SOFTWARE ANALYSIS BY CODE CLONES
IN OPEN SOURCE SOFTWARE

SHINJI UCHIDA
Kinki University Technical College
Kumano, MIE 519-4395, Japan

AKITO MONDEN
Nara Institute of Science and Technology
Ikoma, Nara 630-0101, Japan

NAOKI OHSUGI
Nara Institute of Science and Technology
Ikoma, Nara 630-0101, Japan

_ TOSHIHIRO KAMIYA
Japan Science and Technology Corp.
Kawaguchi, Saitama 332-0012, Japan

KEN-ICHI MATSUMOTO
Nara Institute of Science and Technology
Ikoma, Nara 630-0101, Japan

HIDEO KUDO
Osaka Seikei University
Osaka, 533-0007, Japan

ABSTRACT

The code clone (a duplicated code section in the source
files of software) is one of the factors that complicate software

.maintenance. However, few empirical studies have analyzed the

status quo of code clones. In this paper we conduct an extensive
analysis of code clones using 125 packages of open source
software written in C language, and suggest guidelines for the
allowable production of code clones. Our results showed 11.3%
as the average CRate (clone inclusion rate). For software
packages that did not include automatically generated code, the
CRate was 9.7%, the in-module CRate 8.2%, and the inter-
module CRate 1.3%. These rates can be used as criteria for the
allowable amount of code clone production. This paper also
presents our findings on factors of code clone production, the
influence of code clone preduction on maintainability, and
removal methods.

Keywords: Software Maintenance, Software Measurement,
Software Metrics

INTRODUCTION

Code clones contained in software programs significantly
reduce the maintainability of the software (7, 11, 29). Code
clones are exact or nearly exact duplicate lines of code within
the source code. These clones are typically created by copying
and pasting source codes, e.g., a programmer may copy and
paste a code fragment when a similar functionality of the
fragment is required elsewhere in the program. If, however, a
copy of a duplicated code section is revised, an update of all the
other copies will be required, and this may raise the maintenance
cost (9). Moreover, if one of the copies is overlooked, a fault
will remain in the copy, and this may degrade the reliability of
the system (29). These code clones may annoy program
comprehension tasks in maintenance (34) 'as” well as in
reengineering (6) and reverse engineering activities (33).
Therefore, code clones should not be created without careful
consideration (7, 9, 19). To support the maintenance of software
containing code clones, various methods have been proposed to
efficiently detect code clones in large software (2-7, 21-28).

Spring 2005

Also, several methods for removing code clones have been
proposed (7, 12). However, few empirical studies have been
conducted to clarify the status quo of code clones, e.g. the
amount of clones contained in well-maintained systems, the
reasons why clones are produced, etc. Thus, programmers and
maintenance engineers do not know how to cope with code
clonm. More specificaily,

The creation of large-scale software without code clones is

almost impossible. However, it is not clear what types of

code clones are allowable and what types are not.

® The amount of code clones allowed is not clear even when
a certain amount of code clones is allowed.

® The automatic removal of code clones by macros can
reduce the readability of the software, thus making
maintenance even more difficult. Further, what type of
clones should be removed and what type should not be
removed is not clear although this can vary depending on
the type of removal method.

To resolve these issues, we analyzed code clones in a
number of open source software programs written in C to find
out more about the creation and removal of code clones. We
focused on open source software for the following reasons:

@ Numerous source codes can be cbtained, making statistical
analysis possible (we selected C language programs for the
same reason).

® There are many software programs available running on
different types of platforms and covering a wide range of
domains.

® Open source software is developed on the assumption that
the source codes are made public. Therefore, many of these
programs are maintained by a large number of people, and
the programs are thus written in such a way as to make
them easy to maintain. Therefore, we assume that open
source software should contain relatively few code clones,
which we hope will give us a guideline for the allowable
amount of code clones.

For our analysis, we used CCFinder (21, 22, 23), proposed
by Kamiya et al., to measure the code clones and analyze them
statistically. We also used CloneWarrior (8), a code clone
identification tool developed by our research group, to identify

Journal of Computer Information Systems 1

akito-m
長方形

and classify the code clones and to analyze the causes for their
generation. Based on our results, we then considered whether or
not the code clones should be eliminated as well as the possible
elimination methods.

