Hakoniwa: Monitor and Navigation System
for Cooperative Development
Based on Activity Sequence Model

Hajimu IIDA', Kei-ichi MIMURA', Katsuro INOUE!, and Koji TORII!

tDepartment of Information and Computer Sciences,

Faculty of Engineering Science, Osaka University

Abstract

This paper proposes a process model for the software de-
velopment performed by a group of developers. The model
is defined with a set of tasks assigned over the dewelop:
ers and performed by them concurrently. A task s de-
fined with a sequence of primitive activities, and i may
involue communication primitives which establish coord:-
nation with other tasks. By this model, reworks and back-
trackings ave easily represented with repetitions in the regu-
lar expressions. Interactions among developers are denoted
by the tasks communication. The current status of each
task and each developer is easily followed, and the progress
of the overall project would be effectrvely known. Based on
this model, o prototype system for supporting and moni-
toring process, named “Hakoniwa”, has been tmplemented.
The Hakoniwa system is composed of multiple developers’
navigators and a manager’s monitor. A navigator leads
a single developer by showing possible succeeding activities
on menus and automatically activates appropriate devel-
opment tools., The monitor reporis the advances in ac-
tivity sequences of developers, with various data such as
the initiation-termination times and the number of activity
repetitions. A commonly used ezample problem, proposed
by Kellner et al., is used to show the applicability of our
model and system.

1 Introduction

Including the pioneer research of process program-
ming[201[, there have been numerous efforts of mod-
eling software development processes in some formal
or semi-formal manners[6, 15]. Software development
processes are abstractly defined with respect to ac-
tivities, decisions, and environments of the develop-
ments. By modeling the software process, we may
explicitly understand the development process, which
might have been unconsciously used by the developers.
Once the process model is established, we can figure
out the characteristics of the process on the basis of
the model. The notion of the process is easily trans-
ferred to other people through the model more easily
and less ambiguously. Furthermore, with the process
model, we are able to define the structure of the soft-
ware development environment, which supports the
development process.

It is also expected that process models would help
to achieve good management for various activities
in the process, as well as other prospects mentioned
above. Many software developers, especially Japanese

The authors' address: OQsaka university, Toyonaka, Osaka
560, JAPAN. Internet mail address: iida@ics.osaka-u.ac jp.

0-8186-3600-9/93 $3.00 © 1993 IEEE

64

tGraduate School of Information Science, Advanced

Institute of Science and Technology, Nara

mainframe computer manufacturers, have developed
and applied their own standardized development pro-
cesses with management point of views, most of which
are based on traditional water-fall models[4]. Us-
ing the standardization, the current status of the de-
velopment is expected to be estimated[26]; however,
actual development activities involve many interrup-
tions, reworks, backtracking, and many other excep-
tions, which are not usually well described in the stan-
dardization. Therefore, comprehending the current
status only through the advance of the standardized
process is fairly difficult. In most cases, experienced
managers check the various documents and source
codes, and they assess the current status without re-
lying on the progress of the standardized process.

Concerning on the issue of knowing the current sta-
tus of the development, researches of product metrics
have been pursued[2, 18]. The product metrics such as
lines of code, number of faults, number of control path,
and many others are used for estimating completeness
of the activities. However, most of these researches
only propose the product metrics without any under-
lying process models. It is naturally observed that the
metrics to measure certain products are closely depend
on the development process, and if the process changes
then the metrics have to be changed also. Introducing
the process models into product metrics environment
would be essential so that we can determine the met-
ries and expect better assessment of the current status
of the development.

The actual software development is performed with
cooperation of many developers in general, although
the standardized processes do not concern explicitly
about the various issues relating to multiple develop-
ers. For example, it is essential to note coordination
issue of the developers such as control of concurrency
and synchronization of activities for each developer.
Also, it seems very important for the standardization
to include data collection issue, while currently there
is no implication to estimate the current status of each
developer under the multiple developers environment.

In this paper, we will discuss process models fo-
cusing on managing software processes with multiple
developers, which are indispensable for these issues.
The models have to define activities and their rela-
tions clearly. Based on such models, navigation of
activities would be straightforwardly provided, and
monitoring each developer’s progress would be easily
accomplished.

We propose here a process model for the multiple
developers’ software development, mainly concerning

on the coordination issue of activities of each devel-
oper. In our previous work, we have modeled de-
velopment processes performed by a single developer
with activity sequences specified as CFG (context free
grammar)[10]. We assumed that the activities per-
formed by a single developer are basically sequential,
and the formal grammars are considered to be a very
good vehicle to represent them. However, that model
can not handle parallelism which is essential to repre-
sent the multiple developers’ work. Thus, we decided
to design a new model for the multiple developers’ ac-
tivities, importing the previous model to define the
activities of the individual developers. The model de-
fines the development process with a set of tasks with
communication primitives.

