P“‘ Annals of Software Engineering 14, 383-406, 2002
‘~ © 2002 Kluwer Academic Publishers. Manufactured in The Netherlands.

A Knowledge-Based Software Process Simulation
Model

NORIKO HANAKAWA b, KEN-ICHI MATSUMOTO® and KOJI TORII® hanakawa@hannan-u.ac.jp
% Hannan University, 5-4-33 Amami, Higashi, Matsubara, Osaka, 580-8502 Japan
b Nara Institute of Science and Technology, 8916-5, Takayama, Tkoma, Nara, 630-0101 Japan

Abstract. In this paper we propose a new software development process simulation model. The model can
predict variations of productivity based on dynamic changes in the developer’s knowledge structure. An im-
portant concept of the model is that a developer’s productivity is influenced by the developer’s knowledge.
Moreover, a developer can acquire new knowledge by executing activities of a project. In other words,
the developer’s knowledge structure changes during the project. The knowledge structure is defined using
a cognitive map that consists of knowledge elements and prerequisite relationships among the knowledge
elements. By adding the specific developer’s knowledge and the specific project workload to the knowl-
edge structure, an increment of the developer’s knowledge and the project progress are calculated into the
model. The simulation results are useful for making project plans including technical reviews, which are an
efficient technique for acquiring new knowledge. The simulation model can predict what knowledge should
be discussed in the technical review, when the review should be held, and who the members of the review
should be. The simulation results help managers make the most appropriate and executable project plan.

Keywords: process simulation, cognitive map, knowledge structure, technical review

1. Introduction

In today’s fast Information Technology society, changes are made almost daily in soft-
ware development projects. For example, development methodology has changed from a
conventional structured development method to an object-oriented development method.
Reuse of classes in an object-oriented methodology help developers achieve higher pro-
ductivity than in a conventional methodology [Hanakawa er al. 1999a]. Because cus-
tomers want more and higher quality software, developers must use new technologies
such as object-oriented development methods, even though the acquisition and applica-
tion of new technologies is often time consuming.

In such situations, software development project managers need to consider the de-
velopers’ knowledge in project planning and control [Bochenskim 1994]. A developer’s
knowledge influences the productivity and progress of software development projects
[Yourdon 1994]. However, the developers’ knowledge structures vary greatly because
the knowledge structure depends on the individual developer’s experience, motivation,
and education. Moreover, such knowledge is dynamically changed during a project. For
example, even if a developer has no initial knowledge about Network, the developer
can acquire Network knowledge bit by bit in developing a network system. The vari-

384 HANAKAWA, MATSUMOTO AND TORII

ous knowledge structures and the dynamic changes of the knowledge structures make
predicting the progress of projects difficult.

For this reason, we propose a new process simulation model based on the dynamic
changes in a developer’s knowledge structure. The developer’s knowledge structure
is defined using a cognitive map that consists of nodes and links. The nodes represent
knowledge elements, and the links represent prerequisite relationships among the knowl-
edge elements. The dynamic changes of knowledge and the progress of the project in
the knowledge structure are calculated using a simulation model that has been already
proposed [Hanakawa et al. 1998, 1999b].

The proposed model can also make clear what a developer cannot understand, and
when a developer can no longer acquire knowledge. The prerequisite relationship can
show a prerequisite knowledge shortage that prevents a developer from acquiring new
knowledge. Moreover, because two the attributes: the developer’s knowledge and the
project workload, are added to each knowledge element respectively, the knowledge
structure may show an imbalance in the individual developer’s knowledge and the spe-
cific project workload. For example, if no workload requiring prerequisite knowledge
for a new technology exists, a developer will not efficiently acquire the new technology
because of this shortage in prerequisite knowledge.

In section 2 of this paper, a knowledge structure in a cognitive map is shown and
two attributes added to the knowledge element are explained. In section 3, a simulation
model is described. First, the original model already proposed by Hanakawa et al. [1998]
is described. Next, a new process simulation model and the simulation procedure are ex-
plained. In section 4, case studies using a simulator based on the new process simulation
model are presented. A discussion of the model’s efficiency is shown in section 5. Re-
lated works are listed in section 6. In section 7, the conclusion is presented.

2. Knowledge structure

Knowledge is a diffuse concept. However, we define knowledge by focusing on fairly
well-defined and contained skills under mathematical models. A key point of our pro-
posed model is that our simulation model includes the dynamic changes of a developer’s
knowledge. Therefore, we first show a cognitive map that clarifies general elements
of knowledge and the prerequisite relationships among the elements. Next, the gen-
eral cognitive map is transformed into a knowledge structure including the developer’s
knowledge and the project workload. We explain a way of transforming the cognitive
map into the knowledge structure.

2.1. A cognitive map

A developer’s knowledge structure is described in a cognitive map [Shavelson 1972]
that is popular in cognitive science fields. Figure 1 shows an example of a cognitive
map used for developing Application software. To make discussion simple, the range of
the cognitive map of figure 1 is limited. A real cognitive map for developing software

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 385

Programming

Language

Domain

Knowledge

RDB
Knowledge

Operating
system

Knowledge
Development ¢
Methodology
SQL
Network Knowledge

Knowledge

CASE
Knowledge

Data Base
Knowledge

Figure 1. A cognitive map in software development.

will be broader and more complicated. The cognitive map in figure 1 is a graph that
consists of nodes and links. The nodes of the graph represent the knowledge required in
developing the system. For example, “Data Base” knowledge, “SQOL” knowledge, and
“Network” knowledge are set to the nodes. We call these “knowledge elements.” The
links of the graph represent a prerequisite relationship among the knowledge elements.
In figure 1, the knowledge element “RDB” is a prerequisite for the knowledge element
“SQL.” That is, if a developer has enough “RDB” knowledge, the developer will be able
to easily acquire “SQL” knowledge. In addition, when a developer executes an activity
that requires “SQL knowledge, the developer will acquire not only “SQL” knowledge,
but also “RDB’ knowledge.