CODE CLONE MEASUREMENT
METHODS AND DEFINITIONS

Ceode Clone Measurement Methods

Recently, various kinds of clone detection techniques and
tools have been proposed (2-7, 21-28). Since clones usually
occur when a code fragment is copied and partly modified,
detecting a code fragment that is exactly identical to another
fragment is not sufficient. Thus, existing tools also detect a
fragment that is nearly identical to others.

In this paper we used the token-based code clone detection
tool CCFinder, developed by Kamiya et al. (21, 22, 23).
CCFinder compares source codes based on the syntax rules of
the programming language. Therefore, even when the lines of
codes differ in terms of whitespace, comments, indentation, or
variable names, duplicated code sections can be detected as code
clones despite these differences. CCFinder has industrial
strength, and is applicable to a million-line size system within

affordable computation time and memory usage (29). The basic

procedure for detecting code clones is outlined below:

(Step 1) Lexical analysis
All the source files are divided into tokens based on the
lexical rules of the programming language. Whitespace and
comments are removed.

(Step 2) Transformation
Tokens representing types, variables, or constants are
replaced by the same respective tokens. This replacement
makes identifying & code clone as a pair of code lines in
which only the variable name differs possible.

(Step 3) Match detection
From all the substrings of the transformed token sequence,
a pair of identical substrings is detected as a clone pair.

Code Clone Categorization

A pair of code lines that are the same (or similar) is called a
code clone pair (or simply a “clone™). Figure 1 shows a diagram
of code clone pairs. As shown in the figure, there are two types
of code clone pairs that differ in their effects on the degree of
coupling between modules. Hereafter, a "module” means a
source file, but in essence it can mean a cohesive unit of
software, e.g. package or a library.

FIGURE 1
Classification of Code Clone

In-module
clone pair
A

20

-

Z

Inter-module

clone pair

Module A

Module B

(1) In-module clone pairs
When the two lines of code comprising a code clone pair
are in the same module, they are called an in-module clone
pair. The effect on the degree of coupling between modules
is considered to be slight.
(2) Inter-module clone pairs
When the two lines of code comprising a code clone pair
are in different modules, they are called an inter-module
clone pair. Because there are pieces of code performing the
same processing in two modules, such pairs are assumed
(believed) to strengthen the degree of coupling between
modules.
In general, making revisions and changes is difficult if two
modules are strongly linked, so inter-module clone pairs can
significantly reduce the maintainability of the software. Note

Spring 2005

that for the purposes of this paper, clone pairs having
overlapping code lines (self-crossing clone pairs) were not
detected as code clones.

Code Clone Metrics

The following three metrics were employed for this paper.
e Clone inclusion rate (CRate)
The number of tokens included in code clone lines, divided
by the number of tokens in the entire program, multiplied
by 100.
o In-module clone inclusion rate (inMCRate)
The number of tokens in an in-module clone line, divided
by the total number of tokens in the program, multiplied by
100.

Journal of Computer Information Systems 2

akito-m
長方形

FR S i |

o Inter-module clone inclusion rate (interMCRate)
The number of tokens in an inter-module clone line,
divided by the total number of tokens in the program,
multiplied by 100.

Visualization Tool for Code Clone Analysis

In order to analyze code clones detected by CCFinder, we
developed a code clone visualization tool called CloneWarrior
(8). Figure 2 shows the architecture of CloneWarrior, which
consists of a Graphical User Interface (GUI), GUI controllers
(File list manager, Code clone list manager and Source code
editor) and Code clone storage. The user of CloneWarrior first
specifies a criterion for code clone detection, i.e., the least length
of a clone fragment.! Next, the user specifies a set of source
files that need to be analyzed. After all the clones are detected
from the given source files and stored in the code clone storage,
the user can analyze the clones through three views (the file list
view, the code clone list view, and the source code editor).
Figure 3 shows a GUI of CloneWarrior. In Figure 3, (a) and (b)
show file lists of target source code. CCfinder detects code
clones between source files in (a) and in (b). In this paper we
specified the same file list in (a) and (b). Detected code clone
pairs are shown in the code clone list view (d). Source codes of
clones are shown in the source code editor (c).

