp, http, lpd) and
clients (hosts, networks).

In order to achieve these features, we decided to deploy
printer servers. The printer servers first intercept all printing
data from Linux PCs, and then perform transactions on au-
thentication and accounting. Finally, after the transacrion,
the servers pass the data to the printers. So, the feature F1
could be achieved by implementing sophisticated mecha-
nisms for the transactions on the servers.

However, for the access restriction (F2), we need to pro-
hibit direct access from the Linux PCs to the printers. So,
we divided the network into two disjoint subnets for the
printers and the Linux PCs, and deployed the printer servers
between two subnets. For this, note that the printer servers
must not act as IP routers.

3.2 Printer servers with LPRng

We assume in the system side that all printing jobs are
sent in PostScript format. All printing data is sent to the
printer servers with LPD protocol (Line Printer Daemon
Protocol, RFC1179). The PostScript is a de-facto standard
as printing format in UNIX, and there are many tools that
convert any data to the PostScript. So, we leave this con-
version to the user side with the GUI printing panel, which
will be presented in Section 5.

First of all, we focused on how to count pages of each
printing job (for the requirement A1). For this, two methods
could be considered.

Method A: Before sending a job to a printer, the printer
server asks the printer its current counter valuecbef .
After sending the job, the server asks again a updated
counter valuecaft. The value ofcaft�cbef is regarded
as the number of pages on the job.

Method B: Before sending a job to a printer, the printer
server counts the number of pages of the job by using
internal PostScript engine (e.g., Ghostscript).

Method B might cause mis-counting depending on printer’s
specification, since the specification of the internal
Postscript engine is usually different from the printer’s one.
Therefore, we adopt Method A, which directly accesses the
printer’s PostScript engine, in order to eliminate such the
specfication problem.

The UNIX’s lpd is an ordinary printer spooler for the
LPD protocol. It has basic features such as to forward the
received jobs, and to obtain simple account information.
Advanced features like counting pages are left to other filter
programs invoked fromlpd.

In Method A, the printer server has to communicate with
the printer several times while forwarding the job to the
printer. Also, we need other sophisticated features such
as job cancellation and accounting for other requirements.
Hence, we found it difficult to controll such complex mech-
anisms with the ordinarylpd.

To cope with the problem, we adopt an enhanced printer
spooler LPRng (lpr Next Generation). The LPRng has the
following features.

� Filters and accounting can be defined independently.
Hence, an external accounting program can be in-
voked.

� It is possible to forward a job to other printer after ap-
plying filters to the job.

� It has options for flexible access restrictions for a print-
ing job (which is relevant to the requirement A4).

By using the third feature above with the featureF2 in Sec-
tion 3.2, the requirement A4 is achieved.

3.3 Customizing LPRng and ifhp

We installed the LPRng on the printer servers, together
with an input filter programifhp which works well with
our printers. To achieve the administrator requirements, we
have performed the following customizations and settings.
The capitelized words are programs newly implemented by
us.

1. We applied a wrapper, called IFECIP, toifhp. For
each job of a user, IFECIP looks up a database of print-
ing quota (presented in Section 4). If the user exceeds
his/her quota, then IFECIP returns an error. Otherwise,
IFECIP passes the job toifhp.

2. ifhp executes a scriptaccounting.sh before
sending a job to a printer. Hence, we added a pro-
gram PAGECOUNT, which asks the printer its current
counter value (cbef , see Section 3.2), toaccount-
ing.sh 1.

1ifhp is supposed to have a PS method to count pages. However, it
did not work with our printers.

2

3. If the job is successgully sent to the printer,ifhp acti-
vates again the accounting.sh, in which PAGECOUNT
gets the counter value (caft).

By those customizations, we can putcbef andcaft in a
log file for each job. With the log file, we can easily attain
the requirements A1, A2 and A3.