Here we indicate a way of generating the knowledge elements and the prerequisite
relationships among the knowledge elements. We try to generate the knowledge ele-
ments and the prerequisite relationships using a textbook. A textbook usually consists
of chapters, sections, and subsections. The chapter, section, and subsection discuss a
specific topic. In the case of a C language textbook, a section shows the details of a
concept and examples about a “Pointer technique.” Therefore, we use a section topic
as a knowledge element “Pointer.” Moreover, if the “Pointer” concept refers to a sec-
tion of “Listing technique,” the knowledge element “Pointer” must be a prerequisite for
the knowledge element “Listing.” The prerequisite relationship between *“Pointer” and
“Listing” can be generated using a reference relationship between the section “Pointer”
and the section “Listing.” If we use chapters of a textbook to generate a cognitive map,
we will have made a rough cognitive map. In contrast, if we use subsections, we will
have made a detailed cognitive map.

In addition, a way of generating the cognitive map has been proposed [Takemura
2002]. The prerequisite relationships have been derived using a statistical technique de-
rived from the results of examinations about knowledge. If there are causal relationships

386 HANAKAWA, MATSUMOTO AND TORII

(2) Workload requires

developer’s knowledge “RDB”

knowledge knowledge

Design Document
100 pages

Figure 2. Two attributes added to the knowledge element.

between the right answers of examinations about knowledge “A” and the incorrect an-
swers of examinations about knowledge “B,” then the prerequisite relationship of the
cognitive map will be set between knowledge “A™ and knowledge “B.”

2.2. Adding two attributes to the knowledge element

To transform the general cognitive map into a knowledge structure that is based on an
individual developer and a specific project, two attributes are added to the knowledge
element (see figure 2). The first attribute is concerned with the individual developer’s
knowledge, which we term the “adequacy of knowledge.” The second attribute is con-
cerned with the specific project workload, which we term the “workload.” The adequacy
of knowledge of the knowledge element is represented as the percentage of achievement
in acquiring the knowledge element for an individual developer. Figure 3a represents
a developer who has sufficient knowledge about the “Programming Language” and the
“Development Methodology,” but is not good at “RDB,” “SQL,” “Network,” or *“0S.” The
advantages and disadvantages of the individual developer’s knowledge are clarified by
the “adequacy of knowledge” attributes. The workload is represented using an estima-
tion value for the activity that requires the knowledge element to complete the activity.
For example, when a developer makes a design document in a project, the estimation
values are shown using the number of pages of the design document (see figure 3b).
In figure 3b, the designing activity needs “RDB,” “SQL,” and “Data Base” knowledge,
however “Programming Language,” “OS,” “Network,” and “Development Methodology”
knowledge are not required in the designing activity.

Next we explain a way of getting the values for the two attributes. In the “ade-
quacy of knowledge” attribute, the percentage for acquiring the knowledge element is
decided by the result of an examination about the knowledge element. For example,
if a developer’s result of the examination about “CASE” is 50%, then the value of the
adequacy of the knowledge element “CASE™ will be set at 50%. On the other hand, the
percentage will be extracted from an experience of a developer if the examinations about
all knowledge elements cannot be executed. In practice, we investigated the relationship
between periods of an individual developer’s experience and the “adequacy of knowl-
edge” [Hanakawa et al. 1999b]. In the result of the investigation using questionnaires
sent to managers, when a developer has 10 years or more experience for C Program-

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 387

The workload of a project

The adequacy of a developer’s knowledge

Programming

Programming Language

Language

RDB Operating
Knowledge Knowledge

10%
¢ Opage Development
Mcthodology

RDB
Knowledge

100%

0S
Knowledge

20% ¢ Development
Methodology

SQL
80% Knowledge
;/ 10%
CASE
i Data Base
Knowledge 4

50% 20%
(a) (b)

Figure 3. (a) An individual developer’s knowledge. (b) The project workload.

* 100pages

SQL
Knowledge

Network
Knowledge

Network
Knowledge

10pages

50pages 80pages

ming Language, the percentage of achievement in acquiring knowledge of the C Pro-
gramming Language is almost 100%. If he/she has 5 years experience, the percentage
of achievement in acquiring knowledge of the C Programming Language will be around
70-80%. If the experience is only 2-3 years, the percentage of achievement in acquir-
ing knowledge of the C Programming Language will be around 50%. The result of the
investigation, however, is a rough standard.

In the “workload” attribute, the estimation values are decided by analyzing docu-
ments that have already been completed in other similar projects. In the case of making
a design document, first, the total number of pages of the design document that has been
completed in the other similar project is counted. Next, the knowledge required in the
making of each page of the document is clarified. For example, if in project “ABC.” a
design document is 500 pages, then the number of pages that require knowledge “RDB”
will be 50; likewise, the number of pages that require knowledge “SQL” will be 100.
In other words, 10% of the design document required “RDB” knowledge, and 20% of
the design document required “SQL.” Using the percentages of the analysis results in a
project “ABC.” the estimation values for the “workload * attributes are decided in a new
project. If the requirement (e.g., Function Point) in the new project is a half scale of
the requirement in the project “ABC,” we will be able to predict that the total number of
pages for the design document in the new project will be 250. Moreover, we can pre-
dict that the number of pages requiring knowledge “RDB” will be 25, and the number
of pages requiring “SQL” knowledge will be 50. Therefore, the value 25 is added to
the knowledge element “RDB” as the “workload” attribute and the value 50 is added to
the knowledge element “SQL” as the “workload” attribute in the new project’s knowl-
edge structure. If we analyze many design documents in similar projects, the estimation
values of the “workload” attribute will be more exact.

388 HANAKAWA, MATSUMOTO AND TORII
3. The simulation model

Our new model is generated from combining the new knowledge structure and the orig-
inal simulation model that has already been proposed [Hanakawa er al. 1998]. In this
section, first, the original simulation model is explained. Next, we show how the new
model combines the original model with the new knowledge structure.

3.1. The original model

The original model consists of three sub models: the Activity Model, the Productivity
Model, and the Knowledge Model. The Activity Model illustrates the characteristics
of activities that are executed by an individual developer in a project. The Knowledge
Model shows the characteristics of an individual developer. The Productivity Model
shows the relationships between the activity and the individual developer. One of the
key concepts of the original model is the “knowledge level” [Hanakawa et al. 1998].
The knowledge level shows how much a developer knows and how difficult an activity
is. In other words, a developer with a high level of knowledge is an expert, and an
activity that requires a high level of knowledge is a difficult activity. The knowledge level
shows not only the developers’ skill, but also the difficulty of the activity. Because the
knowledge level is concerned with the characteristics of an activity and the developer’s
characteristics as a common measurement, we call this measurement the “knowledge
level” in this paper.