When the user clicks one of the files in (a) or in (b), a list of
code clones included in the clicked file are shown in (d), and
when the user clicks one of the clones in (d), source lines of the
clicked clone are highlighted in (c). Therefore, the user can
easily recognize the location of clones without paying attention
to token criteria.

CODE CLONE ANALYSIS
Analyzed Software

We analyzed 115 software packages selected at random
from the open source software products in the GNU Project
(15), and ten individual software programs considered by the
open source community to be examples of successful programs
(1) (Linux kerne), emacs, apache, and others) for a total of 125
programs. (The names of the software can be found in the
appendix.) All of the programs were written in C. These open
source software programs (called “free software™) meet nine
specific conditions that include not only open sources, but also
freedom of distribution and the possibility of distributing
modified versions of the source code (1).

The scale of the 125 programs we analyzed (in terms of
LOC: Lines of Cade) was on average 55,000 LOC, with the
smallest containing 478 LOC, and the largest about 2,670,000
LOC.

Analysis Procedure

The procedure we followed in our analysis is as follows.
(1) First, we detected the code clones in the 125 software

'Note: Its default value is 50 tokens. The average number
of tokens per LOC (lines of code) was 2.4 in our.analysis of C
source codes, so the user can estimate roughly the number of
tokens from LOC. We believe that the number if tokens is a
better criterion than the LOC because the LOC is much too
sensitive to a programming style, to comments, and to white
spaces, etc.

Spring 2005

products using CCFinder and performed a code clone
metrics measurement. In order to avoid identifying
accidentally matching code lines (that were not the result
of copying and pasting) as code clones, we defined the
code clones for detection to be code line pairs baving 50 or
more matching tokens. Code pairs with fewer than 50
token matches were ignored. We determined this value of
(50 tokens) based on past research. Ducasse et al. (9) used
ten LOC and Baker (2) and Monden et al. (29) used 30
LOC as the number of minimum clone length. We
considered using their mean value of 20 LOC, which is
about 50 tokens in C language, but in the software we used
for our analysis, 50 tokens were equivalent to 21 LOC on
average.

(2) For software with many code clones, we examined the
modules (files) having a high clone inclusion rate, using
CloneWarrior to identify the types and causes of the code
clones. We also considered methods of removing the code
clones.

(3) Next, we performed statistical analysis of the code clone
causes identified in (2) from the 125 software programs.
We also considered standard values for the code clone
inclusion rates.

Overview of the Software Measurement Results

Table 1 shows an overview of the results of the code clone
measurement. On the left columns for the number of modules,
the number of lines, the clone inclusion rate, the in-module
clone inclusion rate, and the inter-module clone inclusion rate
are provided. In each column is the average, median, maximum,
minimum, and standard deviation values.

As shown in Table 1, although a program with the
extremely high clone inclusion rate of 61.2% exists, 26
programs with no clones at all also exist. The average clone
inclusion rate was 11.3%. The number of in-module clones was
greater than the number of inter-module clones---3.4 times
greater in terms of the clone inclusion rate.

From these results, we learned that there are large
differences in the clone inclusion rate depending on the
software, and that even open source software, which assumes
the publication of the source code, sometimes contains many
clones.

Clones in Software with High Clone Inclusion Rates

Table 2 shows the code clone measurement results for the
ten software programs with the highest clone inclusion rates. In
this section, we discuss the typical clones included in these
software programs and investigate their characteristics.

