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SUMMARY In this paper, it is proven that the following
three decision problems on validation of protocols with bounded
capacity channels are NP-complete. (1) Given a protocol with
the channel capacity being 1, determine whether or not there exist
deadlocks in the protocol. (2) Given a protocol with the
channel capacity being 1, determine whether or not there exist
unspecified receptions in the protocol. (3) Given a protocol
with the channel capacity being 2, determine whether or not there
exist overflows such that the channel capacity is not bounded by
1 in the protocol. These results suggest that, even when all
channels in a protocol are bounded by 1 or 2, protocol valida-
tion should be in general interactable. It also clarifies the
boundary of computational complexity of protocol validation
problems because the channel capacity 0 does not allow proto-
cols to transmit and recieve messages.

key words: computational complexity, deadlock, NP-complete,
protocol, protocol validation

1. Introduction

A protocol consists of processes and channels where
each pair of two distinct processes are connected by a
channel. Messages are transmitted and received
through channels. Protocol validation is to check
whether or not the specification of a protocol includes
protocol errors such as unspecified receptions, redun-
dant transmissions/receptions, deadlocks, livelocks,
and overflows [2]-[6]. Among them, deadlocks,
unspecified receptions and overflows are typical proto-
col errors that should be detected by protocol valida-
tion. Intuitively, deadlocks, unspecified receptions and
overflows are as follows. A deadlock is a global state
. of a protocol such that the protocol cannot execute any
transmission and reception of messages. An unspecified
reception is a process state such that a message has
been transmitted but cannot be received at the state.
An overflow is a channel state such that the number of
messages which have been transmitted but not yet
received through the channel is larger than a given
positive number.

This paper discusses the computational complex-
ity of the following three decision problems on the
protocol validation; the deadlock detection problem,
the unspecified reception detection problem and the
overflow detection problem. Brand and Zafiropulo
showed that these problems for general protocols are
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undecidable when the channel capacity of the protocol
is unbounded [2]. In practice, however, the channel
capacity is bounded by a finite constant. West
proposed an algorithm to detect deadlocks, unspecified
receptions and overflows when the channel capacity is
bounded by a constant and the number of processes is
constant [6]. R#uchle and Toueg showed that the
deadlock detection problem is PSPACE-complete in
case that the channel capacity is bounded by a finite
constant and the number of processes is 2 [5]. It is thus
interesting to find the computational complexity of the
decision problems on the protocol validation when the
channel capacity is bounded by a constant and there is
no restriction on the number of processes.

This paper shows that both the deadlock detection
and the unspecified reception detection problems are
NP-complete, even if the channel capacity is restricted
to 1, and that the overflow detection problem of
deciding whether or not there exist overflows such that
the number of messages left in a channel is larger than
1, even if the channel capacity is restricted to 2, is also
NP-complete. These results mean that, even if the
channel capacity is bounded by 1 or 2, the problems
are difficult to solve efficiently in the worst case.

The rest of this paper is organized as follows. In
Sect. 2, three decision problems on protocol valida-
tion, i.e., the deadlock detection problem, the
unspecified reception detection problem and the
overflow detection problem, are formulated. In Sect. 3,
the NP-completeness of the deadlock detection prob-
lem for protocols with bounded capacity channels is
proven, and in Sect. 4, that of the other problems is
also proven. In Sect. 5, conclusions are described with
future research direction.

2. Protocol Validation Problems

A protocol consists of processes and channels. Each
pair of two distinct processes are connected by a
channel.  Messages are transmitted and received
through channels. The model in this paper uses
explicit finite state machines to represent processes and
implicit FIFO queues to represent channels.

Definition 1 (Protocol): A protocol among N proc-
esses is a quadruple P=(Q, o, M, succ), where Q=
(Ql; e QN), o= (o, ', on), M= (M1,1, -, My, My,
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process 1 process 2
Fig.1 Protocol example.
o, My,y) and suce= (succi, --, succy).

Each Q; represents a set of states of the i-th
process. For any i and j(i=#j), Q:N Q;=¢. A symbol
¢ denotes an empty set.

Each o;(0,€ Q;) represents the initial state of the
i-th process.

Each M; ; represents a set of message types that can
be transmitted through the channel from the i-th
process to the j-th process. For any i, j, i’ and j/ (i=
i, or ]:*:j,) R Mi,jm Mi/’jI: ¢ and Mz',i: ¢

Each succ; is a partial mapping Q; X M- Q;
which represents how the i-th process transmits or
receives a message and changes its state. The set M; is
a set of message types that the i-th process can transmit
or receive (My=M;,U-~UM;yUM,:U--UMy.).
The value of succ; (s, x) represents either the state of
the i-th process after it transmits a message x in state s
(s€Q,), if x&EM,;, or the state after it receives a
message x in state s, if xEM, ;.

