
Y. Morisawa et al. / Information and Software Technology 1

Architectural Styles for Distributed Processing Systems
and Practical Selection Method

Yoshitomi Morisawa a, c, *, Katsuro Inoue b, Koji Torii c

a Nihon Unisys, Ltd., Koto-ku, Tokyo, 135-8560 Japan

b Graduate School of Engineering and Science, Osaka University, Toyonaka-shi, Osaka 560-8531, Japan
c Graduate School of Information Science, Nara Institute of Science and Technology, Ikoma-shi, Nara 630-0101, Japan

Received xx August 2001; accepted xx yyyy 2002

Abstract

The software architecture of a system has influences against various software characteristics of the system such as
efficiency, reliability, maintainability, and etc.. For supporting to design the software architecture, we have developed
architectural styles for distributed processing systems. The styles classify the architecture for distributed processing systems
into nine categories based on the location of data storage and the type of processing between a client and a server. This paper
describes our architectural styles and proposes a simple but practical method to select an appropriate architectural style for
developing an application system. The selection method introduces the characterization of architectural styles and the
characteristic charts to visualize their characteristics of architectural styles. Next, we propose a method to select an
appropriate architectural style using the conformity between characteristic charts of a system and architectural styles. We
have verified the applicability of this selection method using our customers’ real application systems.

Keywords: Architectural Style, Distributed Computing Model, Distributed Processing System, Software Architecture

1. Introduction

There are many software products commercially
available for implementing Client/Server(C/S)
systems. When a user implements an application
system utilizing these products, it is common to
spend a large amount of time and effort testing the
interconnectivity and interoperability, known as
conformance testing, among the products to be used.
At Nihon Unisys, Ltd.(NUL), we have developed a
body of expertise and experience in conformance
testing by submitting proposals to customers,
providing consultation in information technology, and
supporting the implementation of our customers’

application systems. In order to share this expertise
and experience, as well as to reduce the cost of
developing new customer application systems, we
needed to create a framework which includes: a
software architecture for implementing C/S systems;
an intuitive and simple model of distributed
processing systems including C/S processing and
proven combinations of products based on this model.
NUL named this framework the Open Solution
Framework (OSFW) and the distributed processing
model the Client/Server Solution (C/SS) model, and
announced the OSFW in January 1996 [11,12]. In
order to take in the mobile and agent software
technology to the C/SS model, we re-evaluated the
model and announced new model as architectural
styles for distributed processing systems in March
1999[13]. In this model, we classified distributed
processing systems in the business application

* Corresponding author, Tel.: +81-3-4329-2164;
Fax: +81-3-5546-7865,

E-mail address: morisawa@dp.u-netsurf.ne.jp

Y. Morisawa et al. / Information and Software Technology 2

domain into nine architectural styles.
The main motivation for introducing the

architectural styles is to categorize the architecture of
distributed processing systems, to provide proven
software products called product sets for
implementing an application system in each category
of distributed processing systems, and to reduce the
total cost of the application system. To achieve the
these goals, we developed the OSFW as a framework
of distributed processing systems and are using
architectural styles as reference architectures to
design an architecture of an application system and to
select product sets for implementing and
administrating the application system. Product sets
for each style are periodically revised to reflect the
latest software products and are used with this
framework for configuring our customers’ services.

In the architectural design phase of an application
system development, it is an important decision to
design a system’s software architecture that has
influences against various software characteristics of
the system such as efficiency, reliability,
maintainability, and etc.. System architects have
generally to collect various requirements of
stakeholders such as users, developers, and managers
for the system to be developed, and to design the
software architecture from the requirements referring
existing architectural styles and their previous
experiences. Developers implement the system using
the software architecture designed by architects. The
software architecture is a result of technical, business,
and social influence. The existence of the software
architecture is in turn affects the technical, business,
and social environments that subsequently influence
future architecture. Bass calls this cycle of influences,
from the environment to the architecture and back to
the environment, the architectural business cycle
(ABC) [1]. The ABC is showed in Figure 1 and its
cycle is as follows;
(1) Architect(s) creates architecture of an application
system based on requirements, technical environment,
and their experience.
(2) Analyse and generate the architecture of the
application system.
(3) Develop the application system using the
architecture.
(4) Influence architecture experiences and
architectural styles.

For supporting to design the software architecture
and further to select software products, we had
developed the intuitive and simple architecture styles

for distributed processing systems including C/S
systems. The architectural styles themselves were
designed so that field system engineers could
understand intuitively and use them as reference
architectures of distributed processing systems.
However, at a time when system architects have to
decide architecture of an application system, it is not
unusual that data location and processing style
between a client and a server (and among servers) are
not settled. The architects generally have to decide
architecture through a broad view of users,
developers and managers. Therefore, they may select
an appropriate architectural style from the viewpoint
of managers, even if the model is not most suitable
from the viewpoint of users and developers. We have
been requested to provide a simple but practical
method to select an architectural style for less
experienced architects.

In this paper, we introduce our architectural style
and propose a simple but practical method to select
an architectural style for developing an application
system[15]. Using balloons in Figure 1, we explain
the positioning of our research works in the ABC.
Our architecture styles, which are explained in
Section 2, are used as reference architectures in the
technical environment. The characterization of
architectural styles is requirements from Customer
and End User, and Developing Organization. Those
are listed as characteristic vectors and the selection
method is a proposal for architects how to select an
appropriate architectural style for the application
system that is the step (1) in Figure 1. This selection
method is explained in Section 3. We apply this
method in real business application systems in
productions. This experience is described in Section 4.
Finally, we provide the information of related works
and the conclusions.