PAGECOUNT needs bi-directional communication with
a PostScript engine in the printers. However, the LPD pro-
tocol is uni-directional. It can send only simple messages
such as error codes. As other options, we could use two-
way protocol such as AppleTalk, Centronix, SNMP with
Print MIB(RFC1759). However, since our printers support
a special mode called ’raw socket mode’, we are using it.
The ‘raw socket mode’ provides a data communication be-
tween a server and a PostScript engine in the printer on a
unique TCP port. Some venders (e.g., HP) implements it in
their printers.

Even if the PostScript engine completes the job, the
printer may be still printing the data to physical papers.
Therefore, if PAGECOUNT asks the current counter value
while the printer is still working, PAGECOUNT would mis-
count pages less than actual output. Toovercome the prob-
lem, we have implemented the following algorithm:

1. PAGECOUNT sends a ”pagecount” Postscript com-
mand to a printer (command is ”statusdict
begin pagecount (*) print = flush
end”). If no response received from the printer within
10 seconds, PAGECOUNT gives up the request.

2. PAGECOUNT receives a current counter value (let it
beprev) from the printer.

3. PAGECOUNT waits 5 seconds.

4. Do the above 1. again.

5. PAGECOUNT receives the current counter value (let
it benew) from a printer.

6. If prev 6= new (which means that printer is still work-
ing), goto 2 with ”prev := new”

7. PAGECOUNT outputs the total number of print(new).

By this algorithm, PAGECOUNT can strictly count the
paper.

4 Managing print quotas

In this section, we show how to manage the printing
database and the printing quota (A2, A3).

4.1 Analyzing logs and creating database

In order to account the printing, we create the database
from the raw log file ofifhp. The flow chart of this proce-
dure is as follows.

Raw log (ifup) ! Readable printer log! Database

This procedure is performed twice a day. We firstly trans-
late theifhp’s log files to readable printer log files. Next
we analyze the readable logs and calculate the number of
papers that the users have printed so far. We create a data
file for each PC lab.

The list of PC labs is

B = f”kyositu”, ”kanri”, ”bungaku”, ”hoken”, ”igaku”,
”kougaku”, ”kyotu”, ”ryugaku”, ”yakugaku”, ”genbun”,

”hougaku”, ”jinka”, ”kisokou”, ”rigaku”, ”sigaku”g.8<
:

”kyositu”: Classroom in the center.
”kanri”: Administrator’s computers.

the others: Computer labs of the faculties.

The database is the set of plain text files. The data file
is named by the computer lab, and it is constructed with the
lines of the user name and the number of papers which the
user has printed at this computer lab.

All of the data files are plain text files. That is why it is
easy to debug the program and edit the data files by UNIX
commands and script languages.

4.2 Limitation rule

The quota of papers for a user is determined by the com-
bination of user’s faculty and the faculty of the computer
labs. The limitation rule of our system is designed for any
combination of faculties and computer labs. Moreover, we
can gain the quota for each user at each lab. For example,
we show some limitation rules.

Ex. 4.2.1 The quota of a standard user is 300 papers.

Ex. 4.2.2 The quota of a student of Department of Science
is 1000 papers for the computer lab ”rigaku”. And it is 300
papers for the other computer labs.

Ex. 4.2.3 The quota of a administrator is no limitation for
”kyositu” and ”kanri”. And it is 100 papers for each com-
puter labs.

4.3 Checking quota

In order to get the information about printing account,
we use the commandlpacctinfo. This command first
reads the configuration files of limitation rules, and accesses
the database. Then it returns the information about printing
and check whether the number of printed papers is over the
quota or not.

3

It is very easy to uselpacctinfo. We show some
examples.

Ex. 4.3.1 Show the number of printed papers.
lpacctinfo -u user -h host -p printer n

--print-page

Ex. 4.3.2 Show the quota.
lpacctinfo -u user -h host -p printer n

--print-border

Ex. 4.3.3 Show the numbers of remained printable papers.
lpacctinfo -u user -h host -p printer n

--print-remainder

The returned value oflpacctinfo give us the permis-
sion or the prohibition to printout.

5 GUI applications for Linux

This section presents GUI applications for printing, im-
plemented on the Linux clients. The applications cover the
user requirements from U1 to U4 described in Section 2.