The i-th process is formally defined as the quadru-
ple (Qi, 0:, M;; UM, ;, succ;).

A pair (s, x) for a state s(s&Q;) and a message
x(x&EM, ;) is said to be a transmission of the i-th
process, and a pair (s, x) for a state s(s&Q;) and a
message x (x&EM; ;) is said to be a reception. A state
transition is either a transmission or a reception.

(End of Definition)
Example 1: Figure 1 shows an example of a protocol
with 2 processes. In the figure, ‘O’ depicts a state and
‘®’ depicts an initial state. Arrows ‘=’ depict state
transitions. Symbols ‘—x’ and ‘+x’ represent trans-
missions and receptions of a message x, respectively.
The protocol represents that, for example, process 1
transmits message ¥ at state ¢o and enters state wy,, and
process 2 receives it at state s. (End of Example)
Definition 2 (Global state and transitions): In a
protocol P, a global state is a pair G=(S, C), where
S={(s, -, sy) and C:(Cl,l, tty CuN, G2, 0, cN,N)-
Each s; represents a state of the i-th process (s;E Q7).
Each c;,; represents a state of the channel from the i-th
process to the j-th process, i.e., ¢;; is a sequence of
messages that the i-th process transmitted to the j-th
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process but the j-th process does not receive yet. Each
message in c¢;,; belongs to M; ;.

The initial global state is the global state Go=
(8o, Co) with all channels empty and with each process
in its initial state, where So= (o, **, o) and Co= (e,
-+, €). A symbol & denotes an empty sequence.

A global state transition is defined as a binary
relation ‘+’ on global states. We denote (S, C)
(87, C’) if and only if the global state (S, C) can
transit to (S’, C’) by exactly one state transition of
one process. In other words, (S, C) - (87, C’) if and
only if there exist some 7, j and x satisfying one of the
following two conditions. (1) sf=succ;(s:;, x) (xE
M.;), ci;=ci;*x, and for any j (j=+1i), sf=s; and ¢} ;
=, Here, 0,-02 denotes a concatenation of
sequences ¢; and gz, (2) si=suce; (s, x) (xEM;;),
Ci;=x+C%; and for any j (j=#i), si=s; and ¢} ;=c: ;.

Let ‘+* be the reflexive and transitive closure of
‘’. A global state G= (S, C) is said to be reachable
if and only if GH* G. (End of Definition)
Definition 3 (Specified and executable): In a proto-
col P, a state transition (s;, x) is specified if and only
if succ;(s;, x) is defined. A transmission (s;, x) is
executable if and only if there exists a reachable global
state G= (S, C) such that S={(s, ***, 5, ***, sy). The
reception (s;, x) is executable if and only if there exists
a reachable global state G=(S, C) such that S= (s,
ety Sg, 0ty sy) and C:(CI,I, iy 0y CN,N) (cj,i:x'
Y where Y is a sequence of messages in M; ;).

(End of Definition)
Definition 4 (Bounded and fixed channel): In a
protocol P, let N be the number of processes, iet |Q| be
the number of states of all processes, let [M| be the
number of distinct message types and let 4 be a positive
integer that is polynomial with respect to &, |Q| and
|M|. A channel from the i-th process to the j-th process
is said to be bounded by A if and only if, for every
reachable global state G=(S, C), the length of each
¢;,; is less than or equal to A.

Let 4 be a positive integer constant independent
of N, |Q| and |M|. A channel from the i-th process to
the j-th process is said to be fixed to A if and only if,
for every reachable global state G= (S, C), the length
of each ¢; ; is less than or equal to 4. This £ is said to
be channel capacity. If a channel is fixed, the channel
is bounded.

A protocol P is said to be fixed to 4 if and only
if all channels in P are fixed to 4.