Communication primitives are defined and involved
in the tasks, which control the progress of activi-
ties and organize the overall tasks in the model, and
each developer is responsible for accomplishing several
tasks. By this model, reworks and backtrackings are
easily represented with repetitions of activities in the
regular expressions. Suspending and resuming works
are denoted by tasks for a developer with communi-
cation. Using this model, also the current status of
each task and each developer is easily followed, and
the progress of the overall project would be effectively
known to the project manager.

We will also discuss the use of this model for nav-
igation and monitoring of each developer. Based on
the proposed model, we have developed a prototype
system, named Hakoniwa (which means diorama in
Japanese), for the navigation and monitoring under
cooperative development environment. This system
provide menus for next proper activities to each devel-
oper. It also collects and displays data of current sta-
tus of the developers, which are served to the project
manager. The project manager easily comprehends
the progress of each task assigned to each developer.

We have used the Hakoniwa system in order to
model and construct an environment for the standard
example problem[16]. The process of the problem is
composed of eight tasks, each of which corresponds to
primary substep of the problem. The constraints and
communications among substeps are naturally rep-
resented by communication primitives introduced to
each task.

Our approach of process modeling, with specific
views of multi-developers’ activities and their syn-
chronization and communication, seems a novel one,
while there are related researches on modeling pro-
cesses through various views[13, 14, 24, 28, 29, 30].
Also, we have proposed a method of building environ-
ment from the model, and actually built a prototype
system. Applicability of our approach would be par-
tially presented by developing an environment for the
example prablem.
 Representation methods of tasks have been exam-
ined; we have compared language classes for the rep-
resentation of activity sequences between regular ex-
pressions and context free grammars. Also, the dead-
lock detection method which is a important issue of
multi-developers’ environment has been studied.

In the followings, we will propose the process model

65

in Section 2, and will discuss a method to support de-
velopment and management with this model in Section
3. The Hakoniwa system will be described in Section
4, and an experience of use of Hakoniwa for Kellner's
example problem is presented in Section 5. We will
give discussion of the language class and the dead-
lock detection methods in Section 6, and conclude in
Section 7.

2 Modeling software process
2.1 Composite modeling approach

Although various software process models have
been proposed, real development processes are so com-
plicated. They are composed of various factors such as
activities, products, resource assignment, scheduling,
and many others. It is difficult to represent such a
complicated process with a simple monolithic model,
and thus many of the proposed models are fairly com-
plicated.

From the view points of documentation and for-
malization, complicated models have disadvantages,
i.e., they are difficult to understand, evaluate and val-
idate. Here, we propose a composite software process
model consisting of several simple models. Each model
which is a component of the composite model repre-
sents single view of the software process from a certain
point. We assume here two component models: activ-
ity model and product relation model (Figure 1).

product
relation
model

i
i
]
3

R

e RO K R KN g

& - mapping
editor] |compiler] | linker]

Figure 1
Model

actual
—lenvironment

Overview of Composite Software Process

In activity model, constraints of the order of activ-
itles appearing in the development are defined, and
in product relation model, relations among the prod-
ucts appearing during the development are specified.
In this paper, we focus on the activity model reflect-
ing the aspects of cooperative development works per-
formed by multiple developers.

2.2 Activity model

The activity model proposed here is based on con-
current process model such as CSP (Communicating
Sequential Processes)[8]. Our activity model is com-
posed of several concurrent tasks. There are many

kinds of activities in actual development, and they are
performed by several developers concurrently. Each
developer communicates to other developers, and co-
ordinates and controls the progress of activities.

If we model this process from a human-centered
view point, the madel may become complicated, since
one developer might be responsible for performing sev-
eral independent activities which have to be involved
in the model. Here, we propose activity-centered
‘model, where related activities are treated as a sin-
gle task, and each developer performs several tasks.
We assume that the developers are processors for the
tasks. .

Task definition

An activity may be considered as a small unit of
work such as “editing o file", or as a relatively large
unit of work such as “changing the system specifica-
tion”, each of which is performed by several people.
In this paper, we define a primitive activity as an
atomic unit of work such as tool execution or decision
making. We define a task as a sequence of primitive
activities” which can be represented without concur-
rent actions. Although it is allowed to use CFG to
specify activity sequences of tasks, we simply employ
RG (regular grammar) here. A task is defined as a
regular expression of primitive activities. In regular
expressions, we can also use operators representing it-
erations and selections which are useful to specify ac-
tivity sequences. In this paper, we use the operators
described in Table 1. Meta symbols (‘[1) are added
to the ordinary regular expression operators. With
these operators, we can easily and simply describe the
expressions generated by RG.