5.1 GUI printing panel

Compared to other GUI-based operating systems (e.g.,
MS Windows), Linux lacks user-friendly interface for print-
ing. Although Linux has a variety of commands and fil-
ters for advanced printing, most of them are used from shell
command lines. Hence, users must be familiar with Linux
shell and sophisticated options, which is often difficult for
unskilled students.

To cope with the problem, we have developed a GUI,
calledLPRGUI, shown in Figure 1. LPRGUI is a front-end
of the Linux standard printing commandlpr, and provides
GUIs for advanced printing options. LPRGUI was written
in the Perl/Tk language with about 1,200 lines of code. Ta-
ble 1 summarizes features implemented in LPRGUI.

In the Linux clients, all applications pass the printing
data (plain text or PostScript) tolpr via a file or standard
input. LPRGUI first intercepts the data and spools it as a
temporary file, converting into PostScript if necessary (by
usinga2ps). Since the target data is always stored as a
temporary file in PostScript, we can use and manipulate the
data without touching the original data.

Next, for the temporary file, LPRGUI launches the re-
lated filters and/or commands with given options, and apply
modification. In order to allow users to specify the options
easily, LPRGUI provides graphical interfaces such as but-
tons, entry boxes and radio buttons.

Finally, LPRGUI passes the data with modified options
to lpr, which completes printing operation. In the follow-
ing subsections, we will explain features of LPRGUI.

Figure 1. LPRGUI:GUI printing panel

5.2 Satisfying user requirements

First, let us see the features covering the requirement U2
in Table 1. Page selection and n-up are primary features to
shrink pages. The options for them can be specified easily
by radio buttons and entry boxes. The orientation also helps
the saving, since it can prevents documents with large width
from being split off multiple pages. Thus, the requirement
U2 can be satisfied.

Next, by pressing preview button, LPRGUI launches the
filters for shrinking, which are mentioned above, to mod-
ify the (temporary) file, then activates a postscript viewer
gv with the modified file. Thus, user can easily preview
the printing image throughgv, just by mouse clicks and/or
simple key typing, which fulfills the requirement U1.

LPRGUI generates a pull-down list of printers from
/etc/printcap, by which user can easily choose print-
ers in the lab. When a printer is selected, LPRGUI looks up
the database with the lpacctinfo (see Section 4), and shows
the balance: how many papers the user can use from the
selected printer. If the user exceeds the quota, LPRGUI dis-
ables “print” button and tells the user “quota exceeded”.
The user cannot print any more pages through LPRGUI.
Thus, the requirement U3 is satisfied.

Pressing “Job details” button launches another GUI ap-
plication, calledLPRMGUI shown in Figure 2, which man-
ages print jobs in printer queues. LPRMGUI is a wrapper
of lpq andlprm. It shows the status and printer queue
of each selected printer. Also, users can easily select un-
necessary jobs from listbox widgets, and delete them by

4

Table 1. Features of LPRGUI

Requirements Features Description Related commands, filters
U1:preview Preview Preview the printing image gv
U2:shrink Page selection Select printing pages psselect

n up Multiply pages per a paper psnup
Orientation Choose page orientation a2ps, ps2ps

U3:quota Printer selection Select printers lpr, printcap
Show balance Show the number of printable paper lpacctinfo
Disable printing Disable print operation when quota is exceeded lpacctinfo

U4:job Job details View printer status and queue LPRMGUI,lpq
Jobs cancellation Cancel print jobs LPRMGUI,lprm

Misc. Raw data filtering Block raw data (e.g., image, sound) to be printedfile
Bilingual support Change language on labels and buttons Environment variableLANG

Figure 2. LPRMGUI: Print job manager

pressing buttons. LPRMGUI has options for the job can-
cellation, which helps user cancel multiple jobs simultane-
ously. Hence, even unskilled users can manage their print
jobs without knowing the shell commands, which satisfies
the requirement U4.

Therefore, all of user requirements from U1 to U4 are
satisfied by deploying LPRGUI.

5.3 Other features

As shown Misc. in Table 1, there are other useful fea-
tures implemented on LPRGUI, though they are not directly
related to the requirements.