(End of Definition)
Definition 5 (Protocol errors): (1) Deadlock: A
global state G= (S, C) is said to be stable if and only
if G is reachable and C= (g, '+, ). A stable global
state G=(S, C) is said to be a deadlock if and only
if S=(s, -+, sv) and there exist no specified transmis-
sions (s;, x) (IZi<N, 1£j=N, s;€0;, xEM, ;).
(2) Unspecified Reception: An unspecified reception
is a reception that is executable but not specified.
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(3) Overflow: An overflow is a channel state such that
the channel is not fixed to a predefined positive integer
h. (End of Definition)
Definition 6 (Protocol validation problems): (1)
Given a protocol P fixed to /4, determine whether or
not there exist any deadlocks. This decision problem
is called the deadlock detection problem, which is
abbreviated as DDP hereinafter.
(2) Given a protocol P fixed to A, determine whether
or not there exist any unspecified receptions. This
decision problem is called the wunspecified reception
detection problem, which is abbreviated as URDP
hereinafter.
(3) Given a protocol P fixed to 4" and a positive
integer 2 (A< h’), determine whether or not there exist
any overflows such that a channel is not fixed to 4.
This decision problem is called the overflow detection
problem, which is abbreviated as ODP hereinafter.
(End of Definition)
In the following sections, these three decision
problems, DDP, URDP and ODP, are discussed in case
that A=1 and A'=2.

3. Deadlock Detection Problem

It is obvious that DDP is in NP. In order to prove that
DDP is NP-complete, it suffices to show that any
NP-complete problem is polynomially transformable
to DDP. In this section, the 3-satisfiability problem is
proven to be polynomially transformable to DDP, and
the following theorem is proven.
Theorem 1: DDP is NP-complete even when protocols
are fixed to 2 (A=1). (End of Theorem)
The 3-satisfiability problem is a problem to determine
whether a boolean expression is satisfiable or not.
The rest of this section is organized as follows. In
Sect. 3. 1, the 3-satisfiability problem is introduced. In
Sect. 3. 2, the construction of a protocol P based on a
given boolean expression B is described. There exist
deadlocks in the constructed P if and only if B is
satisfiable. In Sect. 3.3, it is proven that the 3-
satisfiability problem is transformable to DDP by
using the construction described in Sect. 3. 2.

3.1 3-Satisfiability Problem

The 3-Satisfiability Problem is as follows.

Definition 7 (3-Satisfiability Problem): Let a set of
boolean variables be V. A boolean expression can be
generally denoted by a conjunctive normal form B=
(u1,1+ u1,2+"' + ul,Ll) X (u2,1+ uz,z+ s uZ,Lz) X X
(u1,1+u1,2+'-'—|-u1,L,). Each Ui,1 (1§l§[, lélgL,)
is either v, or — v, (v, V) and is said to be a literal.
Operators 4+, X and — denote boolean sum, product
and negation, respectively. Foreach i (1=i=1), (u:,
+wipt+usp,) is said to be a clause. We assume,
without loss of generality, that the same variable does
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not appear more than once in one clause, although two
literals u;,, and wu;,;(i2=j) in distinct clauses can pos-
sibly have the same variable.

An assignment is a mapping V - {true, false}
which assigns true or false to each variable in B. A
truth assignment is an assignment when B holds true.
A conjunctive normal form B is said to be satisfiable
if and only if there exists at least one truth assignment.

The 3-Satisfiability problem is defined as follows.
Given a boolean expression B = (ui1+u12+u13) X
(Ug+ tzg+ t1,3) X ooo X (pn+ur 2+ 17 3) in a conjunc-
tive normal form where each clause consists of three
literals, determine whether B is satisfiable or not. This
decision problem is abbreviated as 3S47 hereinafter.

(End of Definition)

As for the computational complexity of the above
3-Satisfiability problem, the following theorem is
known.
Theorem 2: 3SAT is NP-complete [1].

(End of Theorem)

3.2 Construction of Protocol Based on Boolean
Expression

This section describes how to construct a protocol P
based on a boolean expression B in a conjunctive
normal form where each clause consists of three lit-
erals. In the constructed P, there exist deadlocks if and
only if B is satisfiable.

The construction is stated informally as follows.
When the boolean expression B consists of I clauses,
the protocol P consists of (I+3) processes. The i-th
process (1=i=<1I) corresponds to the i-th clause in B.
At first, the (/+1)-th process determines an assign-
ment for B and transmits messages to each i-th process
(1=i=1I) according to the assignment. Each the i-th
process (1=i=1T) receives / messages (0<7/=<3) from
the (I+1)-th process when [ literals in the i-th clause
in B are assigned false. If the i-th clause in B is
assigned false, i.e., all three literals in the clause are
assigned false, the i-th process receives three messages
from the (I+1)-th process, and then transmits a
message x; to the (I+2)-th process. When m clauses
are assigned false, the (I+2)-th process receives m
messages from m processes. Then the (I+2)-th proc-
ess transmits a message ); back to one of these m
processes. If the j-th process (1=j=1T) receives the
message ¥;, the j-th process transmits a message z; (1=
i£I+42, iZj) to every process in order that all proc-
esses return to their initial states. If no clauses are
assigned false, no processes transmit x; to the (I
+2)-th process, and then a deadlock occurs.