3.1.1. Figure 4. Activity Model

In the original model, a development activity is composed of a set of simple activities
called “primitive activities.” For example, a design activity is composed of a set of prim-
itive activities: architectural design, interface design component design, and algorithm
design. A primitive activity has a knowledge level that is needed to execute this primitive
activity. The Activity Model is based on the following assumptions:

(i) an activity is composed of a set of primitive activities,
(ii) the primitive activities are put in order of the level of the required knowledge,

(iii) a high level of knowledge requires more knowledge than a low level of knowledge,
and

(iv) the knowledge needed to execute a primitive activity of higher rank includes all the
knowledge needed to perform a primitive activity of lower rank.

The Activity Model shows the relationship between the quantity of the primitive
activity and the required level of knowledge needed to execute the primitive activity.
The Activity Model illustrates a distribution of the level of knowledge needed to execute
the primitive activities (see figure 4). The X-axis of the Activity Model represents the
level of knowledge needed to execute the primitive activities. In figure 4, the knowledge
levels of the Activity Model are divided into 100 levels. The Y -axis represents the total

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 389

Quantity of activity wy(&)

I 3 7‘:
4

A T

g
y

Level of
knowledge

1] 20 40 60 80 100

Figure 4. Activity Model.

amount of primitive activities that require the same level of knowledge. If we assume
that the distribution of the level of knowledge is normal distribution, then the Activity
Model is defined as follows:

w;0) =W, ! el ==/)

21

w;(6): total amount of primitive activities required for the level of knowledge 6 under
an activity j,

0 required level of knowledge needed to execute a primitive activity of activity j,

W;. total amount of activity j,

0: average of 0,

s standard deviation of 6.

3.1.2. Figure 5. Knowledge Model

The Knowledge Model shows the quantity of gain to a developer’s knowledge by ex-
ecuting an activity. Quantity of gain to the developer’s knowledge is derived from the
relationship between b;; and 6. b;; is the developer’s level of knowledge, and 6 is the
required level of knowledge needed to execute the activity. This model is based on the
following assumptions:

(i) if b;; is more than 6, developer i will not gain new knowledge by executing activ-
ity j, and the developer’s level of knowledge will not changed,

(i) if b;; is less than €, developer i will gain new knowledge by executing activity j,
and the developer’s level of knowledge increases. If the gap between b;; and 6 is
small, developer i gains more new knowledge; if the gap is large, developer i gains
limited new knowledge. In short, a developer must perform a difficult activity to
acquire knowledge. However, if the activity is too difficult, then he/she will gain
little knowledge.

390 HANAKAWA, MATSUMOTO AND TORII

Quantity of gain to /
/
knowledge Lij E //
Kijqmmmmmmmmmm- - g
Developer’s know-) st
’
ledge level b,-j E /,
| level of
: knowledge
>
0 40 100

Figure 5. Knowledge Model.

The Knowledge Model is defined as follows (see figure 5):

K;je Ei=bi) - p <0,

L;;j(0): quantity of gains to knowledge of developer i by executing a primitive activity
of activity j, which has the level of knowledge 6,

Ki;: maximum quantity of gains to knowledge of developer i by executing activ-
ity j,

bij: developer i’s knowledge level about activity j,

Ejj: developer i’s downward rate of gain to knowledge by executing activity J,

0: required level of knowledge needed to execute the primitive activity of activ-
ity .

W;: total amount of activity j.

3.1.3. Figure 6. Productivity Model

The Productivity Model shows a developer’s productivity in the execution of an activ-
ity. When a developer does primitive activity A, the developer’s productivity is derived
by processing the developer’s level of knowledge and the required level of knowledge
needed to execute the primitive activity A. The Productivity Model using a cumulative
normal model Ogive model [Lord 1968] is defined as follows (see figure 6):

(lj (/7[]' 79) l

P;(0) = C;; / ——e 4, 3)
j() / —00 \/27T

P;j(0): productivity of a developer i under a primitive activity of an activity j, which
has the level of knowledge 9,

Cij: maximum of the productivity of developer i under activity j,

aj: level of accuracy needed to execute activity j (>0),

bij: level of knowledge of developer i about activity j,

0: required level of knowledge needed to execute the primitive activity of activ-

ity j.

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 391

Productivity F

T Cy
Shape of \ E
curved line a; \ :
“-H-..____ 'l
—— H‘-{
A
2
Developer’s ;
knowledge level & : \ Level of
\\‘\. _R_ knowledge

]
N
S
—
S

Figure 6. Productivity Model.

In figure 6, the X-axis of the Productivity Model represents the levels of knowl-
edge needed to execute the primitive activities. The level of knowledge of the Produc-
tivity Model is divided into 100 levels. The Y -axis represents a developer’s productivity.
Variation of the productivity is shown as a curve in figure 6. Figure 6 shows that if
the developer’s level of knowledge b;; is higher than the required level of knowledge 6,
then the productivity is high. In contrast, if b;; is less than 6, the productivity is low.
Productivity especially decreases within narrow limits. The range is around one point
where 6 is almost equal to b;;. If 6 is equal to b;;, the productivity is half of the pro-
ductivity’s maximum C;;. The parameter a; is important for determining the shape of
the curved line in the Productivity model [Lord 1968]. If a; is big, then the curved
line declines sharply within narrow limits, and a small gap in the developer’s knowl-
edge can greatly change the productivity. On the other hand, if a; is small. then the
curved line goes down loosely within wide limits. In particular, if a; is equal to zero,
the productivity is always half of the maximum productivity of C;; regardless of the
value of 6; a large gap in the developer’s knowledge will only change the productivity
slightly.

3.1.4. Simulation procedure
The proposed model can be used to simulate a development progress. The following
formula has been applied to compute the value of progress.