Table 1: Operators Used in Task Descriptions

IS Zero or more repetitions of symbol A

AT One or more repetitions of symbol A

[& 1 | Zero or one appearance of symbol A
() | Grouping
I Selection

For example, a task to edit and compile a file until the
compilation succeeds can be specified as follows:

task = (<Edit file>T <Compile file>)T;

An overall development process is represented as
a set of tasks which may be performed concurrently.
Inter-task synchronization and cooperation are repre-
sented by simple communications.

Communication primitives

Communications are basically represented by asyn-
chronous transferring of messages (strings of char-
acters). Synchronization of tasks and control of
other tasks are implemented by these communica-
tions. Communication operators are categorized into
two types, data transfer and task control.

*In the followings, we may refer to primitive activity as ac-
tivity simply.

66

The followings are features of the data transfer op-
erations:

e Data type of the transfer is string.

e One task may have several input ports for data
receive.

o To send a data, a destination task and its input
port should be specified.

e Foran input port, there are the operations to read
data and to check its emptiness.

Specifically, there are three primitive operations
shown in Table 2.

A send operation asynchronously sends a strings
to another task, and then it terminates immediately
after that. There is a default port in every task, and
if the port name is omitted, this port is used. Recv
and peek operations return values, A recv operation
reads the first string in a specified port, and returns
it. This operation is blocked if there are no message in
the port. A peek operation is a non-blocking one, and
it inspects the existence of message in a specified port.
If some messages are found, it returns true. Other-
wise, false is returned immediately. The returned
values are used in restriction conditions of selective
expressions[10], and their values do not appear in the
expressions explicitly.

These communication operations can be also used
as events for synchronization and control of tasks. For
example, peek can be used to represent a process ex-
ecuting a job and waiting for a message repeatedly
(Figure 2).

Figure 2: Task Synchronization Example

In Figure 2, taskA and taskB proceed concurrently,
and taskB waits for 'OK’ message sent from task A on
executing its own job. This can be specified as follows
by using peek operator:

task A

= <Job-A> <send taskB, OKport,
task B =

(<Job-B> <peek OKport>)}+;

0K >;

Task controlling issues are as follows:

e Initiation (activation) of other task
e Termination of other task
These issues are represented as constructs shown in

Table 3, by using message transfer primitives proce-
durally: Start operator is represented as a pair of

Table 2: Message Transfer Primitives

Operator | Argument Operation Return value
send task,port send a string to other task -
recy port receive a string from a port) string
peek port inspect existence of message in a port boolean

Table 3: Task Control Primitives

OUperator | Argument Operation
start | task send a request of initiation (activation) to other task
wait task wait for a termination of other task
exit task inform its termination to other task

send in a task and recv at the top of another task.
Thus, by default, every task has a recv operation im-
plicitly at the top of the sequence. Wait operator is a
special case of recv operation.

These communication primitives are also treated as
activities, and together with other activities, they con-
stitute activity sequences. The activity sequences are
represented as regular expressions. Sequences which
can not be represented with regular expressions may
be decomposed into smaller tasks'.

For example, assume taskA activates taskB and
taskC, and taskD waits for termination of them (Fig-

ure 3).
start @ wewait

start wait

Figure 3: Example of Concurrent Tasks

This example can be specified in activity model as
follows: :

task A = <Job-A> <start B> <start C>:
task B = <Job-B> <exit D>;

task C = <Job-0> <exit D>;

task D = <wait B> <wait C> <Job-D>;

Finally, each developer is assigned several tasks by
project manager, and performs specified activities ac-
cording to their regular expressions (Figure 4).

Task classification

Several tasks may have the same activity sequence

but different properties such as input/output module

names. For example, taskl and task? have the same
activity sequences but taskl modifies moduled, and

"The class of representation language will be discussed in
Section 6.

67

Development process s,

f,davalopeﬂ\ f.ﬂdavelopeﬂ\‘ },-develc:per&\
@@
‘ l edit "mlc"+
H cc - "'ml.c”
<5y
| H start askD ;

Figure 4: Overview of Activity Model

task2, moduleB. The common activity sequences are
defined as task class, and tasks are defined as in-
stances of the task class. For the example, we may de-
fine task class Task i, which modifies ModuleX. The
properties depending on the instances such as module
names are defined as instance variables.

Other alternative models

There are some alternatives to model concurrent
development processes. For example, Kellner uses a
state transition model of STATEMATE[17]. Although
it provides simulation-based enaction mechanism with
concurrent constructs, sophisticated communications
would not be established. Also, state chart represen-
tation is not enough for the abstraction suzh as task
classification and parameterization. Saeki uses LO-
TOS (Language of Temporal Ordering Specification)
which is based on CCS model[25]. It has so many
constructs that the descriptions would be difficult to
be described, understood, and executed. To express
specific perspectives of a process, this model would be
considered more than encugh.