(1) Clones caused by platform-dependent code

The software with the highest clone inclusion rate was
superopt. The main clones were due to code that was dependent
on the platform (CPU). This software outputs assembly code for
a given arithmetic expression, and it is ported for a wide variety
of CPUs. An investigation of the clone lines revealed that, as
shown in Figure 4 (a), the assembly code output processing for
each operator was written in switch-case statements. Further, as
shown in Figure 4 (b), where the processing code depends on
each CPU instruction set but the instruction sets were similar to
each other, clones were formed. However, the CPU-dependent
processing code and the independent code were clearly
separated, so that the code had a high readability. There is the
risk that readability would be reduced if an attempt were made
to share the processes dependent on the CPU in order to remove
clones. All the clones appeared in a very regular manner, and are

Journal of Computer Information Systems 3

akito-m
長方形

contained within a module; therefore, medification could be code comprehensible even though it contains clones. However,

made relatively simply by using the find/replace feature of a text in other cases (i.e., when such separation is well not archived),
editor. These clones can be considered allowable clones. In the removing clones by sharing the non-dependent codes would be
case of superopt, the separation of the non-dependent code and desirable

the independent code is successfully achieved, thus making the

s

FIGURE 2
Architecture of Clone Warrior

Fle list manager [[|=|||1=
File selection File list view \
= | e

information

Code clone Code clone list manager User
detector Rl
i Code done
CCFinder e dore Tt view
information
' — e————
Source code editor ré =
Source code editor
CloneWarrior
TABLE 1
Overview of Results of Code Clone Measurement
of Modules LOC CRate ioMCRate | interMCRate |
Average 86 55,675 11.3% 9.1% 3.0%
Median 22 11,297 8.7% 5.9% 0.8%
Max 3,755 2,678,939 61.2% 61.2% 37.6%
Min 1 478 0.0% 0.0% 0.0%
Std.dev. 340 242,695 11.464 10.107 5.657
TABLE 2
The Top 10 Highest Clone Rate Software
Program # of Modules LOC CRate inMCRate interMCRate
superopt-2.5 1 3,080 61.2% 61.2% 0.0%
chemtool-1.5 12 27,254 51.6% 26.5% 37.6%
| gwee-0.9.8 19 9,332 47.0% 47.0% 0.0%
bucob-0.1.2 43 44,828 43.7% 9.9% 35.5%
xcdroast-0.98 17 36,193 42.2% 39.4% 15.5%
rubrica-0.9.1 57 . 30,542 35.3% 34.1% 10.7%
| gaby-2.0.2 106 60,652 33.3% 27.4% 15.9%
| galculator-0.8 8 Lo 2,999 32.5% 32.5% 0.0%
pitchtune-0.0.3 10 4,373 31.9% 31.9% 0.0%
hme-1.3.1 17 7,211 30.9% 26.6% 7.4%

Spring 2005 Journal of Computer Information Systems 4

akito-m
長方形

e el

FIGURE 3
Screenshot of Clone Warrior

S wHI- ISR X DH 00 BYIE e]

| Tarout Sotres » {|Gamole Gowes x| dugoata.c [Aksady Datscted orsate.cO { Akoady Detsctad }
Oan Qoo || Bap Gow | e
P i Yy - o) o, schack, 2 clsar_ scticneseceO; 2
wJegiode. 473 KB QPelboach 145 KB
fAnkom. $.70 KB (phintext . 1000 2 /¢ pragare draw see ¢/ (c) cree, o rodo crmnu = NULL, (c)
gttaxte 192 KB Dodigool. 234 KB cioar actbraos(; cron, o bumfree_chack = NULL;
inkc NI Qosssn. 208 KB
{ 481 KB a. 268 KB o o o 5 o
(&) o2 (= =
c 108 KB 324

badmeg. 123 KB Pdengstt.. 199
beaicha.. 8.77 KB Qdmpttext. 182
bealesll. 101 KB Qdngatia.. 155
_;Ibﬂm. 200KB - dugiicst.. 125
meing 166 KB Qexplode.. 4.73
%]

1.02

a3

401

jmensc 211 KB P fRnddom..
nattext.. 209 KB Jgttant.. 1.
os2com. 290 KB Qink oo
osdspc 953 B (P inth~co...
shusl-e. 410 B <111 30
puslc 331 KB PN0nfise.. 108
rtoole 153 KB Qloadmag. 123