Architect’s Influences

Customer

Developing
Organization

Technical Environment

Architect’s Experience

Architect(s) Architecture

System

Requirements
(Qualities)

Generate or Produce Influences

(1)
Architectural

style

(2)

Characteristic
Vectors

(3)

Selection
MethodEnd User

(4)

(4)

Figure 1. Our research works in the ABC

Architect’s Influences

Customer

Developing
Organization

Technical Environment

Architect’s Experience

Architect(s) Architecture

System

Requirements
(Qualities)

Generate or Produce Influences

(1)
Architectural

style

(2)

Characteristic
Vectors

(3)

Selection
MethodEnd User

(4)

(4)
Architect’s Influences

Customer

Developing
Organization

Technical Environment

Architect’s Experience

Architect(s) Architecture

System

Requirements
(Qualities)

Generate or Produce Influences

(1)
Architectural

style

(2)

Characteristic
Vectors

(3)

Selection
MethodEnd User

(4)

(4)

Figure 1. Our research works in the ABC

Y. Morisawa et al. / Information and Software Technology 3

2. Architectural styles for distributed processing
systems

The target domain of our architectural styles is
the business application systems in the distributed
processing environment. We classify the target
domain into Information domain, Business domain
and Office support domain[14]. Information domain
is generally called the front office and its typical
computing paradigm is a C/S processing. Business
domain is generally called the back office and its
typical computing paradigm is a transaction
processing. Office support domain is generally called
the center office or the middle office, and its typical
computing paradigm is a collaborative processing
such as groupware, workflow, and e-mail.

Next, we classify the distributed processing
systems into nine architectural styles from the
viewpoints of the location of data storage and the
processing type between client and server. The
location of data storage is classified as centralized or
distributed. This distributed data is further classified
as synchronous processing and asynchronous
processing between servers. This location view and
its classification is easy to understand and adopt by
the field system engineers implementing practical
systems. The processing type between client and
server is classified as synchronous or asynchronous.
Synchronous processing is further divided into two
categories, Transaction type and Query type,
depending on the characteristics of the messaging
between the client and the server.

This classification scheme leads us to develop
nine styles of distributed processing systems
illustrated in Table 1. Note that primary purpose of
the classification is to provide an intuitive, easy and

simple style for most field system engineers. So, the
architectural styles and their classification should be
simple, straightforward, and not too complicated.

As a general rule, we assume that "Presentation"
is in a client side and "Data" is in a server side.

The meanings of the terms used in Table 1 are as
follows.

• "Centralized" means that the data is stored in only
one server, and "Distributed" means that the data
is distributed into multiple servers. However,
personal data or a personal database in a client
side is not included.

 • "Processing type" indicates the processing style
between a client and server(s), and among servers.
They are a synchronous processing and an
asynchronous processing.

 • "Transaction Type" is typical transaction
processing with ACID (atomicity, consistency,
isolation and durability) properties [6].

 • "Query Type" indicates that a reply from the server
is synchronized with a request from a client.

 • For asynchronous processing as the processing
type, "Notification Type" is assumed, which
indicates that the server process is not
synchronized with a client request.
The following sections provide a typical structure

and a description of each architectural style based on
the processing types between servers for supporting
to understand our proposed architectural styles. The
symbols used in typical structures and in this paper
show in Figure 2.

2.1 Architectural styles for transaction types

Figure 2 shows typical structures of (a)
centralized transaction style, (b) distributed

Centralized

Distributed

Synchronous
Processing

Asynchronous
Processing

Transaction
Type

Query Type

Notification
Type

Centralized
Transaction

Style

Centralized
Query Style

Centralized
Notification

Style

Distributed
Transaction

Style

Distributed
Query Style

Distributed
Notification

Style

Asynchronous
Notification

Style

Processing
type between

C/S

Location of Data

Asynchronous
Query Style

Asynchronous
Transaction

Style
SynchronousSynchronous
ProcessingProcessing

AsynchronousAsynchronous
ProcessingProcessing

Message Type

Processing Type
between
Servers

Table 1
Architectural Styles

Centralized

Distributed

Synchronous
Processing

Asynchronous
Processing

Transaction
Type

Query Type

Notification
Type

Centralized
Transaction

Style

Centralized
Query Style

Centralized
Notification

Style

Distributed
Transaction

Style

Distributed
Query Style

Distributed
Notification

Style

Asynchronous
Notification

Style

Processing
type between

C/S

Location of Data

Asynchronous
Query Style

Asynchronous
Transaction

Style
SynchronousSynchronous
ProcessingProcessing

AsynchronousAsynchronous
ProcessingProcessing

Message Type

Processing Type
between
Servers

Table 1
Architectural Styles

PresentationP
Application LogicALn

Notification Message

Query message

Transaction Message

DataDn

Data ManagementDMn

MeaningSymbol

Table 2
Symbols used in this paper

PresentationP
Application LogicALn

Notification Message

Query message

Transaction Message

DataDn

Data ManagementDMn

MeaningSymbol

Table 2
Symbols used in this paper

Y. Morisawa et al. / Information and Software Technology 4

transaction style, and (c) asynchronous transaction
style, respectively. Table 2 shows symbols used in the
figure. These architectural styles mainly model a
business domain called the back office. The
centralized transaction style has a single database on
a single server. The distributed transaction style has
multiple databases on multiple servers and the
processing type between servers is synchronous
processing. The asynchronous transaction style has
also multiple databases on multiple servers and the
processing type between servers is asynchronous
processing.

Message and process flow for these styles as
follows: AL0 client sends a transaction message to
AL1. Using the processing result of AL1, DM1

retrieves, updates, adds, and/or deletes data in D1. In
the case of the centralized transaction style or the
asynchronous transaction style, the result of the
process is then returned to the client. Next, in the case
of multiple databases, a new transaction or
notification message generated by the processing
result of AL1 is sent to AL2. According to the
processing result of AL2, DM2 retrieves, updates,
adds and/or deletes data in D2. Finally, in the case of
the distributed transaction style, the processing result
is sent back to the client and a mechanism is used to
maintain the integrity of D1 and D2 if required.

The centralized transaction style is suited to
transaction processing that uses a transaction control
system and usually adds and updates data in a single
database. Examples of this style include an order
entry system, a stock management system, a stock
ordering system, a production management system, a
retail POS (Point of Sales) system, etc..

The distributed transaction style is suited to
transaction processing for a core business involved
complicated update and query of multiple databases.
Examples of this include a core business system of
banking, a seat reservation system, a factory
production management system, etc..