Williams's SPM][30] is similar to ours, which uses
regular expressions extended with the shuffie opera-
tor to express concurrent activities. SPM also in-
cludes a message-passing definition. Although the
shuffle operator is convenient to describe the concur-
rency of the processes simply, SPM does not have suffi-

developeri

manager /

s=~Hakoniwa server (management support)s
developer2

developer3

task organizer

taskA
invacation TaskB
i driver

ideveloper1 developer2 developer3

Development support

Figure 5: "Hakoniwa" System Architecture

cient functionalities for the communication needed for
our purpose; In SPM, concurrency synchronizations
are expected to be handled by the shuffle operators.
Message-passing is subsidiary and does not provide
the mechanism for that[30]. However, the activity se-
quence such as previous example process waiting on
job can not be specified by the shuffle operators.

3 Supporting and managing with

activity model
In this section, we discuss ways of supporting

and managing the development by using our activity
model.

3.1 Development support

First, we consider the ways of supporting each de-
veloper.

(1) Navigating activity
When a developer has many complicated works

which can be considered as tasks), it would be dif-
cult for the developer to know the followings:

¢ How many tasks and which of the tasks are as-
signed?

e Which activity is next to an activity in each task?

e Are there any tasks suspended and not resumed
yet?

Information to answer the questions is essential to sup-
port the developer. Giving such information automat-
ically and navigating the developers are very impor-
tant aspects to be considered.

(2) Communication support

By defining the processes based on the activity
model, the followings would be clear:

¢ What kind of communication primitives is needed
among the tasks 7

e What is the timing constraints of communication
primitives ?

By the definition, some of simple communication
primitives would be automatically executed.

3.2 Management support

For the project managers, the following benefits will
be expected by the activity model:

o The task definitions are used as a measure of elab-
oration when assigning works to each developer.

e In the case of distributed development, commu-
nications among the development sites could be
clarified with task communications in the model,
so that communication costs can be assessed and
reduced.

e By monitoring each task status, progress and
workload are estimated. Moreover, it would be
easier to find suspended and not resumed tasks
or freezed tasks (in dead lock).

e The activity model is used as a milestone (mea-
sure) of project progress.

We have developed a prototype system of supporting
and navigating the developers and the manager based
on these discussions.

[Hakoniwa serveﬂ 444

l—rn—lr“{—ﬁ

All task descriptions

- ==z ==
Assignmem:i 4 Assignment to developers x
information|| ™ (by project manager) s

L p—— b “ i I oty
= 1T
Task set 1 Task set N
— j S
W v P
Restriction || pa |
! ato
inidns »(PDL gevneratorj (PDL gener r)
_________/ __________/
w \"—-————-""/
,WW > gz.ask organizer
: v hd
(PDLinterpreter) - ((PDL interpreter)

e Dgveloper-1 «

=~ Developer-N =

Figure 6: Generation Flow of Hakoniwa Environment

4 Hakoniwa system
4.1 Overview

Based on the activity model, we have developed a
prototype of a cooperative development support sys-
tem"“Hakoniwa"*. Figure 5 shows the overview of the
system architecture.

For an activity model description defining all
tasks in the development, there is a task moni-
borc{ communication server named Hakoniwa server,
and there are support/navigation managers for a sin-
gle developer named task organizers. A task orga-
nizer invokes and controls several task execution en-
gines (task driver) instantiated for each task. Each
task driver controls the sequence of activities. Prod-
ucts are manipulated through a product server instan-
tiated from the product relation model in the compos-
ite software process model as mentioned in Section 2,
which is out of the Hakoniwa system.

Major features of the Hakoniwa system are as fol-
lows.

(1) Activity navigation

Based on the assignment of tasks to each developer
(this may be made by a project manager), task or-
ganizers for each developer and task drivers for each
task are generated. A task driver navigates the devel-
oper by providing menu selections for the next activ-
ities. These menus are automatically generated from
the definition of the activity sequence. If an activity in
the sequence is primitive one accomplished by a tool

invocation, the task driver automatically activates the
tool.

*“Hakoniwa” is a Japanese word which means diorama.

69

(2) Progress monitoring _

Each task driver reports to the Hakoniwa server
log information of the task progress collected from the
menu selection history. The project manager can cap-
ture the current status of whole project through the
Hakoniwa server. It displays the status of each task,
and it also shows the history of activities for each de-
veloper.

(3) Communication support

All communications among the tasks are relayed
through the Hakoniwa server. Simple communication
primitives such as task initiation request and task ter-
mination notification are automatically executed with-
out any action of the developers.