LUl

LLL

mtpe 146 KB Qhosicha. BT7
Utetrem. 457 KB Poaest. 101
g_l.hchc 70 B (bcaera. 200
wttsa 10198 Pmaincd 168
jJwoikistn. 10020 @ a 211
-'m‘ﬂ 437 KB Prgattaxt. 200 KB
Wwavfro. 21.7 KB Po2com. 200 KB
mweviic 154 KB PowdopcO 855 8
lwaviayc 254 KB rhaeie. 410KB |
cdrera. 162 KB Qpunic 331 K8 |
t\mhc 822KB3]| Qmeoolod 1.53
. . l I f\j.—.l\ 148 VD P
Latost upistdt 2003/10/2 | Latost updeted: 2004/03/2 | Latest updated 2004/09/28 41937 8tze: 50 TKN
! [11e: 2 I | 100% comglated P
FIGURE 4

Example of Code Clone in Superopt

case LSHIFTR_CO:

printf("shrl %s,%s",NAME(s2), NAME(d));break;
case ASHIFTR_CO:

printf("sarl %s,%s",NAME(s2), NAME(d));break;
case SHIFTL, CO:

printf("shll %8,%s", NAME(s2), NAME(d));break;
case ROTATEL_CO:

printf"roll %8,%s",NAME(s2), NAME(d));break:

(a) Code clone found in switch case statement

(b) CPU dependent code

Spriag 2005 Journal of Computer Information Systems 5

akito-m
長方形

(2) Clones caused by a program translator

The clones in Chemtool, the product with the second-
highest code clone inclusion rate, were generated by the
program translator. For some of the modules in this software, a
Pascal-to-C translator (31) was used to automatically convert the
source code from Pascal into C. The general-use macro
definitions and function definitions became in-madule and inter-
module clones. If these modules are not counted, the in-module
clone inclusion rate for Chemtool is 5.6%, and the inter-module
clone inclusion rate is 0.1%, both lower than the average. The
translated source code is also provided in Pascal, so developers
are not likely to be troubled by the clones included in the C-
language program.

(3) Clones caused by GUI builder tools

The products GWCC (GNOME Workstation Command
Center), galculator (scientific calculator) and pitchtune (musical
instrument tuner) contain codes pgenerated by the GUI
(Graphical User Interface) builder tool GLADE (14), and they
have formed in-module clones. The code generated by GLADE
is not intended to be manually manipulated (it is outside of the
maintenance scope), so the clones do not reduce maintainability.
Further, when the codes that were generated by GLADE are
removed from these three software products, the in-module
clone inclusion rates fall to 2.5%, 0%, and 0%, respectively.

(4) Clones generated by lexical/syntax analyzers

The software Bucob (a COBOL compiler) has a high inter-
module clone inclusion rate (35.5%). However, our investigation
revealed that 9 modules were lexical analysis modules generated
by flex (11). An additional 3 modules were syntax analysis
modules generated by GNU Bison (16). These modules are not
intended to be manually manipulated, so they do not reduce
maintainability.

(5) Clones related to the generation of GUI parts

The software products xcdroast (CD writing software),
rubrica (address book), and gaby (database) are all intended for
use with X-Window. In these products, many code clones were
found in the processing related to the GUI. Each of the software
products includes a GUI using the GUI toolkit GTK+ (18), but
does not include any code generated by GLADE or similar
products. The products were manually coded. Figure 5 shows a
typical example of a code clone pair found in these software
products. Each clone line generates a different GUI item and
draws it on the screen. Furthermore, these codes appear to have
been generated by copy and paste. These software products have
many GUI items, so there are many other similar clone lines,
causing both the in-module and inter-module clone inclusion
rates to rise.