W — 3o w;(6)

Progress =
& W;

“4)

w;(#): remaining quantity of primitive activities that require a level of knowledge 6
under an activity j,

required level of knowledge needed to execute a primitive activity of activity j,
W;: total amount of activity j.

2

392 HANAKAWA, MATSUMOTO AND TORII

This simulation consists of the following steps:

Step 0. Initialization.

Parameters (W;, b;;, 0, s, a;, Cij, K;j, Ej;) of the three submodels are initialized to
the values determined by a user (e.g., a project manager). The time ¢ is initialized to
zZero.

Step 1. Choice of a primitive activity.

A primitive activity that is executed at time ¢ is chosen randomly out of the primitive
activities with non-zero quantities in the Activity Model. Parameter 6 is determined
by the chosen primitive activity.

Step 2. Calculation of productivity P;;(6).

The value of productivity P;;(6) is calculated by equation (3) in the Productivity
Model which is given four parameters: C;;, which is determined in step 0, a;, which
is determined in step 0, b;; (the developer’s level of knowledge), which is determined
in step O (only in the first cycle) or step 5, and € (required level of knowledge needed
to execute the primitive activity) which is determined in step 1.

Step 3. Renewal of the quantity of a primitive activity w;(6) in the Activity Model.
P;;(6), which has already been calculated in step 2 is subtracted from the amount of
the primitive activity that has the 8. The Activity Model is reset to the result of this
subtraction. Using mathematical terms, w; (6) of the Activity Model can be expressed
as

w; @)t + 1) = w;(0)(1) — P;j(6). ®)

Step 4. Calculation of the quantity of gain to knowledge L;;(6).
The quantity of gain to knowledge L;; () is calculated by equation (2) in the Knowl-
edge Model which is given four parameters: K;;, which is determined in step 0, E;;,
which is determined in step 0, b;;, developer’s level of knowledge, which is deter-
mined in step O (only in first cycle) or step 5, and 6 (required level of knowledge
needed to execute the primitive activity), which is determined in step 1.

Step 5. Renewal of the developer’s knowledge level b;;.
The quantity of gain to knowledge L;;(6) that has already been calculated in step 4 is
added to b;; (the developer’s level of knowledge). The level of knowledge is reset to
the developer’s new knowledge level b;;:

bij(t + 1) = b;;(t) + L;; (0)(1). (6)

Step 6. Renewal of the value of productivity in the Productivity Model.
The value of productivity is reset to the developer’s new b;; (the developer’s level of
knowledge) determined in step 5.

Step 7. Go to step 1.

In the Activity Model, if the total amount of remained activities 2(190:01 w;(0) is equal

to zero, the simulation is finished: if 2},‘):0, w;(0) is greater than 0, set the value of

time ¢ to (¢ + 1), then go back to step 1.

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 393

Ffr;oc!uctivity

Developer(2)

Developer(1)

Time(Hour)
Figure 7. Variations of productivities.

In the simulation, the developer’s level of knowledge b;; is increased in step 5.
The growth of b;; during the execution of activity j shows the developer’s learning. By
resetting the Productivity Model in the new b;;, the curve of productivity in figure 6
shifts to the right side of the Productivity Model; that is, productivity becomes higher
than the productivity in the former Productivity Model that is not reset yet. Therefore,
the model can show the variation of productivity based on changes in the developer’s
level of knowledge.

3.1.5. Case studies of the original model

In order to evaluate the usefulness and characteristics of the original model, we apply
the model to a case in which the development progress is influenced by the developer’s
knowledge. In this case, we assume that two developers execute the same activity using
a new technology. The first developer(/) has sufficient experience and knowledge in
conventional technology (b;; = 75), but he/she is not good at acquiring new ideas of the
new technologies effectively (K;; = 1, E;; = 0.01). The second developer(2) has little
experience and knowledge (b;; = 25) in software development, but he/she easily learns
new ideas of the new technologies (K;; = 10, E;; = 0.1). The other parameters’ (W,
bij, 9, s, aj, Cj;) values are same. The simulation results are shown in figures 7. 8. Fig-
ure 7 shows variations of the developers’ productivities, and figure 8 shows the progress
of the developers in executing the activity. The gap between the two developers is clar-
ified. In the early stage of the project, developer(/) achieves a higher productivity than
developer(2)’s productivity, and developer(/) makes better progress than developer(2)’s.
However, in the middle stage of the project, developer(/)’s productivity decreases sud-
denly because developer(/) is not good at acquiring new skills. It takes long time for
the developer(/) to execute the remaining difficult activities. In contrast, the reduction
of developer(2)’s productivity is less than the reduction of developer(/)’s productivity
because developer(2) is good at acquiring new technologies. Executing the remaining
difficult activities does not take much time. As a result, to complete the activity, devel-
oper(1) takes 229 hours, while developer(2) takes 133 hours. A simulation result will
help a project manager decide who should be a member of a critical project.

394 HANAKAWA, MATSUMOTO AND TORII

Progress(%)
100 , —
90 | /
80 -
70 F
60
50
40 -

30 - Developer(2) Developer(1
ol 133hours 229hours
’ 1 26 5‘[76 l(;l 126' lél 176 2(;1 226

Figure 8. Progress of the developers.

3.1.6. Parameter values

The values of the model’s parameters are determined based on industrial project man-
agers’ intuitions and experience [Hanakawa ef al. 1999b]. Using questionnaires about
virtual projects experienced managers estimate the workload for the activity’s parame-
ters (W;, 6., s, a;). the parameters for the developers’ abilities (b;;, Cij, Kjj, E;;) and
the development periods for the simulation results. Formulas converting the value of
the estimations to the values of the parameters are derived, as all estimations by the
managers are valid. Using the formulas of the parameters and the manager’s answers to
the questionnaires about the projects, the values of the parameters of the original model
are determined. In addition, the simulation results of the original model have already
been evaluated. The simulation results (development periods) fit experienced managers’
estimations at a 5% level of statistical significance.

3.2. The new model

To apply the concept of the knowledge structure (see section 2) to the original model,
the three sub models of the original model are allocated to each knowledge element in
the knowledge structure, respectively (see figure 9). The developer’s knowledge level
b;;j in the Productivity Model and the Knowledge Model are equal to the first attribute,
“adequacy of knowledge,” which is set to each knowledge element. The total amount of
activity W; in the Activity Model is equal to the second attribute, “workload,” which is
set to each knowledge element.