The first feature is raw data filtering. The data to be
printed is not always PostScript (or plain text) processed by
applications. That is, users can directly typelpr from the
terminal with raw data files (image, sound, etc.). If not man-
aging raw data appropriately, this results in waste of papers.

To prevent this situation, LPRGUI first checks whether a
given file is raw data or not withfile command. If the file
is raw data, LPRGUI rejects it by prompting user: “This file
is not printable”.

Next feature is bilingual support. We have many foreign
students as users. Due to the language barrier, some of them
are using the Linux clients in English mode. So, we imple-
mented a feature to switch the language (Japanese and En-
glish) on labels of GUIs. The switching is done depending
on the value of the environment variableLANG.

6 Statistics

Table 2 shows statistics gathered by the printing database
presented in Section 4. The table contains statistics of first
semesters (6 months) in years 2000 and 2001. According to
our experience in managing the educational computer sys-
tem, we knew that for educational use, about 300 pages of
printing are enough for a student per a semester.

In the year 2000, the printing subsystem had not been
deployed yet. Although we announced the students to pre-
vent waste printing, the usage was up to students’ morals
only. We can see in Table 2 that on average, 60.2 pages
were printed by a student per a cemester. 110 students had
printed more than 300 pages, and the total number of pages
they printed over the 300 pages is 88,250, which is a quarter
of all printed pages!

In 2001, we deployed the proposed system and set the
quota to be 300. The number of students who had printed
was increased2. However, the total number of pages re-
mains almost the same as the one in 2000. The average is re-
duced to 52.9, which is 12% reduction per a user. Moreover,
the number of pages printed over the quota is decreased to
23,649, which is 6.7% of all pages.

2We consider that this is due to curriculum changes.

5

Figure 3 shows a frequency distribution of users. The
hotizontal axis represents ranges of printed pages. The ver-
tical axis plots the number of users who did the printings
within the ranges. From the graph, we can see that the
frequency distribution of 2001 inclines towards the smaller
ranges. This fact shows that more users have printed less
pages after we deployed the proposed system.

Strictly speaking, it is very difficult to define what the
waste printing is, and thus, difficult to conclude that the pro-
posed system reduces theactually waste printing. However,
we can say at least that the proposed system has success-
fully achieved significant reduction on total printing cost.

～～～～～～～～
～～～～～～～～

4807

180

150

120

90

60

30

0
0-99 100-

199
200-
299

300-
399

400-
499

500-
599

600-
699

700-
799

800-
899

900-
999

2000

2001

5490

514
676

Figure 3. Frequency distribution of users

7 Discussion and concluding remarks

References

[1] Tetsuro Tanaka, Koji Ando, Akira Yoshioka: “User
management in multiple OS”, Technical Report of
IPSJ, DSM 16-9, pp.49–54 (1999.11) (In Japanese).

[2] Shin Maruyama, Yasuo Fujii and Jun’ichi Nakamura:
“Imprementation and management of printing subsys-
tem with quota feature” Proc. of Education Confer-
ence of Infomation Processing, p.342 (2001.10) (In
Japanese).

[3] Takefumi Ogawa, Masahide Nakamura, Koichi
Kondo, Hiroyuki Oosaki, Hideo Masuda, Junji Kita-
miti, Michio Nakanishi: “Course tools and manage-
ment tools for an educational system on Linux”, Proc.

of Education Conference of Information Processing,
pp.239–242 (2000.12) (In Japanese).

[4] RICOH, “Ridoc IO Gate”,
http://www.ricoh.co.jp/IPSiO/utility/iogate/index.html

[5] CANON, “NetSpot Suite”,
http://www.canon-sales.co.jp/Product/appli/netspotsuite/index-
j.html

6

Table 2. Total statistics and over-quota printing (300 pages per a semester)
Year 2000 2001
of users having printed 5,822 6,608
of pages printed 350,509 349,256
Average # of pages per a user 60.2 52.9

of users having exceeded the quota 110 [1.90%] 37 [0.5%]
of pages printed above the quota 88,250 [25.2%] 23,649 [6.7%]

7