4.2 Implementation

We assume that the cooperative development en-
vironment is under distributed one over several dis-
tinct workstations connected through networks. The
mechanisms underlying are TCP/IP communication
protocol and UNIX operating system. The current
imple}mentation works on Sparc station with Sun OS
4.1.1

A functional language for software process descrip-
tion PDL[12] and its interpreter system have been ex-
tended to be used as the task drivers. The PDL in-
terpreter has built-in functions such as menu selection
and tool invocation, while we have newly implemented
the communication primitives. A task organizer is
implemented as an application program of the PDL.
Each task organizer activates the task drivers corre-
sponding to the assigned tasks.

We employ the same approach as one proposed in
[10] to generate task drivers. Task drivers are gen-

erated from the task descriptions (grammar), adding
restriction conditions of the selective expression. Se-
lective expressions such as ‘A|B’ are translated into
menu selections in PDL, The sensitivities of selec-
tion items depend on their restriction conditions.
For example, the edit-compile-link activities expressed
as (edit|compile|link)™ are activated by a menu
which is composed of three items, ‘edit’,‘compile’,
and ‘link’. The restriction condition of selecting
‘link’ in this menu is the success of the previous
‘compile’. Restriction conditions are determined by
using the results of communication operations or the
attributes of the concerning products[10]. These re-
strictions are supplied to the generator as a set of PDL
functions (Figure 6),

Task communication

Communication operations described in Table 2
and Table 3 are implemented as built-in functions
of PDL interpreter. They are implemented under a
server-client architecture, and all messages are relayed
and controlled by the Hakoniwa server.

Task status display

In order that the project manager gets intuitive un-
derstanding of the current status and progress of the
project, it is insufficient to simply display raw data
such as sequence of time stamps for initiation and ter-
mination of each activities. This is because it is not
easy to grasp the current position in the overall task
only with such information. Since an activity sequence
of a task is represented by a regular expression in ‘the
activity model, the Hakoniwa system displays the ac-
tivity history and current activity as a tree form of the
regular expression (Figure 7).

— Regular expression o :
CodeCheckOut (Edit® Compile J CodeCheckin E

— Tree representation of the struciure of regular expression———
seq (start=11:05) i

(start=11:05,end=11:05)
rep (start=11.06, repeat=1)

seqg (start=11:08)
rep (start=11:06, repeal=3)
I—@ (stari=11:23)
=

“seq” reprosents sequencial execution, and
“rep” represants repeblion once or mare times.

Figure 7: Regular Expression and Tree Display of Task

Figure 7 shows an example of a task defined by a
regular expression and its structured status informa-
tion. In this example, the developer at first retrieves
a program code from the repository (represented by
CodeCheckOut). After repeatedly editing (Edit) and
compiling (Compile), the code is stored into the repos-
itory (CodeCheckIn). The structure of regular expres-
sion is shown with components seq and rep similar

70

to those in Jackson's tree of JSD method (seq means
the sequel and rep means the repetition one or more
times), and the overall shows the hierarchical structure
with intermediate nodes for such as sequel or iteration.
The Hakoniwa server records and displays the initia-
tion time and termination time for each node, and es-
pecially foriteration nodes, it displays also the number
of iterations. In this example, Edit actually started
at 11:23 and it was repeated 3 times. To display this
information, the Hakoniwa server has an internal state
transition map for each task, and it keeps track of ac-
tual state transition which is advanced by the activity
sequence.

5 Example of model description and
execution

In this section, we show an example of the descrip-
tion of the activity model, and its execution result.
As a target process, we use “Software Process Model-
ing Example Problem” proposed by Kellner et al.[186],
which offers the basis of comparison and evaluation of
various software process modeling approaches. Some
solutions have been already reported[17, 25].

This problem specifies a process of modifying one
module in a system, and the process is composed of
8 substeps. Fach substep is defined with some pre-
conditions, post-conditions or other constraints. In
this problem, the effects of the modification are as-
sumed to be limited to the module only, and it does
not affect to other modules. Therefore, there is no
need to modify other modules, or to check the consis-
tency of related modules. This process starts when the
project manager has made the schedule and assigned
the tasks. The whole of the process terminates when
the new code for the module passes the unit testing.
The view of this process by the activity model is shown
in Figure 8.

In this example, 8 substeps such as ModifyDesign
and ModifyCode are considered as tasks. There are
some constraints on the initiation and termination of
the tasks such that “ModifyCode can not terminate
until ReviewDesign terminates”, or *TestUnit can not
stert unttl both ModifyCode and ModifyTestPackage
terminate”. These constraints are represented by task
communications in the activity model.

Figure 9 shows the example of task definitions. For
example, task ScheduleAndAssignTasks sends re-
quests to 5 other tasks which are performed in con-
current. ModifyDesign first repeats (represented by
‘+") actual modification work such as invoking an ed-
itor (<modify design>), and send the initiation re-
quest to ReviewDesign (<start ReviewDesign>).
These definitions are parameterized by the module
names. By giving the actual module name to the defi-
nitions, we get an instance of the task definition. Task
organizers and task drivers are obtained by translating
the instantiated definitions into the PDL programs.