3.2.1. Advanced Knowledge Model
Formula (2) of the Knowledge Model changes as follows:

K'e Ei0=bijp) . <@ Za” bi; (1)
Li;(60) =W, SN K'=K; ST L
i(0) J {0’ bl-j >0, J 100 x all ’ @

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 395

L;j(9): quantity of gains to knowledge of a developer i by executing a primitive activ-
ity of activity j, which has knowledge level 6,

bij: developer i’s level of knowledge about activity j,

Ejj: developer i’s downward rate of gain to knowledge by executing activity j,

f: required level of knowledge needed to execute the primitive activity of activ-
ity j.

W;: total amount of activity j,

Kij: maximum quantity of gains to knowledge of developer i by executing activ-
ity .,

all: the number of the prerequisite knowledge elements for knowledge ele-
ment “A.”

We call formula (7) the “Advanced Knowledge model.” Parameter K;; of the origi-
nal model changes to K’ of the Advanced Knowledge Model. In K’, K;; is defined based
on the ratio of achievement in acquiring the prerequisite knowledge elements. That is,
if a developer has sufficient prerequisite knowledge, there will be a high possibility that
the developer will gain knowledge element “A” by executing an activity j because the
value of (Z;’Zl bij(1))/(100 x all) is almost 1.0. In contrast, if a developer has little
prerequisite knowledge, where the value of (Z;’Zl bi;(1))/(100 x all) is almost 0.0, the
developer cannot efficiently acquire knowledge element “A” by executing an activity j,
in spite of his/her efforts.

For example, in figure 9, the workload of the activity that requires “SQL” knowl-
edge is 50 pages of a design document. The developer, however, has only 20% knowl-
edge about “SQL.” Moreover, the developer has only 10% of the prerequisite knowledge
“RDB” for knowledge “SQL.” Therefore, the developer has to make the design docu-
ment by learning not only “SQL” but also “RDB.” He/she will need much time to make
a design document with “SQL” knowledge because the developer needs to learn “SQL”
and “RDB.” In contrast, if the developer has sufficient knowledge of “RDB.” the devel-
oper will finish making the document in a shorter time than in the above case. All in
all, we may assume that a shortage of prerequisite knowledge prevents a developer from
acquiring new knowledge.

3.2.2. Simulation procedure for the new model
A simulation procedure consists of six steps including the procedure of the original
model (see section 3.1).

Step A. Creating a cognitive map.
Determining a cognitive map in a cognitive science field is difficult. However, our
purpose in using the cognitive map model is only to make clear the knowledge ele-
ments and the prerequisite relationships among the knowledge elements. A way of
generating a cognitive map has already been shown in section 2.1.

Step B. Initializing the cognitive map into a knowledge structure.
The two attributes: adequacy of knowledge (b;;) and workload (W), are added to
each knowledge element. A way of determining the values of the attributes has al-

396 HANAKAWA, MATSUMOTO AND TORII

Activity Model

.
RDB
Knowledge

SQL
Knowledge
o ¢
.
.
.

Ad
Data Base
Knowledge

Figure 9. Setting the original model to the knowledge element.

ready been shown in section 2.2. In addition, the three submodels: the Activity Model,
the Advanced Knowledge Model, and the Productivity Model, are initialized (see
step O of the original model) in each knowledge element of the knowledge structure.
Time ¢ is set to zero.

Step C. Choice of a knowledge element.
First, a knowledge element “/” in the knowledge structure is chosen randomly at
time f. Next, a primitive activity is chosen randomly out of the primitive activities
in the Activity Model of the chosen knowledge element. Parameter 6 at time ¢ is
determined by the chosen primitive activity (see step | of the original model).

Step D. Calculation in the model of the knowledge element.
The procedure from step 2 to step 6 of the original model (see section 3.1) is executed
here. However, the Advanced Knowledge Model is used instead of the Knowledge
Model of the original model. The productivity P;;(#). quantity of gain to knowledge
L;;(0)" and the developer’s knowledge level b;; of the knowledge element “/” are cal-
culated in the Productivity Model and the Advanced Knowledge Model of knowledge
element “/.” In addition, the Productivity Model and the Advanced Knowledge Model
of knowledge element “/” are reset using a revised b;;, and the Activity Model is reset

Step E. Acquisition of prerequisite knowledge.
By executing the chosen primitive activity w;(6) of knowledge element “/,” a devel-
oper’s knowledge level b;;’s of all prerequisite knowledge elements for the knowl-

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 397

100 A Develoiper’s
level of
knowledge(%)

CASE

NetWork Time

Figure 10. Increments of the developer’s level of knowledge of the knowledge elements.

edge element “/” also increases. Step 4, step 5 and step 6 of the original model (see
section 3.1) are executed with all prerequisite knowledge elements for the knowl-
edge element /. Like step D, the Advanced Knowledge Model is used instead
of the Knowledge Model of the original model. In step 4 the quantities of gain to
knowledge L;;(0)" of the prerequisite knowledge elements are calculated. In step 5
the developer’s knowledge level b;;’s of the prerequisite knowledge elements are re-
newed based on each L;;(#)’, and the Advanced Knowledge models of the prereg-
uisite knowledge elements are reset by the revised each b;;. In step 6 the Produc-
tivity models of the prerequisite knowledge elements are reset based on the revised
each b;;. However, the Activity models of the prerequisite knowledge elements are not
renewed because there is no execution of activities requires the prerequisite knowl-
edge elements, in other words, workloads of the prerequisite knowledge elements do
not decrease.
Step G. Judgment of finish.

In all Activity models of all knowledge elements, if the total amount of remained ac-
tivities Z;(i)l w;(0) of all Activity models is equal to zero, the simulation is finished;

if Zéozol w;(6) of all Activity models is greater than zero, set the value of time ¢ to
(t 4+ 1). then go back to step C. Time ¢ at the finish represents a development period.