For convenience of explanation, the construction
of the protocol P based on the boolean expression B is
divided into the fundamental part and the additional
part. We describe the protocol P as (Q, o, M, succ)
where Q= (QfUQ", -, OfsUQts), o=(o, -,
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1st process 2nd process

+dk 3rd process

5th process
(k=2,3,4)

Fig. 2 Example of fundamental transformation for deadlock
detection problem (The 4th process does not appear in this
figure).

Or43), M= (Mfl U M{l,l, T, Mf+3,1+3 U M34+3,1+3) and
succ= (succi, -+, succr+s). Each QF represents a set of
states in the fundamental part of the i-th process, and
each Qf represents a set of states in the additional part.
Each MY, represents a set of message types in the
fundamental part, and each M%; represents a set of
message types in the additional part. Each succ; is also
devided into two parts.
Example 2@ The fundamental part of a protocol P
based on a boolean expression B=(n+ 1+ 1) X
(— w+ v+ ) is shown in Fig. 2. The protocol P is
shown in Fig. 3. In the figures, ‘O’ depicts a state and
‘®’ depicts an initial state. Arrows ‘=’ depict state
transitions. Symbols ‘—x’ and ‘+x’ represent trans-
missions and receptions of a message x, respectively.
In this example, I=2. (End of Example)
The fundamental part of the (I+1)-th process is
constructed in the following manner. Suppose that the
sequence of distinct variables in B in the order of their
appearance is W=<w, *-, v>, where K=|V] is the
number of variables and v, (1=k=K) is the k-th
variable in B. Let the number of appearances of a
literal uy, which is either v, or — v, in B be cnt (uy).
Let the clauses which include a literal u, be the
cls (us, 1)-th clause, the cls (uz, 2)-th clause, -+~ and the
cls (ug, cnt (uy))-th clause. (In Example 2, K=4, W
=<, Vo, W, Vo, cnt(va) =2, cls (v, 1) =1, ¢ls (w, 2) =
2, ent(—w)=1 and els(—n, 1)=2.) The (n+1)-th
process selects either v, or — v, as u, for each k£ (1=
k=K), and then transmits messages u, to all the
¢ls (ug, 1)-th clause, the cls(us, 2)-th clause, ---, and
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S4  84j 84 84

Ist process

(=1.2)

2nd process

(G=1.2)

3rd process

e

Sth process

4th process

Fig. 3 Example of transformation for deadlock detection prob-
lem.

the cls (u, ent (uy))-th clause.
Qf+1:{40, "
Sk,cnt(ve)—1s Wk,cnt(vk)l

cnt(vk) >O}U{_‘ We,1, = 'Sk, T,

S qK}U{wk,h Sk, "0

H wk,Cﬂt(I)k)—ly

T Sk,ont (—or)—1s
T Wa,ent—omlent (5 ve) > 04U
{gr-1,] 1Sk <K, cnt(v,) =0
or cnt (— w) =0},
Or+1= qo,
M ={dJ1Sk <K, cnt(vy) =0
or cnt(— v,) =0}.
For each i (1=<i<1),
M ={w|l£k<K, v, is in the i-th clause}U
{(—w|1<k<K, v is in the i-th

clause}.
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If cnt(v,) =0, for each k(1<k<K),
stccri (Guot, di) =G (dh€ Mriniss),
suceri1(qu-1,n, di)=qn (diEMi15,141).
If ¢nt(vy) =0, for each k (1=k=<K),
(W& Mris,cison) s
(V& Meiswany,r+1) 5

(VeE Mri1,ct50,2)) »

SUCCT +1 (CIk—l, Vk) = We,1
SuCCHl(Wk,l, V;e) = Sk,1

SUCCr +1 (Sk,l, Vk) = Wr,2

SUCCr 1 Wa,ont(v)—15 Vi)

= Sk,cnt(vr)-1 ( PAS Mcls(vk,cnt(vk)—l),l +1) f

SUCCr+1 (Sk,cnt(vk)—l, Vi)

= Wg,cnt(vr) (VkEMI+1,cls(vk,cnt(vk))) ’

4
SHCCI+1(Wk,cnt(vk), Vi) =4 (VkeMcls(vk,cnt(Uk)),I+l)-

In case cnt(— v,) =0 and case cnt (— ) FO(1I=Zk <
K), succry, is defined in a similar way and their
descriptions are omitted. Note that cnt(v:) =0 and
cnt (—v,) =0 do not hold simultancously because
there exists at least one variable v, in B. Each M¥;,,
(1=i<1) is described later as a component of the i-th
process.