By executing obtained PDL programs, task orga-
nizers and task are established and the developers are
navigated with the menus shown as in Figure 10. The
Hakoniwa server monitors the progress of each task
and displays the information such as in Figure 11.

e ——
Monitor

Progress ™

—

r——y
. . : Modify i
Modify Desigr Modify Code Tast Plans !

J \ J —

¥ |
y y

pr———

B S Modify Unit

Review Desin TestUnit | TestPackagj
\ J “ J

initiation request ———— termination notification =====----#

Figure 8: Activity Model for The Example Problem

ScheduleAndAssignTasks =
<start MonitorProgress> <start ModifyDesgin>
<start ModifyCode> <start Modify TestPlan>
<start TestUnit>;
ModifyDesign =
<modify desgin> + <start ReviewDesign>;
ReviewDesign =
<review designs>
(<start ModifyDesigns> |
<send "ModifyCode", "Result", "OK"s);
ModifyCode =
((<edit>+ <compile>)+ <peek "Result"s)+
<recv "Result"s;
ModifyTestPlan =
<edit>+ <start ModifyUnitTestPackages;
ModifyUnitTestPackage =
<edit unitTestPackage>+;
TestUnit=
(<wait ModifyCode>
<wait ModifyUnitTestPackage> <test>
[(<start ModifyCode> |
<start ModifyUnitTestPackage> |
<start ModifyCode>
<start ModifyUnitTestPackages)])+;
MonitorProgress = <wait TestUnits:

Figure 9: Activity Model Description of The Example
Problem

T

Figure 10

[¢] new_xselect

[Task Select ||
| HodifyDesign 0

ReviesBesign ©

hf}té_é,i‘s;{izszfe i

l Cancel

: Menu Displayed by the Task Organizer

ModifyCode O

: Ma.out”, {"main", “subl”™, "sub2"}

seg n0 (start=92-06-07 22:40)

rep nl (1) (start=92-06-07 22:40)

rep n2 (1) (start=02-06-07 22:40)
¢rep n3 (1) (start=92-06-07 22:40)

term editCode
term compile “(null)”
peek ReviewDesignOk
recv RevieuDesignlk

** (start=92-06-07 22:40 end~92-06-07 22:40)

ModifyDesign 0 (1)inactive(last end=Sun Jun 7 22:40:15 1992)
RevieuDesign 0 (D)active start=Sun Jun 7 22:40:37 1992
ModifyCode 0 (0)active start=5un Jun 7 22:40:27 1992

92-06-07 22:40 ModifyDesign
92-06-07 22:40 ModifyCode
92-06-07 22:40 RevieuwDesign

editbesign °°
editCode "~
revieuDesign *°

Figure 11: Output Displayed by the Hakoniwa Server

6 Discussion
6.1 Language class of activity sequence

As discussed in Section 2, the activity sequences
of tasks are defined with regular expressions in the
activity model. However, there would exist complex
processes which can not be specified well by the ln-
ear regular expressions. In some cases, such as in-
terleaving sequences, one may split them info parallel
subsequences with communication each of which fits
to be expressed by a regular expression, as we have
shown in this paper. In other cases, such as recur-
sive sequences, one may use more powerful language
class such as context free grammars. For instance, the
process of an incremental development such as proto-
type development can be defined simply and naturally
with recursions of context free grammars. Another
difficulty of regular expression is, as we have shown in
(10], that some constraints can not be expressed sim-
ply even if they were simply represented with a finite
state machine; for example, a simple water-fall activ-
ity sequence A-B-C which may contain back-tracking
loops (Figure 12(a)) is well represented by determin-
istic finite automaton as shown in Figure 12(b). How-
ever, the representation with a regular expression gnot
with the regular grammer) does not efficiently reflect
the nature of this process (Figure 12(c)).

On the other hand, regular expression is suitable for
static analysis such as dead-lock detection discussed
later, since many operations on the regular expres-
sions are decodable while those of the context free
grammars are not in many cases. Another merit of
regular expression is simplicity of the history display.
The Hakoniwa system displays the progress of tasks
with tree structures of regular expressions. If we use
context free languages, the tree easily grows in huge
size since it allows recursions. Thus, it is difficult to

72

simply display it and we can not determine straight-
forwardly the actual progress from the tree.

6.2 Hakoniwa system as a monitoring
environment

As we have discussed, the Hakoniwa system pro-
vides various data which help to assess the progress of
project, such as:

e Number of iterations of each activity

e Time duration of each activity (initiation and
termination time)

o Current activities

An experienced manager may easily comprehend
the project progress from these data; however, it is
not all the cases. Not only to get those data, it is also
desirable to have goal values for those data[2]. It is
difficult to set such goals and to estimate the progress
only from single project data. For example, even if we
have the data of the number of the iterations at this
moment, we can not predict the total numbers of the
iterations at the end. However, if we knew the data
of similar projects, we would assess the current status
from the data.