The asynchronous transaction style is suited to a
core application that promotes the management and
utilization of information by asynchronous sharing of
data. Examples of this style are asynchronous
updating application of replicated data such as a
personal information system or accounting system
across multiple branches and uploading of transaction
data collected at branches or departments such as
combining the uploading of order data collected by
departmental servers and the centralized order
processing on an enterprise server.

2.2 Architectural styles for query types

Typical structures of (a) centralized query style,
(b) distributed query style, and (c) asynchronous
query style are similar structures in Figure 2 except
message type between a client and server should be a
query message instead of a transaction message.
These architectural styles mainly model an
information domain called the front office and are
described details in our papers [14,15].

The centralized query style is suited to End User
Computing (EUC) such as in a decision support
system and to query and reply processing. Examples
of EUC include various statistics, analysis and
reporting, such as in budget planning, financial
analysis, market research and analysis, sales analysis,
capacity planning, demand forecast, etc.. Examples of
query and reply processing include customer services,
sales support, various inquiry processing, information
providing services, etc..

The distributed query style is suited to EUC with
simultaneous access to multiple databases and files
and to inquiry-intensive immediate processing. This
enables effective utilization of information by sharing
existing databases. This style includes almost all of
applications of the centralized query style. Other
applications are an enterprise sales statistics, an
enterprise productivity data analysis, etc..

Figure 2. Architectural styles for transaction types

Client

Server(s)
DM1

AL1

D1

P

AL0

(a) Centralized transaction style (c) Asynchronous transaction style(b) Distributed transaction style

DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers
DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers

Figure 2. Architectural styles for transaction types

Client

Server(s)
DM1

AL1

D1

P

AL0

(a) Centralized transaction style (c) Asynchronous transaction style(b) Distributed transaction style

DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers
DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers

Client

Server(s)
DM1

AL1

D1

P

AL0
Client

Server(s)
DM1

AL1

DM1

AL1

D1

P

AL0

(a) Centralized transaction style (c) Asynchronous transaction style(b) Distributed transaction style

DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers
DM1

AL1

DM1

AL1

D1

P

AL0

DM2

AL2

DM2

AL2

D2

Client

Servers
DM1

AL1

D1

P

AL0

DM2

AL2

D2

Client

Servers
DM1

AL1

DM1

AL1

D1

P

AL0

DM2

AL2

DM2

AL2

D2

Client

Servers

Y. Morisawa et al. / Information and Software Technology 5

The asynchronous query style is suited to an
application to promote the management and
utilization of information by asynchronous sharing of
data. An example is an application of information
utilization by downloading a part of database in
business domains such as a decision support system
(DSS) and an enterprise information system (EIS)
using Daifukucho (an old-fashioned account book in
Japan) and multiple dimensional databases.

2.3 Architectural styles for notification types

Typical structures of (a) centralized notification
style, (b) distributed notification style, and (c)
asynchronous notification style are similar structures
in Figure 2 except message type between a client and
server should be a notification message instead of a
transaction message. These architectural styles
mainly model an office support domain called the
center office and are described details in our papers
[14,15] also.

The centralized notification style is suited to the
automation of a simple workflow within a group or
an organization. Examples of this style include the
shipping and forwarding of internal memos and
documents, events notification, internal document
filing, execution, monitoring, and reporting of
business workflow, etc..

The distributed notification style is suited to an
application of distributed transaction processing
and/or distributed data processing using an agent
application on a server from mobile clients.

The asynchronous notification style is suited to
the loose integration by cooperation with independent
multiple applications or systems. Examples of this
style are workflow between groups or organizations,
integration of cooperating applications between
enterprise systems, and cooperating systems between
enterprises, such as electronic data interchange (EDI).

3. Selecting an architectural style

When implementing an application system in a
distributed computing environment, an architectural
style of the application system plays an important
role. However, the application system may use
various architectural styles according to the
requirements of users, developers and managers, and
the constraints on budgets and periods of time even if
the system has to solve the same issue. In the present

situation, architects are intuitively selecting an
appropriate architectural style for the application
system using their own perceptions and experiences,
and consultants are selecting architectural styles
using the consulting methodology when our customer
requests a consultation of a new system.

In this section, we propose a simple but practical
method to help to select an appropriate architectural
style for less experienced architects in designing their
architecture at the early stage of an application
system development. At the early stage of the
development, architects do not become always clear
the location of data storage and processing type
between a client and a server from the requirements
of users, developers, and managers. Our method may
support to select an appropriate architectural style
based on available requirements of users, developers,
and managers at the early stage of the development.
The requirements shows as quality requirements in
the step (1) of the ABC. The quality requirements are
represented as characteristic vectors. Architects
design the architecture of an application system
referencing the appropriate architectural style in the
technical environment. Developers then implement
an application system based on the architecture using
proven software tools, called product sets in the
OSFW, related with the architectural style.

3.1 Characterization of architectural styles

An architectural style prescribes a processing
structure and a processing style of constitutional
elements for an application system to develop. The
architectural style, which defines a framework of an
application system is chosen by various participants
to use, to develop and to administer the system, and
has a large influence in quality, cost of development
and administration, and the development period of
the system. Bass reports that architectural
requirements are not as numerous as functional
requirements; there should be a maximum of
approximately 20 architectural requirements [2]. For
practical use in the actual system development field,
we restricted our study to seven viewpoints, rather
than an exhaustive range of viewpoints because fewer
viewpoints are practically applicable.

First, we discuss software qualities. The ISO
standard defines functionality, reliability, usability,
efficiency, maintainability, and portability as quality
characteristics of software [7]. These quality
characteristics are subdivided into 21 quality

Y. Morisawa et al. / Information and Software Technology 6

sub-characteristics. They are as follows;
Functionality is subdivided into suitability, accuracy,
interoperability, compliance and security. Reliability
is subdivided into maturity, fault tolerance and
recoverability. Usability is subdivided into
understandability, learnability and operability.
Efficiency is subdivided into time behaviour and
resource behaviour. Maintainability is subdivided into
analyzability, changeability, stability and testability.
Portability is subdivided into adaptability,
installability, conformance and replaceability. These
characteristics are used to define and evaluate quality
requirements of software throughout a life cycle of
the software.