The fundamental part of the i-th process (1S7i=
I) is constructed in the following manner. Suppose for
each i(1=<i{=<1I) that the i-th clause is composed of
three literals var(i,1), Yovarcizy @nd Upar:3), where each
Uvar(s,n (1= 1=3) is either Voars,y OF " Voar(i,n) (Voar,n
eV)and 1=var(i, 1) <var(i,2)<var(i,3) =K. (In
Example 2, var (2, 1)=1, var (2, 2) =2, var(2, 3)=4
and uUperz3=m.) The i-th process receives a message
Upar(;,o) from the (14 1)-th process if a literal #ygr(s,p 18
assigned false. If the i-th clause is assigned false, i.e.,
all the three literals in the i-th clause are assigned false,
then the i-th process receives three messages and reachs
state ss. ‘

OFf ={s0, Wi, 51, Wa, 52, Wa, 3, Qo,1> Qo2 1)

0; = S,

M, ={w)literal v, is in the i-th clause) U
{— williteral — , is in the i-th clause}.

In the following succ;, suppose that Uver,n= Voare,n
and Uoers, = Vearq,n if the i-th clause includes the
literal Voars,n, and Upar(s,n=""" Voar(s,yy aNd Uper,n=
— Vearu,n if the i-th clause includes the literal

T VYoar(, 1)

(UvariyEMii1,:),
(UoaryE Mir11),
(thvar,E Miya,:),

(UparanE M),

scee; (S0, Uvari,1) = Wh
suce; (Wi, Upar(s,1)) =8
suce; (s1, Uvariizy) = Ws

succ; (We, Woariiz) =Sz
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(Uvars,nE Mri1,1),

(Uoari3E Mi111),
(Uvars,0E Mr11,1),
(Uoart,E M 111),
(Uvar,9E Mr11,1),
(Uoar(inE Mi111),

(UvariEMii1,:),

(UrariyEMire1).

SUCC; \ S, uvar(i,3)) = W3
succ; (Ws, Wopar(i,3) =8

SUCC; S, uvar(i,z)) =qo,1

(

(

(

succ; (Go,1, Woariiz) =%
succ; (So, Uvar(i,3)) = o,z
suce: (o2, Unarin) =%
succ; (81, Uvari,3) = G
suce; (qu, Wpar(i,3) =81

The (I+2)-th process has no fundamental part and its
additional part is described later.

The fundamental part of the (74 3)-th process is
constructed in the following manner, although it does
not have any additional part.

Qfrs={q} U
{g 1S k<K, cnt(vy) =0 or cnt(— w)
=0},
O1+3= Go,
Mg o={di|I=k<K, cnt(vy) =0
or cnt(— v,) =0},
(dvEMii1,143),
(dREM;15,041)

The additional part of the (/+41)-th process is con-
structed in the following manner.

Q‘14+1={7‘1, "z},
M?+1,1+2: {e},

SUCCr +3 (qo, dk) =gk

succrva(qe, di) =qo

succrii(qu, e)=n (eEMri1a),

succi1(n, e)=r (EMisi).
For each i(1=i<1T),

succi1(r, z)=q (ZEM;141).

The additional part of the i-th process (1=i=1I) is
constructed in the following manner. The i-th process
transmits a message x; to the (I+2) process when the
i-th clause in B is assigned false.

QzA:{W47 Sis Foy Fo15 My P, *ts Fro, Frong, FiYU
(5,014, 11, j=i},
M?,I-%—Z:{xi}’

suce; (83, x;)=wy (X, EM; 142),

suce;(wy, xi) =8 (XI€EMjia;),
suce; (83, yi) =n (iEMiya,:),
succ;(r, z:) =ty (zEM;,),
suce; (h,, z)=n  (ZEM.,:),
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suce; (rioa, zi) =t 21 (ZEM;,-1),
succ; (rioi,imz, ) =ri1 (ZEMi-v,),
suce; (ricy, z:) =ricy,;  (ZE M i),
succ; (riv, z) =1 (ZE M),
suce; (ri-1, z) =r-1,r  (ZEM;r42),
suce:(rr-vg, z)=r  (ZEMiis,),
succ:(rr, z) =8 (zEMir4).

For each / and j(0<1<4, 1<j<1, j=+i),
Mi;={z, 7},

(ZEM;,,),

suce; (i, z) =% (ZEM,;).