3.2.3. Increment of prerequisite knowledge

In figure 10, a simulation result of a knowledge structure in the example case of figure 3
is shown. The knowledge structure of figure 3 consists of eight knowledge elements. We
chose the knowledge elements “OS.” “Network.” and “CASE” from the knowledge struc-
ture in figure 3. The workload of an activity that requires knowledge element “CASE” is
50 pages; in contrast, the workload of an activity that requires knowledge elements “0S”
and “Network” is zero. Therefore, it appears that a developer does not need knowledge
“0S” and “Network.” Nonetheless, the knowledge elements “OS” and “Network” are the
prerequisite knowledge for the knowledge element “CASE” which means that the devel-
oper has to acquire not only the knowledge element “CASE,” but also the knowledge

398 HANAKAWA, MATSUMOTO AND TORII

inputField

0%, Hetworl, Frogram, et hod, UASE, OB, 700, 6, Busine o] Posress(®)
0,0,0,500,500,0,0,500, 300

001 10,0, 1,50, 80, 50, 110

s oy o

flethod, 50
Clear ! Review !|
i i 1 &0 2 Mont I
—— B +—+ et —
/w B D ety Frot
E(»Mi\ cAst ROB
! m N L 4
b T

fing = C Bd,58,7%, 77, 8,08, 88,08, 98 Yl = 254,30327 16654201 /

Figure 11. A simulator based on the proposed model.

elements “OS” and “Network.” Therefore, in figure 10, the developer’s levels of knowl-
edge of “0OS” and “Network” also increase while the developer executes the activity that
requires the knowledge element “CASE.”

4. Case studies

Some cases are simulated using the model in order to illustrate our idea. The potential
ability of the model is shown in the simulation results of the cases studies.

4.1. A simulator based on the proposed model

A simulator was implemented based on a simulation model similar to figure 11. The
simulator consists of four parts. The first part is an input area at the upper-left side
of figure 11. Users input information of a case of simulation including the knowledge
elements, the prerequisite relationships, the workload of activities, and the adequacy of
knowledge elements. The second part is a knowledge structure with the adequacy of
knowledge. The knowledge structure is shown at the lower-left side of the simulator.
The size of the circle filled with black color represents the adequacy of the knowledge
element. If the blackened circle is large, the adequacy of the knowledge element is
great; likewise, if the blackened circle is small, the developer has little knowledge. The
blackened circles grow larger and larger during a simulation.

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 399

Table 1
Values of two attributes of knowledge elements.
Knowledge Case | Case 2
element Adequacy of the ~ Number of pages of the ~ Adequacy of the ~ Number of pages of the
knowledge element design document knowledge element design document

(0N 10% 0 0% 0
Network 10% 0 0% 0
Program 80% 150 10% 0
Method 90% 300 0% 500
CASE 90% 150 0% 500

RDB 0% 0 90% 0

SQL 0% 0 80% 0

DB 20% 300 80% 200
Domain 40% 450 100% 400

At the upper-right side of figure 11 is the third part of the simulator. This part is
a progress graph. During a simulation, increments of progress are shown in this part.
The fourth part is an area of Activity models. An Activity model is allocated to each
knowledge element, respectively. These Activity models are shown at the lower-right
side of figure 11. The Activity model shows the quantity of the remaining activity that
requires the knowledge element. The shapes of the Activity models are also changed
during a simulation.

4.2. Two typical cases

We show two typical cases of a developer making a design document. We assume that a
developer completes a design document in 10 months with full knowledge of knowledge
elements “OS,” “Network,” “Program language,” *‘Development methodology,” “CASE
tool,” “RDB.” “SQL,” “DB” and “Domain” (see figure 11). The prerequisite relations
among the knowledge elements are set as the links of the cognitive map in figure 11.
In case 1, the developer has to make a design document that requires “DB” knowledge,
however, he/she has little knowledge of “DB.” In case 2, the developer has to make a
design document in a new development environment; a new OS, a new CASE tool, or in
a new development methodology.

4.2.1. Case 1

A developer with good skills in “Programming” is assigned to case 1 (see column
“Case 1” of table 1). Although the developer is good at “Programming,” he/she has
only a little knowledge of “OS™ (10%), “Network” (10%), “RDB’* (0%), “SQL” (0%)
and “DB” (20%). Making the design document requires knowledge of “Programming,”
“Method,” “CASE” and “DB.” The number of pages of the design document are 150 (re-
quiring “‘Program’”), 300 (requiring “Method”), 150 (requiring “CASE”) and 300 (requir-
ing “DB”), respectively. In other words, the developer has to acquire “DB” knowledge
to make the design document.

400 HANAKAWA, MATSUMOTO AND TORII

Pograss(}) 19.5months
100% 21.7
Casel months
A (3) 0 Honth
| S I S S ' ‘*F B B e e s e e ey ey _‘_\, :

Figure 12. Simulation results of the case studies.

LeCe |
Net\ﬁnrk 5 S(QL) i " w®

Lo b
/ P

Y LLL%

Figure 13. The cognitive map and Activity models at (1) of the case 1 simulation.

The simulation result is a curved line called “Case 1" in figure 12. The developer
needs 19.5 months to complete the design document. The productivity is not constant;
the developer’s productivity decreases suddenly, 1 1.5 months later. This point is marked
with (1) in figure 12. The reason for the decrease in productivity is that the devel-
oper needs to acquire the “DB” knowledge because the remaining activity requires only
“DB” knowledge. Figure 13 shows the cognitive map and the Activity models at (1)
in figure 12. In the cognitive map of figure 13, the adequacies of “DB,” “SQL,” “OS”
and “Network” knowledge are very small. On the other hand, in the Activity models of
figure 13, only the activity that requires the “DB” knowledge remains. The quantities of
the other activities are zero. Therefore, we can assume that the developer is deadlocked
because of the shortage of “DB” knowledge at (1) in figure 12.

In addition, the acquisition of “DB” knowledge requires “SQL” knowledge. How-
ever, the “SQL” knowledge is zero. We can guess that the shortage of “SQL” knowledge
prevents the developer from acquiring “DB” knowledge. If the developer gains “SQL”
knowledge from an expert in a technical review at (1) in figure 12, the productivity of
the developer will increase. The technical review is discussed in section 5.