We consider characteristics of an architectural
style from the viewpoint of the people who
participated in the life cycle of a system. When
implementing a distributed processing type of an
application system, system architects select an
architectural style from a bird’s-eye view based on
the requirements of users, developers and managers
and design the application system referencing this
style.

From the viewpoint of users of a system,
functionality of required features, reliability,
efficiency, usability and portability to other
environments becomes a target of consideration for
quality characteristics. However, in the selection
stage of the architectural style, functionality other
than security sub-characteristics is an assumed
condition. Reliability, usability, and portability are
characteristics at a detailed design stage, and
efficiency becomes a target of consideration at this
stage. Therefore, "Data Security" and "Reply to User"
become characteristics important to the security and
response time behaviour requirements of a system of
users.

From the viewpoint of developers of a system, all
of the software quality characteristics become a target
of consideration. However, in the selection stage of
the architectural style, functionality is an assumed
condition of development. Reliability, usability,
maintainability and portability are characteristics at a
detailed design stage. Efficiency becomes a target of
consideration. Therefore, "Scope of Client/Server",
"Independency among Servers" and "Data
Distribution" become characteristics due to the
requirements of system structure and processing type.

Managers of a system optimize software quality
within a limited budget of human resources and time
frames. Therefore, "Budget of System" and "Delivery

of System" become characteristics due to the
requirements of managing system development.

Based on the above observations, we have created
the following seven characteristic vectors. For
visualizing characteristics of an architectural style
using a radar chart form, we use a numerical value in
parentheses attached to every characteristic value of
each characteristic vector. The attached value is based
on the general requirements of software quality and
system development so that we can develop an
efficient and usable system at a lower cost within a
shorter period of time. We assigned a large number as
the characteristic value when a system is developed
within a shorter period at a lower cost and with
higher functionality and more efficiency. For less
experienced architects to use these styles, we have set
simple and understandable characteristic values such
as, “Yes/Undefined/No”.

1) Data Security

This data security is a characteristic vector from a
users’ point of view when we develop a system with
a fixed budget and within a fixed time of delivery.
This characteristic value is classified into “High(3)”,
so that a user can request a secured process;
“Low(1)”, so that a user can request a good enough
process, and “Either(2)”, so that a user does not need
to decide a security level of a process or has no
information about the security.

Accordingly, for the centralized data of the
architectural style, we may characterize such security
as “High” regardless of transaction type, query type,
and notification type because we can easily take
security measures when data is centralized. For the
distributed, the characteristic value is relatively
“Low”. When data may be either distributed or
centralized, or we have no description on data
distribution, the security is “Either”.

2) Reply to User

This reply to user is a characteristic vector used
whether a user of a system requests a reply of the
processing of the system or not. This characteristic
value is classified into "Reply(3)" to demand a reply,
"Notification(1)" without demanding a reply, and
“Either(2)”, when deciding a reply for a processing
demand is not necessary.

Accordingly, architectural styles of transaction
type and query type are characterized as “Reply” and
notification type as "Notification".

Y. Morisawa et al. / Information and Software Technology 7

3) Scope of Client/Server
This scope of client/server is a characteristic

vector for the scope of a client (user) and servers.
This character value is classified into “LAN(3)”, so
that a client can have servers at a short distance and is
connected to servers with only LAN; “WAN(1)”, so
that a client and servers are dispersed to a wide area
and connected with a WAN; and “LAN/WAN(2)”, so
that a network is uneven in distance among a client
and servers and a network is a mix of LAN and
WAN.

A WAN type of network usually uses transaction
type as the processing type between a client and
servers. A LAN type of network has less limitation
compared with a WAN type for transmission rate and
communication volume. Therefore, a LAN type may
use any processing type between a client and servers.
In a style of query type, the LAN type is generally
used for a network between a client and servers due
to the communication load.

4) Independency among Servers

This independency among servers is a
characteristic vector of the relationship among
servers when a system consists of more than one
server and accomplishes a process on servers. This
characteristic value is classified into
“Independent(3)”, so that processes on servers are
executed asynchronously for a requester;
“Dependent(1)”, so that processes on servers are
executed synchronously for a requester. Finally, in
"Either(2)" a relationship among servers cannot be
decided.

The characteristic value of the asynchronous
styles is “Independent”. In other architectural styles,
the characteristic value is “Dependent”.

5) Data Distribution
This data distribution is a characteristic vector of

data storage. This characteristic value is classified
into “Distributed(3)”, so that data is distributed and
may be handled locally; “Centralized(1)”, so that a
data volume is centralized in one place and easy to
handle for business use in one place; and “Either(2)”,
so that we do not need to decide to adapt centralized
and distributed data.

The architectural style with a centralized type has
“Centralized”. A distributed type of an architectural
style is “Distributed”.

6) Budget of System

This budget of system is a characteristic vector of
a budget (cost) to develop and to administer a system.
This characteristic value is classified into
“Reasonable(3)”, for less budget than average
implementation; “Enough(1)”, for more budget than
average implementation; and “Either(2)”, for no
information of budget or average implementation.

Characteristic values for each architectural style
after applying the following rules learned by our
experiences are: development of an application
system with transaction type that has relatively extra
cost, and development with query type that also has a
relatively lower cost. Development with notification
type requires an avarage cost.

7) Delivery of System

This delivery of system is a characteristic vector
of a term of system delivery. This characteristic value
is classified into “Short(3)”, when requesting a short
term delivery of a system; “Enough(1)”, when
allowing a sufficient development period of time; and
“Either(2)”, when not decided.