The (I+2)-th process (1=<i=1I) is constructed in the
following manner. Each the i-th process (1=i<1I)
transmits a message x; if the i-th clause is assigned
false. The (/+2)-th process selects one x; of these
messages and transmits a message y; to the j-th process.

SUce; (Sl, Zj) =S,

Qt2={n, n, n, rnU

{wi, gi» p: | 1Zi<T),
0r+2={n},
Mt a={e},

succrio(r, e)=rn (eEMiii10),

succiz(n, €)Y=r, (€EMiior+).
For each i (1<i<1T),

M'fl+z,z':{yi, x5, Zi,},

succrz(r, x;)=w: (X, EM;1.2),

succris(wi, yi) =r (Vi€ Mria,),

succrea(rs, x)=q; (X:EM; 112),

succriz(qi, xi)y=r (XIEM;is;),

succr2(m, z) = (z:EM;142),

succr vz (pi, Zz) =n (ZEM,;).

In this paper, we may use the same message name in
distinct channels and the same state name in distinct
processes, although M, ;N My =¢ and Q;N Q;=¢ as
described in Definition 1. In case that there exist the
same name in distinct channels or processes in P,
suppose that those names are translated into distinct
names by adding the distinct channel names or process
names.
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3.3 Proof of NP-Completeness

It is obvious that DDP is in NP. In order to prove that
DDP is NP-complete, it suffices to show that the 3SAT
is polynomially transformable to DDP. As described
in Sect. 3.2, a protocol P can be constructed for any
boolean expression B in a conjunctive normal form
where each clause consists of three literals. There exists
the following relation between B and P.
Relation 1: A sequence of executable state transitions
through states qo, g1, ***, g« in the (I +1)-th process in
the constructed protocol P is called a cycle. There
exists a one-to-one correspondence between cycles and
assignments for B. If the variable v,(1=k<K) in B
is assigned false, then the (I+ 1)-th process of P trans-
mits the message v, to all processes which correspond
to clauses including the literal v,, otherwise, the (J
+1)-th process of P transmits the message — .
(End of Relation)
According to Relation 1, the following lemma
holds true for the constructed protocol P based on B.
Lemma 1: When a protocol P based on a boolean
expression B is constructed as described in Sect. 3.2,
there exist deadlocks in P if and only if B is satisfiable.
(End of Lemma)
Proof 1(Lemma 1): First, the sufficiency will be
shown below. Suppose that there exist no truth assign-
ments for B, i.e., B is always false for any assignment
a. This implies that at least one clause of B is false for
any assignment a. Suppose that the i-th clause (u;,
10+ u;3) is assigned false, i.e., u;,1, 4,2 and u; 3 are
all false. The (I+1)-th process in P transmits three
messages U;1, U,z and u;3 to the i-th process, as de-
scribed in Relation 1. The i-th process receives these
three messages and reaches state s3 accordingly. Then,
the i-th process transmits a message x; on state s; to the
(I4+2)-th process. Since more than one clause may
possibly be assigned false, more than one process may
transmit messages x; to the (/+2)-th process. Then,
the (I+2)-th process receives one x; of these messages
on state r, and transmits a message y; to the j-th
process. The other messages x; (=) are received by
the (I+2)-th process on state . When the j-th
process receives a message y;, and transmits messages z;
to all processes except itself and the (I+3)-th process.
Then, every process returns to the initial states again by
receiving z;. Therefore, there exist no deadlocks in P.
Second, the necessity will be shown below. Sup-
pose that there exist no deadlocks in protocol P in the
first cycle. According to the construction of P, every
process returns to the initial state at the end of the first
cycle by receiving a message z; (1=i=1I). Suppose
that the j-th process transmits these messages z; (1<j<
I). Since the j-th process has to reach state # in order
to transmit these messages z; (1=j=<1), the j-th proc-
ess reaches state » through states s, s; and ss. This
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implies that the (/+1)-th process transmits three
messages u;,1, 4;,2 and u; 3 and the j-th process receives
these three messages in the first cycle. As described in
Relation 1, the first cycle corresponds to an assignment
a for B. Since the (I+1)-th process transmits the
three messages u;1, ;2 and u;3, the corresponding
three literals w1, #;2» and u;3 in B is assigned false in
the assignment a. Hence, at least the j-th clause is
assigned false and B is not satisfied by the assignment
a. According to the construction of P, the above
discussion holds true for any cycle and any assignment.
Therefore, B is not satisfied by any assignment a.

Since the sufficiency and the necessity were shown,
it is proven that there exist deadlocks in P if and only
if B is satisfiable. (End of Proof)

Theorem 1 is proven as follows.