4.2.2. Case 2
A developer with knowledge about “DB” is assigned to case 2 (see column “Case 2”
of table 1). The developer has to make a design document with little knowledge about

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 401

Figure 15. The cognitive map and Activity models at (4) of the case 2 simulation.

“08” (0%), “Network™ (0%), “Program™ (10%), “Method” (0%) and “CASE” (0%). In
other words, the developer has to design a system in a new development environment.
Making the design document requires knowledge of “Method,” “CASE” and “DB.” The
number of pages of the design document are 500 (requiring “Method™), 500 (requir-
ing “CASE”) and 200 (requiring “DB”), respectively. The developer must acquire the
“Method” and “CASE” knowledge to make the design document.

The result of the simulation is a curved line called “Case 2 in figure 12. The
developer needs 21.7 months to make the design document. There are two points where
the developer’s productivity decreases suddenly in case 2. These two points are marked
as (3) and (4) in figure 12. Figure 14 shows the cognitive map and the Activity models at
(3) of case 2. Because the developer has little knowledge of “Method™ at (3), the activity
that requires “Method” knowledge remains open. Also, a shortage of “OS,” “Network,”
and “Method” knowledge prevents the developer from acquiring “CASE” knowledge, the
activity that requires the “CASE” knowledge is not reduced. In the period from (3) to (4)
of case 2, the developer has acquired “Method” knowledge (compare the cognitive map
of figure 14 and the cognitive map of figure 15). Therefore, the developer’s productivity
is low during the first half of the period from (3) to (4) in figure 12. After (4) of case 2 in
figure 12, because the developer makes the remaining document by acquiring “CASE”
and “Network” knowledge, the productivity decreases again around (4) in figure 12 (see
the cognitive map of figure 15).

402 HANAKAWA, MATSUMOTO AND TORII

In short, the simulation model can calculate the dynamic changes of the devel-
oper’s knowledge structure (see cognitive maps of figures 13—15). The cognitive map
during the simulation shows how the adequacy of the developer’s knowledge increases,
and what knowledge a developer cannot acquire any more. The developer’s productivity
also varies as the knowledge structure changes. In addition, the quantities of the re-
maining activities are also calculated into the simulation. By comparing the remaining
activities with the knowledge structure, a project manager will be able to get answers to
the questions: “what knowledge should the developer acquire?” and “when should that
knowledge be acquired?”.

5. Discussion

In this section, we discuss the usefulness of the results of the simulation. In this section,
an efficient way of acquiring knowledge as a set of technical reviews [Hanakawa et al.
2000] is discussed. In a technical review, an expert can solve the problems of a devel-
oper; in other words, an expert can provide knowledge that a developer cannot acquire
by himself/herself. We use the results of the simulation to make project plans including
the technical reviews. Again, we assume that a technical review requires 30 hours of
work.

5.1. Case I with a technical review

In the result of the simulation of case | in figure 12, the developer’s productivity de-
creases suddenly. As mentioned in section 4, the developer cannot acquire the “DB”
knowledge because of the shortage of “SQL” knowledge. If the developer can gain the
“SQL” knowledge at (1) in case 1, then the developer’s productivity will not decrease.
Figure 16 shows the result of a simulation including a technical review (Review 1) where
the developer is given the “SQL” knowledge from an expert at (1) in figure 12. The de-
veloper completes the design document within 14.4 months (see figure 16). Review 1
reduces the development period of making the document to 5.1 months.

Pogress() 14.4 months

Reviewl

1 15Month
[N

T T T T T T T T T T T T T T LI

Figure 16. The simulation result of the case 1 with Review 1.

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 403

Pogress(%) 17.7mon

Month

Figure 17. The simulation result of the case 2 with two reviews, Review 1 and Review 2.

5.2. Case 2 with technical reviews

In the result of the simulation of case 2 in section 4, the developer’s productivity de-
creases suddenly at two points: (3) and (4) of figure 12. Technical reviews can keep
the productivity from decreasing. Figure 17 shows the result of a simulation with two
technical reviews: Review 1 and Review 2. In Review | held at (3) of case 2, an expert
provides “Method” knowledge to the developer. In Review 2 held at (4) of case 2, the
developer acquires “CASE” knowledge from an expert. As a result, the developer com-
pletes the design document within 17.7 months. The two reviews reduce 4 months of the
development period.

5.3. Various technical reviews

Holding technical reviews not only wastes a developer’s time and efforts but also wastes
the valuable time and effort of the experts. Obviously, holding too many reviews is time
consuming. Too many reviews prevent developers from executing a project efficiently.
Reducing the development period using the fewest technical reviews when making a
project plan is important. Also, although a project manager may find and use the most
efficient review, the manager may not be able to make a project plan that contains the
most efficient review. For example, an expert may not be assigned to the review because
an expert is busy with his or her own tasks.

In such cases, project managers should consider plans that include various technical
reviews. Therefore, a simulation is useful in embedding various reviews into various
plans. By comparing the results of simulations and the possibility of assigning experts,
the manager will be able to indicate the most appropriate and executable plans.

Table 2 shows six simulation results of the case 1 example with various reviews.
The shortest period of the simulation result is 14 months in No. 1. If a manager wants
to complete the project as soon as possible, the manager should make a plan embedding
areview of No. 1. However, if the manager cannot assign the experts who have “SQL”
and “RDB” knowledge, then the manager should choose the review in No. 6. The review
in No. 6 is the second shortest period for a case. In such a way a manager can choose
the most appropriate and executable plan.

404 HANAKAWA, MATSUMOTO AND TORII

Table 2
Simulation results with various reviews.
No. Contents of review When is the review held? Simulation result
1 SQL (2 times), RDB 11 months 14.0 months
2 SQL (2 times) 11 months 14.6 months
3 SQL 11 months 16.7 months
4 SQL 5 months 15.8 months
5 DB 5 months 18.4 months
6 DB 11 months 14.4 months

In addition, a project manager can choose the most efficient review using the results
of the simulation. By comparing No. 1 and No. 2 of table 2, the result (14.0 months) of
No. 1 is not so different from the result (14.6 months) of No. 2. However, three reviews
(2 times SQL and RDB, or 90 hours) are held in No. 1; in contrast, two reviews (2 times
SQL, or 60 hours) are held in No. 2. In other words, in case 1, the simulation results
indicate that holding the two technical reviews of No. 2 is more efficient than holding
the three technical reviews of No. 1. Next, by comparing No. 5 (holding the review 5
months later) and No. 6 (holding the review 11 months later), the developer in No. 5
takes 4 months more than in the case of No. 6, in spite of the same review about “DB.”
The review in No. 5 is held too early for the developer to acquire the “DB" knowledge.
In other words, because the prerequisite knowledge for the “DB” knowledge is not suffi-
cient, the developer cannot understand what the expert explains in the technical review.
Obviously, the manager will choose review No. 6.