Centralized Transaction Style High(3) Reply(3) WAN(1) Dependent(1) Centralized(1) Enough(1) Enough(1)

Distributed Transaction Style Low(1) Reply(3) WAN(1) Dependent(1) Distributed(3) Enough(1) Enough(1)

Asynchronous Transaction Style Low(1) Reply(3) LAN/WAN(2) Independent(3) Distributed(3) Enough(1) Enough(1)

Centralized Query Style High(3) Reply(3) LAN(3) Dependent(1) Centralized(1) Reasonable(3) Short(3)

Distributed Query Style Low(1) Reply(3) ���(3) Dependent(1) Distributed(3) Reasonable(3) Either(2)

Asynchronous Query Style Low(1) Reply(3) LAN/WAN(2) Independent(3) Distributed(3) Reasonable(3) Short(3)

Centralized Notification Style High(3) Notification(1) LAN/WAN(2) Dependent(1) Centralized(1) Either(2) Short(3)

Distributed Notification Style Low(1) Notification(1) LAN/WAN(2) Dependent(1) Distributed(3) Either(2) Either(2)

Asynchronous Notification Style Low(1) Notification(1) LAN/WAN(2) Independent(3) Distributed(3) Either(2) Short(3)

Table 3
Characteristic values of architectural styles

Budget
of System

Delivery
of System

 Characteristic Vector
Architectural Style

Data
Distribution

Reply to User
Independency
among Servers

Scope of
Client/Server

Data
Security

Y. Morisawa et al. / Information and Software Technology 8

Characteristic values for each architectural style
after applying the following rules learned by our
experiences are: a development period of an
application system with transaction type or a
distributed style that has a relatively longer period of
time, and a development period with query type and
notification type that has a relatively shorter period of
time.

Table 3 shows the characteristic values after
applying the above rules to each architectural style
described in the previous section. The radar charts to
visualize characteristics of each architectural style are
shown in Figure 3.

3.2 Selection method of architectural style

When selecting an architectural style, system
architects consider requirements of users, developers,
and managers from bird’s-eye viewpoints. Usually,
all requirements are not satisfied. The selection of an
architectural style is important in deciding an

implementation method, a processing structure and
style of an application system, and for selecting
software products to implement and to administer the
system.

In Section 3.2, we explain a method to select
which architectural style conforms to an application.
We use resemblance between characteristic charts
represented by the characteristic vectors and the
characteristic values of each architectural style
introduced in the previous section. For supporting to
find a resemblance chart, we introduce measurement
criteria of "Distance" and "Size" and then we propose
a selection method.

3.2.1 Measurement criteria

We define measurement criteria of Distance and
Size as follows:
1) Criterion of Distance

A criterion of distance is a measure of the
difference between the characteristic values of each
of the seven characteristic vectors of an application

�¼ÅËÉ¸ ÃÀÑ¼» «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�¼ÅËÉ¸ ÃÀÑ¼» ¨Ì¼ÉÐ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» ¨Ì¼ÉÐ ªËÐ Ã¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ ¨Ì¼ÉÐ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�¼ÅËÉ¸ ÃÀÑ¼» ¥ÆËÀ½ Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» ¥ÆËÀ½Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ ¥ÆËÀ½Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�¼ÅËÉ¸ ÃÀÑ¼» «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ «É¸ÅÊ¸ºËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�¼ÅËÉ¸ ÃÀÑ¼» ¨Ì¼ÉÐ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» ¨Ì¼ÉÐ ªËÐ Ã¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ ¨Ì¼ÉÐ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�¼ÅËÉ¸ ÃÀÑ¼» ¥ÆËÀ½ Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

� ÀÊËÉÀ¹ÌË¼» ¥ÆËÀ½Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�ÊÐÅº¿ÉÆÅÆÌÊ ¥ÆËÀ½Àº¸ËÀÆÅ ªËÐÃ¼

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

� ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

� ÀÊ ËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ ½ ªÐÊË¼Ä

�¼ ÃÀÍ¼ ÉÐ

Æ ½ ªÐÊË¼Ä

Figure 3. Characteristic charts of architectural styles

Y. Morisawa et al. / Information and Software Technology 9

system (X) and each of the nine architectural styles
(Si). The distance of an architectural style is defined
as the sum of the absolute values of the difference of
each characteristic value.

� Distance of X and ith architectural style =

∑ =
−7

1
||

j
jij XS

where Sij = Value of jth vector of ith architectural
style,

Xj = Value of jth vector of X.

2) Criterion of Size
The Size of an architectural style is defined as

sum of the characteristic values of the characteristic
vectors.

� Size of ith architectural style = ∑ =

7

1j
ijS

where Sij = Value of jth vector of ith architectural
style.

Using the numerical value as a characteristic
value, we assume that a large value has higher
functionality, efficiency, a shorter period of time, and
a lower development cost. Therefore, the style with a
large size meets the general requirements of software
quality and systems development, and more than one
architectural style may be selected. This selection
method becomes the same intuitively as examining
the resemblance degree of the radar charts of the
architectural styles of an application system.
Generally, when the distance is near, the resemblance
degree of the characteristic charts becomes higher.

3.2.2 A method to select the architectural style

The following steps are applied to the selection of
an architectural style:

Step 1. Decide a characteristic value for each
characteristic vector of an application system.

Step 2. Measure distance between the requirements of
an application system and each architectural style
using the characteristic values of the application
system and the characteristic values of each
architectural style defined by Table 3.

Step 3. The architectural style with the shortest
distance is the architectural style that should be
used to implement this system.

Step 4. If the distance between more than one
architectural style and the application system is
the same, an architectural style with the largest
size is chosen for the system.

Step 5. If more than one architectural style has the
same distance and the same size, a resemblance
style is chosen for the system.

After applying this selection method,
architectural styles to an application system are
ordered from the most suitable architectural style
using the distance, size and resemblance degree
between the requirements of an application system
and each architectural style. Sometimes, an
application system may have multiple clients. In this
case, it may divide into subsystems for each client
and apply the above five steps to select an
architectural style based on the requirements of each
client.

4. Experience necessary to apply real application
systems

To verify the selection method of architectural

styles proposed in Section 3, we have tried to apply
the selection method to application systems used in
production. In this section to apply our architectural
style, we look at four typical application systems in
products.