Two possible ways to remove or to reduce code clones
from GUI related code exist. One way uses the inheritance
mechanism of GTK+ and the other, a wrapper function to
combine code clones. Generally, the former technique (using
inheritance) is referred to as differential programming or
programming by modifications. Typically, we define the
common properties in the superclass, and then we only need to
append or to redefine the differences in the subclass. If the
inheritance is used appropriately, we will gain both code
reduction and improved maintainability (12). In the case of
Figure 5, one possible way to use the inheritance is to develop a
subclass of GtkTable and to write its initialization function
containing “gtk_table_set_row_spacings(GTK_TABLE(tb!),
10)” and “gtk_table_set_col_spacings(GTK_TABLE(tbl),10)"
so that these two statements are removed from the original cede.
However, writing a subclass itself requires a certain antount of
extra code; thus, this process sometimes increases the total
amount of code. Morcover, improper use of inheritance may
cause an ill-structured design, which makes maintenance even

Spring 2005

more difficult.?

On the other hand, using a wrapper function is a coding-
level technique rather than a design-level technique. In this
technique, we combine a recurring pattern (i.e. a code clone)
into a new function called a wrapper function. Then, all the
recurring patterns in the source code are replaced with a call to
the wrapper function so that the pattems disappear and the total
amount of code is reduced. In the case of Figure 5, we could
write the wrapper function “GtkWidget *my_gtk table create
(guint rows, guint columns, GtkWidget *packedTo)” containing
gtk_table new, gtk table_set, gtk_box_pack start, and gtk
widget_show. However, we sometimes need more global (i.e.

- design level) improvement than local (coding level)

improvement. In such a case, the developer should consider
design-level improvement, which includes the use of
inheritance.
(6) Clones caused by copy-and-past programming

The software HME (Height Map Editor) contains many
functions that are similar to each other, and we found many code
clones that seemed to have been generated using copy and paste.
For example, the clone fragment show in Figure 6a was
contained in two functions. This clone fragment could be easily
removed by combining the clone lines into a new (wrapper)
function. In contrast, the clone fragment shown in Figure 6b is
contained in three functions, but it would not necessarily be an
improvement to combine them into a wrapper function. These
clone lines contain many local variables as well as assignment
statements for the local variables. This indicates that simply
combining clone fragments into a wrapper function would likely
degrade the maintainability. In this program, “start_x,” “end_x,”
“start_y,” and “end y” are local variables, and values are
assigned to these variables. Therefore, if we simply build a new
function to combine code clones, we need to pass all these local
variables to the function by pointers. This is not an elegant
solution because passing many variables by pointers will
strenpthen the coupling between functions and thus may degrade
maintainability. In addition, another concem is that there are too
many global variables in this program (“selection_x_1,”
“selection_x_2,” “selection_y_1,” and “selection y 2”), and
they are not combined as a struct data type. A more elegant
solution would be to construct a struct data type including these
global variables as well as local variables, to build a wrapper
function as shown in Figure 7. In Figure 7, a new data type
“struct Selection” was defined and its instance became an
argument for the function “combined.” We assume that
“selection” is a local variable. However, this function works
even if it is a plobal variable. (Note that since we are not
developers of HME, better solutions might be developed.)

Analysis of Presence or Absence of Generated Code

The analysis described in the previous section revealed that
there are many open source software products that contain
automatically generated code using case tools, and the generated
code is one cause of clone generation.

As shown in Table 3, out of 125 software products, 33 were
found to contain automatically generated code. These products
had higher average in-module and inter-module clone inclusions
rates than the products that did not contain generated code (a
significant difference with a 5% level of significance).

An investigation of each generated code revealed that the
following coede generation tools were used: GUI builder tools

Note: For the proper use of inheritance, please refer to
Fowler’s book (12).

Journal of Computer Information Systems 6

akito-m
長方形

eI |

(GLADE (14), SWIG (35), and fdesign (10)), lexical analysis/
syntax analysis program generation tools [flex (11) and GNU
Bison (16)], tools for generating code required for
communication [Orbit id (30) and RPCGen (320), a text-

processing tool [gettext (13)], a source code translator [Pascal-
to-C translator (31)], and a hash function generator [gperf (17)).
Researchers and developers who analyze code clones need to be
aware of the presence of code generated by tools such as these.