In order to perform this kind of statistical pre-
diction effectively, it is essential to store large num-
ber of project profiles. The Hakoniwa system collects
such data automatically, without paying data collec-
tion costs. The collected data are more reliable than
the data collected by hand such as reports from the de-
velopers. Furthermore, the collected data are directly
used for evaluation of current status and assertion for
project profiling.

6.3 Dead-lock detection in activity model

The activity model contains dead-lock possibilities
as many other concurrent models. In this paper, we

a
a b c
A lsl B LalC OO0 ((ab)* ¢ (b (ab)* ¢)*)*
K‘a/ b

(a) Activity Flow

(b) DFA Representation

(c) Regular Expression

Figure 12: Representations for Simple Sequence

define a dead-lock as: “Infinite wait of a message,

causing task execution freeze"S. According to the
shape of dependency graph of the message waiting of
tasks, we consider following two kinds of dead-locks:

e Linear waiting — Non-circular path whose start
node does not send a message.

e Circular waiting - Circular path.

To statically detect the existence of dead-lock in
the description, we focus on the types of messages,
especially on initiation request and termination no-
tification messages. Concerning with these message
types, we have the following sufficient conditions:

e For linear waiting:
In the directed graph which only shows the re-
lation of the initiation requests, there is a task
unreachable from the task initially activated.

e For circular waiting:
In the directed graph which depict only the rela-
tion of termination notification, there is a circle.

On the other hand, in the case of dynamic detection
on the execution, linear waiting dead-locks have to be
detected by human analysis, while the circular waiting
dead-locks can be detected automatically by checking
the circularities of the message waiting paths.

6.4 Associating with groupware

Researches on cooperative development model and
their systems have been emerged as a basis of CSCW
(Computer Supported Cooperative Works)[7]. The
model we have proposed here targets the cooperation
among the relatively discrete and independent works,
while systems so called groupwares in CSCW targets
more tight and complex cooperative works which need
much wider band width of communication.

For example, we have assumed that one task is per-
formed by one developer in our model; however, tasks
such as reviewing may be well performed by several
developers, and it is difficult to decompose the review-
ing task into sub tasks for each developer. We would
think that this kind of tasks is to be associated with
groupware systems, by sharing a task and defining the
interface for it.

§Here we do not think task freezes caused by exclisive data
access, since the preduct model is out of the activity model

73

7 Conclusion

We have discussed the advantages of managing the
development projects based on the software process
models, and we have proposed a cooperative develop-
ment process model for supporting and monitoring the
developers.

We have also implemented a prototype system,
Hakoniwa, which controls the tasks of the develop-
ers and displays the progress status of each task. It
provides the menus and navigates the developers to
appropriate next steps. At the same time, the data to
grasp the progress status of the project are automat-
ically collected and provided to the proje¢t manager.
These data are useful for estimation and prediction.

We have developed the prototype system. Collect-
ing more experiences of practical use of the system
has been undertaken. The Hakoniwa system will be
extended to handle dynamic evolution of the tasks and
asynchronous control of the task drivers.

The proposed activity model does not handle the
products, and we have proposed a product relation
model, which is another important component of the
composite software process model[9]. We will also ex-
tend our system to have the interface between the ac-
tivity model and the product relation model.

Acknowledgments

The authors gratefully acknowledge the comments
for improvement of Dr. Karen Huff on earlier versions
of this paper, as well as other reviewers’ ones.

References

1] Balzer,R.: Tolerating Inconsistency, Proc. 13th
B ¥
Int. Conf. Software Engineering, Austin,Texas,
pp-158-165 (1991).

Basili,V.R., and Rombach, H.D.: The TAME
project: Towards Improvement-oriented Software
Environments, [EEE Trans. Softw. Eng., SE-14, 6,
pp-758-773 (1988).

Boehm, B.W.: A Spiral Model of Software Devel-
opment and Enhancement, Computer May 1988,
pp.61-72 (1988).

Cusumano,M.A.: Japan’s Software Factories,
Oxford University Press, (1991).

Dowson,M.: Software Process Themes and Issues,
Software Process Symposium, Washington, DC,
(1990).

[2]

[3]

[4]

[5]

[6] DowsonM. (Ed.): Proceedings of the Ist Int.
Conf. on the Software Process, Redondo Beach,
CA,(1991).

Ellis,C.A., Gibbs,S.J., and Rein,G.L.: Groupware,
Some Issues and Experiences, Communications of
the ACM, Vol.34 No.1 (1991).

Hoare,C.A.R.: Communicating Sequential Pro-
resses, Prentice-Hall, (1985).