4.1 Ticket reservation system of P corp.

This system reserves and sells tickets for events
such as movies and concerts to the membership of P
corporation using 800 terminals in 620 shops located
in the country. The ticket terminals are connected
using a dedicated communication line to regional
servers. Tickets start to sell all at once at all shops in
the country on the mornings of Saturday and Sunday.
The membership is informed of the reservation result
at the time of the sale. From each sales point, tickets
in the head office servers are reserved and sold via
regional servers located in the Osaka area, Hokkaido
area, Nagoya area and Tokyo area. This system is
used to manage and to inquire about membership
information, as well as for the invoicing and
accounting of tickets. The extensibility of the system
and the degree of security are not specifically
required. However, recovery features of reservation
data are a required characteristic of the system.

The characteristic values of this system are
shown in Table 4. The centralized transaction style
and the distributed transaction style are architectural
styles for this system due to having a minimal
distance as shown in Table 5. Furthermore, we show

Y. Morisawa et al. / Information and Software Technology 10

in Figure 4 that the radar chart characterizes this
system. This chart resembles the distributed
transaction style more than the centralized transaction
style.

Figure 5 shows the distributed transaction style
adapted for the ticket reservation system utilizing
local servers for the load dispersion of the head office
server.

4.2 Accounts entry system of K medical corp.

This system inputs account data from ten local
offices located in the country. It regularly gathers data
accumulated in offices and transfers it to the host
system of the main office, and processes the data on
the host system. The input in each local office has
time checks of the input data. Account data collected

in each local office is accumulated into the host at
appropriate times. Equipment in the local offices is
connected with a LAN, and a WAN connection is used
between local offices and the head office. Extensibility
of the system is required due to the expansion of local
offices. Security features are required to handle
account data.

The characteristic values of this system are
shown in Table 4. The asynchronous transaction style
and asynchronous query style are architectural styles
for this system due to having a minimal distance as
shown in Table 5. The asynchronous query style has
larger size than the asynchronous transaction style.
The radar chart of this system is shown in Figure 6.
This chart resembles the asynchronous query style.

The production system shown in Figure 7
includes the asynchronous query style.

Figure 4. Characteristic chart of ticket reservation system

�

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

Ticket reservation Either(2) Reply(3) WAN(1) Dependent(1) Either(2) Enough(1) Enough(1)

Accounts Entry High(3) Reply(3) LAN/WAN(2) Independent(3) Distributed(3) Either(2) Either(2)

Field Engineer Support Low(1) Notification(1) LAN/WAN(2) Dependent(1) Distributed(3) Reasonable(3) Short(3)

Customers' Application Support Low(1) Notification(1) LAN/WAN(2) Independent(3) Distributed(3) Either(2) Short(3)

Budget
of System

Delivery
of System

Table 4
Characteristic values of examples

 Chraracteristic Vector
Evaluated System

Data
Security

Data
Distribution

Reply to User
Independency
among Servers

Scope of
Client/Server

Centralized Transaction Style 2 7 11 12

Distributed Transaction Style 2 7 7 8

Asynchronous Transaction Style 5 4 8 5

Centralized Query Style 8 7 7 10

Distributed Query Style 7 6 4 7

Asynchronous Query Style 9 4 4 3

Centralized Notification Style 8 7 5 6

Distributed Notification Style 7 6 2 3

Asynchronous Notification Style 10 5 3 0

Table 5
Distances between architectural styles

Customers'
Application Support

 Application System
Architectural Style

Ticket reservation Accounts Entry
Field Engineer

Support

Figure 5. Ticket reservation system

DMDM2

ALAL2

DD22DMDM2

ALAL2

DD22

Client

Servers
DM1

AL1

DD1

P

AL0

DMDM2

ALAL2

DD22

Local Servers

Head Office
Servers

Stock
Members

Logging

Figure 5. Ticket reservation system

DMDM2

ALAL2

DD22DMDM2

ALAL2

DD22

Client

Servers
DM1

AL1

DD1

P

AL0

DMDM2

ALAL2

DD22

Local Servers

Head Office
Servers

Stock
Members

Logging

DMDM2

ALAL2

DD22
DMDM2

ALAL2

DMDM2

ALAL2

DD22DMDM2

ALAL2

DD22
DMDM2

ALAL2

DMDM2

ALAL2

DD22

Client

Servers
DM1

AL1

DM1

AL1

DD1

P

AL0

P

AL0

DMDM2

ALAL2

DD22
DMDM2

ALAL2

DMDM2

ALAL2

DD22

Local Servers

Head Office
Servers

Stock
Members

Logging

Y. Morisawa et al. / Information and Software Technology 11

4.3 Field engineer support system of C corp.

This system helps business processes of a FE
(Field Engineer) taking care of the repair of sold
products. A front desk person, who is in charge of an
information desk, receives repair request of
customers, inputs the requested data on a server, and
orders a visit to a place on an FEs' handy terminal via
the server. The FEs go straight to the spot and do
repair work, on the basis of repair designation data.
The FEs input a repair result into a handy terminal on
the spot, and output an activity completion report.
This report is transmitted to the front desk server on
that day or the next day. Data transmitted to the front
desk server is accumulated in the head office server
in Tokyo. Processing between a handy terminal and
the front desk server is not synchronized, but data
between a front desk server and the head office server
needs to be synchronized. The network has both LAN
and WAN connections. Nothing is mentioned by the
company about the extensibility of the system. Strong
security it is not demanded, but strong recovery is
required.

The radar chart of this system is shown in Figure

8. This chart resembles the distributed notification
style.

The production system shown in Figure 9
includes the distributed notification style.

4.4 C power customers’ application support system

This system supports a customers’ application to
request a construction. A request of the construction
application from a customer is entered into an
application database on the host computer. This data
is downloaded automatically at a fixed time to a
branch office server. In the branch office, the server
uses the database on the server and automatically
produces execution schedule data for that day
according to the region, and produces execution
information for each service engineer. This data is
downloaded to each mobile terminal, and a service
engineer works on the basis of the data. After the
work ends, the service engineer inputs an execution
result into the mobile terminal. The service engineer
uploads an execution result in the mobile terminal to
the branch office server after returning to the office.