Proof 2 (Theorem 1): As described in Sect. 3.2, a
protocol P can be constructed for any boolean expres-
sion B in a conjunctive normal form where each clause
consists of three literals. According to Lemma 1, there
exist deadlocks in the constructed P if and only if B is
satisfiable. This construction can be done in
polynomial time obviously.

The channel in the constructed protocol P is fixed
to A (A=1) because a handshake communication
mechanism is introduced for all channels where more
than one message may possibly be stored. The hand-
shake communication mechanism means a mechanism
such that, when the i-th process transmits a message x
to the j-th process (j=Fi), the j-th process always
returns an acknowledgement message x’ to the i-th
process.

Therefore, 3SAT is polynomially transformable to
DDP for fixed channel capacity 2 (h=1). Since DDP
is in NP obviously, DDP is proven to be NP-complete.

(End of Proof)

4. Unspecified Reception Detection Problem and
Overflow Detection Problem

The proof of NP-completeness of URDP and ODP for
fixed protocols can be proven in a similar way of the
proof of Theorem 1.
Theorem 3: URDP is NP-complete even when proto-
cols are fixed to A (A=1). (End of Theorem)
Proof 3 (Theorem 3): To prove that Theorem 3
holds, a protocol P based on a boolean expression B
in a conjunctive normal form is constructed. Since the
fundamental part of the construction of a protocol P is
the same as that described in Sect. 3. 2, only the addi-
tional part is described below.

The additional part of the (/-+1)-th process is
constructed in the following manner.

Q?+1:{70, 7'1},
M¢+1,1:{x},
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(-XEMI+1,1)7
(X'EMi11).

succri1(gr, X)=n
SUCCI+1("0, x,) =n

The additional part of the 1-st process is constructed in
the following manner.

Ot ={p 10=I<3YU{H, ¥, H, H, o, H},
Mira={x"},
Mi,={t, ).

For each [ (0<1<2),

suce, (s, x)=p; (xEMri14),
sucei(p, x)=r (X'EMy141).
sucel (85, x) =ps  (XEMp11),

suce,(ps, x)=r (X'EMi 1),
(tEM,),
suca (#, )=+ ('EM,,),
sucal (7, =1 (fEM,),
(f'eEM,).

The additional part of the i-th process (2=i=<1J) is
constructed in the following manner. In the following
expressions, if i==n then j=i+1 and if i=1 then j=
I+2.

Of={pi, p{ 10=I<3YU{H, ¥, W, H, H, H},

Mo a={t, [,

M=t f}.
For each / (0=7/<2),

suce: (s, t)=pi (tEM;_,),
(reM; 1),
feMi.,),
(f'eM;.—1).
suce;(ss, t)=pi (IEM; 1),
(rEM; ),
feM ),

suce (rf, t)=ri

suce (o, f)=H

suce;(pl, 1) =r
suce; (s, f)=pf

suce; (pf, )=+

suce;(pé, ') =nl

suce: (s, f)=pf

suce;(pf, fY=r (f'eEM;2),
suce:(r, t)=r (1EM,;),
suce; (W, 1) =r ('EM;,;),

suce; (v, =1 (fEM:;),
suce; (W, f)=r (f'EM,,).

The additional part of the (/42)-th process is con-
structed in the following manner.

Qt={n, p', p’, ¢°, 4, 4, 4},

Or+2=h,
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Mt ={t, [},

M?+2,1+3={u},

succrv2(n, f)=p" (fEMi142),
succr2(p”, f)=¢q° (f'EMiiz1),
succr2(r, 1)=p°* (IEM;142),
(t'EMiss,1),
(UEM142,143),

sucero(pt, t) =g
succr2(ql, u) =g
succrsa (g, w') =g (W EMiisiss).

There does not exist any additional part in the (7
+3)-th process.

It is obvious that the above construction of a
protocol P based on B can be done in polynomial
time. Any unspecified receptions do not appear in the
fundamental part of protocol P.

The constructed protocol P behaves as follows. If
B is satisfiable, then there exists a case such that all the
1-st process, the 2-nd process, **+, and the I-th process
do not reach state s;. In this case, each of these
processes transmits a message ¢ rather than a message f
to another process. Consequently the (I +2)-th process
receives a message ¢, and transmits a message u to the
(I +3)-th process. Since no reception of the message u
is specified in the (I+3)-th process, an unspecified
reception occurs here. If B is not satisfiable, then at
least one of the 1-st process, the 2-nd process, ---, and
the I-th process reaches state s;. Suppose that the i-th
process (1=i=<1T) reaches state ss. The i-th process
transmits a message f and each the j-th process (i=j
<1I) transmits messages f to another process. Conse-

_quently the (I+2)-th process receives a message ', and
unspecified receptions do not occur. Therefore, there
exist unspecified receptions in P if and only if B is
satisfiable.