6. Related works

Several methods have already been proposed for modeling and evaluating the software
development process. Kellner proposed a method for modeling the software develop-
ment process through three separate points of view: structural, functional, and behavioral
[Kellner 1991]. The process simulation is mainly based on the behavioral model, and the
model executes STATEMATE, which is one of the CASE tools used to design software
for communication networks. STATEMATE can establish the schedule for software de-
velopment and can estimate work effort. Since STATEMATE is based on the behavioral
model. productivity and changes of knowledge are calculated from the probability of
a state-transition. However, STATEMATE does not take variations of productivity and
changes of knowledge into account.

Kusumoto ez al. proposed a development model using an extended Generalized
Stochastic Petri-net [Kusumoto et al. 1997]. In this model, development period, work
effort, and quality of software are estimated by assigning developers to activities. The
model has a parameter including the experience level of the developer. This parameter is
important in determining the probability of the injection and the removal of a fault and
the firing rate of a Petri-net. Although the experience level parameter is a constant for
each developer, the parameter does not change during the simulation.

A KNOWLEDGE-BASED SOFTWARE PROCESS SIMULATION MODEL 405

Eden et al. proposed a model of competencies using a cognitive mapping [Eden
et al. 2000). The model shows competencies as patterns as well as the way in which
the patterns often express the distinctiveness of competencies. The relationship between
the patterns of competencies and the goals of an organization are explored as the basis
for establishing core distinctive competencies. Using this relationship, a business model
that will inform strategic direction is explored. Although the model is useful in planning
a project’s strategy, productivity, which is an important factor in the planning phase, is
not discussed.

A conventional cost estimation model COCOMO takes account of a developer’s
skills and experience [Boehm 1981]. COCOMO is a statistical model that is derived
from the analysis of 63 software projects. The developer’s skills and experience in-
fluence the results of estimations in COCOMO. However, a concept of the dynamic

change of a developer’s skill and knowledge during a project are not incorporated into
COCOMO.

7. Conclusion

We propose a new simulation model based on an individual developer’s knowledge struc-
ture. The model consists of a knowledge structure and a simulation model that has
already proposed. Since two attributes (workload of an activity and adequacy of a devel-
oper’s knowledge) are added to all knowledge elements in the knowledge structure, the
simulation results include the dynamic changes made to a developer’s knowledge struc-
ture. Based on these results, managers can make plans for projects that include the most
appropriate and the most executable technical reviews. The reviews help a developer
acquire new knowledge efficiently.

The basic concept of the model is concerned with an individual developer’s knowl-
edge structure although there are actually many developers in a software development
project. Obviously, the developers influence each other in the collaboration of tasks,
and an individual developer’s knowledge is influenced by other developers’ knowledge,
workloads, communications, and motivation. In the future, we will investigate how the
developers’ knowledge structures changes in the collaboration of tasks, and how the
developers’ productivities vary in activities divided into developers.

References

Bochenskim, B. (1994), Implementing Production-Quality Client/Server System, Wiley, New York.

Boehm, B.W. (1981), Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ.

Eden, C. and F. Ackermann (2000), “Mapping Distinctive Competencies: A Systemic Approach,” Interna-
tional Journal of the Operational Research Society 51, 1, 12-20.

Hanakawa, N., H. lida, K. Matsumoto, and K. Torii (1999a), “Generation of Object-Oriented Software

Process Using Milestones,” International Journal of Software Engineering and Knowledge Engineering
9, 4, 445-466.

406 HANAKAWA, MATSUMOTO AND TORII

Hanakawa, N., K. Matsumoto, and K. Torii (1999b), “Application of Learning Curve Based Simulation
Model for Software Development to Industry,” In Proceedings of the 11th International Conference on
Software Engineering and Knowledge, Kaiserslautern, Germany, World Scientific Publishing, pp. 283~
289.

Hanakawa, N., S. Morisaki, and K. Matsumoto (1998), “A Learning Curve Based Simulation Model for
Software Development,” In Proceedings of the 20th International Conference on Software Engineering,
Kyoto, Japan, IEEE Computer Society Press, pp. 350-359.

Hanakawa, N. and H. Nogi (2000), “Human Factor-Based Quality Control with Technical Reviews,” In Pro-
ceedings of the Second International Conference on Software Quality, Yokohama, Japan, Union of
Japanese Scientists and Engineers, pp. 563-568.

Kellner, MLL. (1991), “Software Process Modeling Support for Management Planning and Control,” In Pro-
ceedings of the Ist International Conference on Software Process, Redondo Beach, CA, pp. 8-28.

Kusumoto, S., O. Mizuno, T. Kikuno, Y. Hirayama, Y. Takagi, and K. Sakamoto (1997), “A New Software
Project Simulator Based on Generalized Stochastic,” In Proceedings of 19th International Conference
on Software Engineering, Boston, MA, IEEE Computer Society Press, pp. 293-302.

Lord, FM. and M.R. Novick (1968), Statistical Theory to Mental Test Score with Contributions by
A-Birnbaum, Addison-Wesley.

Shavelson, R.J. (1972), “Some Aspects of the Correspondence Between Content Structure and Cognitive
Structure in Physics Instruction,” International Journal of Educational Psychology 33, 225-234.

Takemura, Y. (2002) “A Framework for Supporting Software Engineer Education and an Effective Process
for Learning Programming,” PhD Dissertation (NAIST-IS-DT-9961017), Department of Information
System, Nara Institute of Science and Technology, Nara, Japan (in Japanese).

Yourdon, E. (1994), Object-Oriented System Design, Prentice-Hall.