Figure 8. Characteristic chart of FE support system

�

�

�

�
� Ȩ̈¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

� Ȩ̈¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
� Ȩ̈¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

� Ȩ̈¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

Figure 6. Characteristic chart of accounts entry system

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

Figure 6. Characteristic chart of accounts entry system

Figure 7. Accounts entry system

Servers
DM1

AL1

DD1

P

AL0

DM2

AL2

DD22

Client

Host10 servers

Enterprise
Accounts
Data

Figure 7. Accounts entry system

Servers
DM1

AL1

DD1

P

AL0

DM2

AL2

DD22

Client

Host10 servers

Enterprise
Accounts
Data

Servers
DM1

AL1

DD1

P

AL0

DM2

AL2

DD22

Client

Servers
DM1

AL1

DM1

AL1

DD1

P

AL0

P

AL0

DM2

AL2

DM2

AL2

DD22

Client

Host10 servers

Enterprise
Accounts
Data

Client

Servers
DM1

AL1

D1

PP

AL0

DM2

AL2

D22

Figure 9. Field engineers support system

Front
Server

Head Office
Server

Client

Servers
DM1

AL1

D1

PP

AL0

DM2

AL2

D22

Client

Servers
DM1

AL1

DM1

AL1

D1

PP

AL0

PP

AL0

DM2

AL2

DM2

AL2

D22

Figure 9. Field engineers support system

Front
Server

Head Office
Server

Y. Morisawa et al. / Information and Software Technology 12

The information regarding completion of the
construction confirms that the work has been taken
into the host computer. The customers' application
support system consists of the receptionist entry
function and the construction support function. For
the construction support function, the necessary data
is distributed. Mobile terminals are used in
construction support, but responsiveness is not
needed, and works between a branch office server
and the head office host are done asynchronously.
LAN and WAN connections coexist on the network.
Extensibility of the system and facility are important,
but security and cost are not demanded.

The radar chart of the construction support
function of this system is shown in Figure 10. This
chart resembles the asynchronous notification style.

In the customers' application support system,
shown in Figure 11, the centralized transaction style
applies to the function of the receptionist, and the
asynchronous notification style applies to the
construction support system.

4.5 Considerations

In each example, deciding the characteristic
values of seven characteristic vectors is relatively
easy task even if a relationship among each
characteristic vector exists due to their simple values
such as, “Yes/Undefined/No”. Using a simple inquiry
system of the question and answer type, system
architects may assign a value “Yes” or “No” if they
understand the requirements related characteristic
vectors, and will assign a value “Undefined” if they
have no information or do not understand the
requirements related character vectors.

Distance between architectural styles introduces a
notation of priority when we have another viewpoint.
We can easily select the next candidates if we use the
priority order of the selection. Therefore, keeping a
next possible choice in the selection is important.

In this paper, we measured the distance and size
by assuming that there are no differences of
importance among characteristic vectors. However,
this produces a system that has to maintain its
security with the lowest development cost even if it
has limited features. For such strong requirements,
we would measure the distance and size by adding a
weight account to each characteristic vector. In this
case we may have several kinds of coefficient values
of weight account under the enterprise and system
environment. However, in many cases such as in the
examples shown in this paper, our selection method
was able to be used practically without adding a
weight account to characteristic vectors.

5. Related works

Alex Berson classified cooperative processing
systems into five models: Distributed Presentation,
Remote Presentation, Distributed Business Logic,
Remote Data Management and Distributed Data
Management [3]. The Gartner group has also defined
five models of C/S computing which are very similar
to Berson’s model and is using the model in their
research reports and conference presentations to aid
in the discussion of C/S applications [4]. This model
is based on the distribution points of presentation
functions, application logic functions, and data
management functions. However, this model does not
account for asynchronous processing, making it
difficult to model groupware applications and e-mail
type applications.

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

�

�

�

�
�¸Ë¸ ª¼ºÌÉÀËÐ

©¼ÇÃÐ ËÆ ¬Ê¼É

ªºÆÇ¼ Æ½

�ÃÀ¼ÅË�ª¼ÉÍ¼É

 Å»¼Ç¼Å»¼ÅºÐ

¸ÄÆÅ¾ ª¼ÉÍ¼ÉÊ

�¸Ë¸

�ÀÊËÉÀ¹ÌËÀÆÅ

�Ì»¾¼Ë

Æ½ ªÐÊË¼Ä

�¼ÃÀÍ¼ÉÐ

Æ½ ªÐÊË¼Ä

Figure 10. Characteristic chart of customers’ application
support system

Figure 11. Customers’ application support system

Client

Servers
DM1

AL1

D1

P0

AL0

DM2

AL2

D22

P3

AL3

Branch
Servers

Local
Databases

Head
Office
Server

Application
Databases

Mobile
Terminals

Information
Terminals

Figure 11. Customers’ application support system

Client

Servers
DM1

AL1

D1

P0

AL0

DM2

AL2

D22

P3

AL3

Branch
Servers

Local
Databases

Head
Office
Server

Application
Databases

Mobile
Terminals

Information
Terminals

Client

Servers
DM1

AL1

DM1

AL1

D1D1

P0

AL0

P0

AL0

DM2

AL2

DM2

AL2

D22D22

P3

AL3

P3

AL3

Branch
Servers

Local
Databases

Head
Office
Server

Application
Databases

Mobile
Terminals

Information
Terminals

Y. Morisawa et al. / Information and Software Technology 13

IBM Corporation classified C/S systems into six
templates in their guide for C/S systems. They are:
Front-ending, Resource centric, Host-distributed
logic, LAN-distributed, Data staging, and
Multi-application. These templates are used as a
reference model in C/S engineering [5]. The
templates were the result of a survey of
approximately 50 real-world solutions designed or
implemented by IBM’s typical customers in the early
1990s [18]. However, the criteria for applying these
templates are not clear to users.

The architectural styles are announced based on
modeling actual software in the past different from
multiple layered platform and cooperative C/S
processing. Shaw introduces typical seven
architectural styles in her book [16]. They are: Pipes
and filters, Data abstraction and object-oriented
organization, Event-based and implicit invocation,
Layered systems, Repositories, Interpreters, and
Process control. These styles are the collection of
experiences. Show also reports the feature-based
classification of architectural styles [17]. They are:
Data flow styles, Call-and-return styles, Interactive
process styles, Data-centered repository styles, Data
sharing styles, and Hierarchical styles. When
considering these styles from the point of view to
build a business application, it is difficult to use them
as a reference model due to unclear principles at
selecting an architectural style.