The constructed protocol P is fixed to A (A=1)
because of the similar reason in the proof of Theorem
1.

Therefore, 3SAT is polynomially transformable to
URDP for fixed channel capacity. Since URDP is in
NP obviously, URDP is proven to be NP-complete.

‘ (End of Proof)
Theorem 4 ODP is NP-complete for a positive inte-
ger & (h=1) even when protocols are fixed to 2.
(End of Theorem)
Proof 4 (Theorem 4): To prove that Theorem 4
holds, a protocol P based on a boolean expression B
in conjunctive normal form is also constructed. Since
the construction of the protocol P is the same as that
in the proof of Theorem 3 except the construction of
the ({+2)-th process, only the additional part of the
(I+2)-th process is described below.

The (I+2)-th process is constructed in the follow-

ing manner.
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Qtee={n, p*, p’, ¢°, 4 ¢, & &, ¢},
Or+2=lo,

Mt ={t, '},

M#i105=1{z},

succria(ro, [)=p° (FEMi142),
sucer2(p”, f)=q¢° (f'EMiia1),
succria(fo, 1) =p' (1S M 142),

succr2(pt, 1) =q" (YE M),
succrs2 (g, 2) =q° (2€ Miig,r438),
sucer2(qf, 2)=qf (2EMiyz143),
succr2(qf, z) =q¢f (Z’EMyrisriz),
SuCCHz((Ifso, Z’) :C]4o (Z/EMI+3,I+2)-

It is obvious that the above construction of a protocol
P based on B is polynomially transformable and in the
protocol all channels except a channel from the (I
+2)-th process to the (I+3)-th process are fixed to 1
and the channel from the (I+2)-th process to the (I
+3)-th process is fixed to 2.

If B is satisfiable, then the (I+2)-th process
transmits a message z twice. Suppose that a positive
integer 2 (A=1) is given. There exist an overflow for

2nd process

3rd process

~'\ 05 0, £, 0,
NI
-Z +z +Z

4th process

_»

Sth process

Fig. 4 Example of transformations for unspecified reception
detection problem and overflow detection problem.
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the positive integer £ (A=1) if and only if B is
satisfiable.

Therefore, 3SAT is polynomially transformable to
ODP for the protocol fixed to 2 and the positive integer
h (h=1). Since the restricted ODP is in NP obvious-
ly, the restricted ODP is proven to be NP-complete.

(End of Proof)

Example 3: An example of the transformation from a
boolean expression B= (w4 w+ 1) X (—wn+wm+w)
to a protocol P is shown in Fig. 4. Any symbols in the
figure are the same as those in Figs. 2 and 3. The part
for URDP is depicted by solid lines and bold lines.
The part for ODP is the same as that for URDP except
addition of state transitions depicted by dotted lines
and deletion of state transitions depicted by bold lines.
(End of Example)

5. Conclusions

It is known that in order to solve the deadlock detec-
tion problem, the unspecified reception detection prob-
lem and the overflow detection problem for bounded
protocols we have only to enumerate reachable global
states [6]. The number of such global states is at most
|Q ((|M|+1)")V¥ where |Q] is the number of states,
N is the number of processes, |M| is the number of
distinct message types and 4 is the capacity of bounded
channels. If both the capacity £ and the number of
processes N are fixed, then these problems can be
solved in a polynomial time.

This paper has shown their NP-completeness in
case of lixed A (A=1) and unlimited N. Riuchle and
Toueg showed PSPACE-completeness of the deadlock
detection problem in case of finite 2 and limited
N (N=2) [5]. Therefore, the new result on the dead-
lock detection problem clarifies the boundary of
computational complexity of the problem, which is
shown in Fig. 5.

Since the NP-completeness of the deadlock detec-
tion problem, the unspecified reception detection prob-
lem and the overflow detection problem were shown,
there does not seem to exist any algorithms efficient in
the worst case, even when all channels in protocols are

Undecidable for unlimited N and infinite h

PSPACE-complete
for finite h and
limited N (=2)

Polynomial time
for fixed h and
limited N

NP-complete
for unlimited N
and fixed h (=1)

Fig. 5 Computational complexity of deadlock detection prob-
lem on protocol validation.
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fixed to 1 or 2. This suggests that, for protocols
without any restriction on the number of processes,
algorithms efficient in average should be developed [3],

[4].
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