Iida,H., Nishimura,Y., Inoue K., and ToriiK.:
Generating Software Development Environment
from The Descriptions of Product Relations, Proc.
COMPSAC'91, Tokyo,JAPAN, pp.487-492 (1991).

[10] Tida,H., Ogihara,T., Inoue,K., and Torii,K.: Gen-
erating a Menu-oriented Navigation System from
Formal Descriptions of Software Development Ac-
tivity Sequence, Proe. Ist Int. Conf. Software Pro-
cess, Redondo Beach, CA, pp45-57, (1991).

[11] InoueK., Ogihara,T., Kikuno,T., and Torii,K.: A
Formal Adaptation Method for Process Descrip-
tions, Proc. 11th Int. Conf. on Software Engineer-
ing, Pittsburgh, PA, pp.145-153(1989).

[12] Inoue,K., Ogihara,T., Tida,H., and Nitta,M.:
Functional Language for Enacting Software Pro-
cess, Proc. COMPSAC'91, Tokyo,JAPAN, pp.487-
492 (1991).

[13] Kaiser,G.E. and Feiler,P.H.: An Architecture for
Intelligent Assistance in Software Development,
Proc. 9th Int. Conf. on Softwere Engineering,
Monterey, CA, pp.180-188 (1987).

[14] Katayama,T.: A Hierarchical and Functional
Software Process Description and Its Enaction,
Proc. 11th Int. Conf. on Software Engineering,
Pittsburgh, PA, pp.343-352 (1989).

[15] Katayama,T. (ed.): Proc. 6th Int. Software Pro-
cess Workshop: Support for the Software Process,
Hakodate, Japan, (1990).

[16] Kellner,M. et al.: ISPW-6 Software Process Ex-
ample, Proc. 1st Int. Conf. on Software Process,
Redondo Beach, CA, pp.178-186, (1991).

[17] Kellner,M.: Software Process Modeling Support
for Management Planning and Control, Proc. st
Int. Conf. on Software Process, Redondo Beach,
CA, pp.8-28, (1991).

[18] Kusumoto,S., Matsumoto,K., Kikuno,T., and
Torii,K.: On a Measurement Environment
for Controlling Software Development Activities,
Trans. IEICE Vol.E73, No.5 pp.1051-1054, (1991).

(18] Madhavji,N.H.: Environment Evolution: The
Prism Model of Changes, IEEE Trans. Softw.
Eng., SE-18, 5, pp.380-392 (1992).

[20] Osterweil L. : Software Processes Are Software
Too, Proc. 9th Int. Conf. on Software Engineering,
Monterey, CA, pp.2-13 (1987).

[7]

)
[9]

T4

[21] Penedo,M.H. and Shu,C,: Acquiring Experiences
with the Modeling and Implementation of the
Project Life-Cycle Process: the PMDB Work,
Software Engineering Journal, Sep. 1991, pp. 259-
274 (1991).

(22] Perry,D.E. and Kaiser,G.E.: Models of Software
Development Environments, IEEE Trans. Softw.
Eng., SE-17, 3, pp. 283-295 (1991),

(23] Peuschel,B. and Schafer,W.: Concepts and Im-
plementation of a Rule-based Process Engine,
Proc. 1jth Int. Conf. on Sofiware Engineering,
Melbourne, Australia, pp.262-279 (1992).

[24] Riddle, W.E.: Software Designer’s Associates: A
Preliminary Description Prec. 20th Annual Hawaii
Int. Conf. on System Sciences, Hawaii, pp.371-381
(1087).

[25] Saeki,M., Kaneko,T., Sakamoto,M. : A Method
for Software Process Modeling and Description us-
ing LOTOS, Proc. 1st Int. Conf. on Software Pro-
cess, Redondo Beach, CA, pp.90-104 (1991).

[26] Sommerville L.: Software Engineering, 3rd Ed.,
Addison Wesley, (1989).

(27] Sutton,S.M., Heimbigner,D. and Osterweil,L.:
Language Constructs for Managing Change in Pro-
cess Centered Environments, Proc. {th ACM SIG-
SOFT Symposium on Software Development En-
vironments, Irvine, CA, pp 206-216 (1990).

(28] Taylor,R.N..et al.:Foundations for the Arcadia
environment architecture, Proc. ACM SIGSOFT/
SIGPLAN Software Engineering Symposium on
Practical Software Development Environments,
SIGSOFT Software Engineering Notes, 13-5),

oston, MA, pp.1-13(1988).

[29] Weber, H.: Towards a Software Factory Ref-
erence Model Tutorial Tezt in COMPSAC’91,
Tokyo,Japan, (1991).

[30] Williams,L.G. Software Process Modeling:
A Behavioral Approach, Proc. 10th Int. Conf.
Em Sﬁﬂware Engineering, Singapore, pp.174-186
1988).