As the analysis method of software architecture,
there are the SAAM [8] to make a scoring based on
scenarios and the ATAM [9] to use the model of
analogizing quality characteristics. The ATAM is a
method for evaluating architectural-level designs that
considers multiple quality attributes such as
modifiability, performance, reliability, and security in
gaining in sight as to whether the fully fleshed out
incarnation of the architecture will meet its
requirements. The method identifies trade-off points
between these attributes, facilitates communication
between stakeholders such as user, developer,
customer, and maintainer. The ATAM is meant to be a
risk mitigation method; a means of detecting areas of
potential risk within the architecture of a complex
software intensive system. It is not a design method
of the architecture.

According to the selection of the architecture,
Kishi reports the adoptability of the method to select
the architecture using the method for
decision-making, AHP(Analytic Hierarchy Process)
[10]. This method is still in the examination phase

and difficult to use for less experienced architects.

6. Conclusions

We have focused a distributed processing system
on the location of data and the processing type
between a client and a server and among servers, and
have classified it into nine architectural styles. This is
the result to re-examine the C/SS model reported by
Morisawa [11] in order to take in the mobile and
agent information technology.

Using the architectural style explained in Section
2, we have proposed a method to select an
appropriate architectural style for developing an
application system. For this selection method, we
have introduced characteristic vectors and their
values to characterize an architectural style from the
viewpoint of users, developers, and managers. When
absolute criteria of superiority and inferiority did not
exist such as among our architectural styles, we have
introduced measurement criteria of distance and size
and proposed a simple but practical selection method
of conformity. We have expressed a radar chart for
each architectural style, and showed resemblance
degrees to be an effective concept. We have applied
this resemblance degree to business application
systems in production, and furthermore validated its
effectiveness. Our less experienced architects and
consultants have been using our architectural styles
for selecting products sets and for writing proposals
to our customers as reference architectures to design
architecture of an application system. We have
positive feedbacks for the selection method to
support the designing of architecture of an
application system in the system development field.

Our selection method will be applied to other
architectural styles also. We will evaluate it in the
next step.

In this paper, we do not mention how we divide
application logic and how we deploy them into a
distributed environment. This subject is an important
point of view for a distributed processing system. We
will do it as a future study.

References

[1] Bass, L., et.al., Software Architecture in Practice
(Addison-Wesley, 1998).

[2] Bass, L. and Kazman, R.: Architectural-Based Development,
(SEI, CMU/SEI-99-TR-007, 1999).

[3] Berson, A., Client/Server Architecture (McGraw-Hill, 1992).

Y. Morisawa et al. / Information and Software Technology 14

[4] Cassell, J., The Total Cost of Client/Server: A Comprehensive
Model (A Gartner Group Conference on the Future of
Information Technology Industry, 1994).

[5] IBM, A Guide to OPEN CLIENT/SERVER (Open Enterprise
group of IBM Europe in Basingstoke UK, 1994).

[6] ISO/IEC 10026-1: Information technology – Open Systems
Interconnection – Distributed Transaction Processing – Part 1:
OSI TP Model (1992)

[7] ISO/IEC 9126: Information technology – Software product
evaluation – Quality characteristics and guidelines for their
use (1991)

[8] Kazman, R., et.al., Scenario-Based Analysis of Software
Architecture, IEEE Software, Vol.13 No.6 (1996) 47-55.

[9] Kazman, R., et.al., The Architecture Tradeoff Analysis
Method, Proceedings of 4th International Conference on
Engineering of Complex Computer Systems (ICECCS98)
(1998).

[10] Kishi, T., On Software Architecture – Architecture Selection
based on AHP -, Technical Report on IPSJ-SIG Software
Engineering, 2001-SE-130, (2001) 101-108 in Japanese.

[11] Morisawa, Y., Iwata, H. and Toyama, H., A Proposal of
Computing Models for Distributed Processing Systems,
Technical Report on IPSJ-SIG Software Engineering,
96-SE-109 (1996) 17-24 in Japanese.

[12]. Morisawa, Y., Okada, H., Iwata, H and Toyama, H., A
Computing Model for Distributed Processing Systems and Its
Application, Proceeding of 1998 Asia Pacific Software
Engineering Conference (1998) 314-321.

[13] Morisawa, Y. and Torii, K., Architectural Styles for

Distributed Processing Systems, Technical Report on
IPSJ-SIG Software Engineering, 99-SE-122 (1999) 9-16 in
Japanese.

[14] Morisawa, Y., A Computing Model of Product Lines for
Distributed Processing Systems, Its Product Sets, and Its
Applications, Proceedings of the First Software Product Lines
Conference (SPLC1) (2000) 371-394.
This proceedings is published as; Patrick Donohoe,
SOFTWARE PRODUCT LINES – Experience and Research
Directions, (Kluwer Academic Publishers, 2000) 371-394.

[15] Morisawa, Y. and Torii, K., An Architectural Style of Product
Lines for Distributed Processing Systems, and Practical
Selection Method, Proceedings of Joint 8th European Software
Engineering Conference (ESEC) and 9th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE-9) (2001) 11-20.
This proceedings is published as; Morisawa, Y. and Torii, K.,
An Architectural Style of Product Lines for Distributed
Processing Systems, and Practical Selection Method, ACM
Software Engineering Notes, Vol.26 No.5 (2001) 11-20.

[16] Shaw, M. and Garlan, D., Software Architecture (Prentice
Hall, 1996).

[17] Shaw, M. and Clements, P., A Field Guide to Boxology:
Preliminary Classification of Architectural Styles for Software
Systems, Proceedings of 21st International Computer Software
and Application Conference (COMPSAC’97) (1997) 6-13.

[18] Shedletsky, J.J. and Rofrano, J.J., Application reference
designed for distributed system, IBM Systems Journal, Vol.32,
No.4 (1993) 625-646.