FIGURE §
Example of Code Clone Pair in scdroast

tbl = gtk_table_new(3,8, TRUE);
gtk_table_set_row_spacings(GTK_TABLE(tbD,10);
gtk_table_set_col_spacings(GTK_TABLE(tbD, 10);
gtk_box_pack_starﬁ(GTK_BOX(vbox),tbl.FAISE,F 'ALSE,
10);

gtk_widget_show(tbD;

11 = rightjust_gtk_label_new(text(103));
g‘tk_table_attach_defaults(GTlLTABLE(tbl),l1,0,2.0, D;

gtk_widget_show(l1) \\
> Clone pair
tbl = gtk_table_new(2,16,TRUE); ’

gtk_table_set_row_spacings(GTK_TABLE(tbD,10);
gtk_table_set_col_spacings(GTK_TABLE(tbD, 10);
gtk_box_pack_start(GTK_BOX(actionspace),tbl, FALSE,
FALSE, 10);

gtk_widget_show(tbl);

11 = rightjust_gtk_label_new(text(219));
gtk_table_attach_defaults(GTK_TABLE(th,11.0, 6,0,1);
gtk_widget_show(11);

FIGURE 6
Example of Clone Fragments in HME

aum = *(terrain_height + y * WIDTH + x);

sum += *(terrain_height + ((y - 1) * WIDTH) +x - 1);
sum += *(terrain_height + ((y - 1) * WIDTH) + x);
sum += *(terraip_height + ((y - 1) * WIDTH) + x + 1)
sum += *(terrain_height + (y * WIDTH) + x - 1);

gum += *(terrain_height + (y * WIDTH) + x + 1);
sum += *(terrain_height + ((y + 1) * WIDTH) + x - 1);
gum 4= *(terrain_height + ((y + 1) * WIDTH) + x);
gum += *(terrain_height + ((y + 1) * WIDTH) + x + 1);
iflsum%8>4)aum = (sum / 9)+1;

else pum=sum/9;
*(terrain_height + y * WIDTH + x) = sum!

(a) Easily removable clone fragment

if (terrain_height)return;
change_cursor{cursor_wait);
eopy_to_t .
if(selection_x_l<selection_x_2){
start_x=selection_x_1:
end_x=selection_x_2:
}elsof
start_x<selection_x_2;
end_x<selection_x_1:

{b) Not easily removable clone fragment

Spring 2005 Journal of Computer Information Systems

akito-m
長方形

FIGURE 7
An Example of Clone Elimination

struct Selection{

int x1, y, x2, y2;
int startx, endx, starty, endy;
|H

int combined (struct Selecticn *selection){

{

if (1terrain_height) retum FALSE;

change cursor(cursor_wait);

copy_to_undo_buffer();

if{selection-> x1 < selection-> x2){
selection->startx = selection->x1;
selection->endx = selection->x2;

Jelsef
selection->startx = selection->x2;
selection->endx = selection->x1;

if{selection->y1 < selection->y2){
selection->starty = selection->yl;
selection->endy = selection->y2;

Jelsef
selection->starty = selection->y2;
selection->endy = selection->y1;
}
return TRUE:;
}
TABLE 3
Relation between Generated Code and Clone Rate
Code Generation # of Programs CRate inMCRate interMCRate
Yes 33 15.8% 11.6% 5.5%
No 2 9.7% 82% 2.1%

Analysis of the Presence or Absence of a GU1

The analysis described in a previous section revealed that
the codes for creating GUI objects are considered as a cause of
clones in GUI software.

As shown in Table 4, 56 of the 125 software products had
GUIs. Compared to products without GUIs (command line
interface products), the products with GUIs showed on average
higher in-module and inter-module clone inclusion rates (a
significant difference with a 5% level of significance).

TABLE 4
Relation between GUI and Clone
GUI # of Programs CRate inMCRate interMCRate
Yes 56 14.9% 12.4% 3.9%
No 69 8.3% 6.5% 22%

Standard Values for Codé Clone Inclusion Rates

We classified software into four categories, depending on
the presence of generated code and GUIs, and calculated the
average in-module and inter-module clone rates for each
category (Table 5). We expect that these values might be helpful
as a guide to software developers. For example, in the
development of software without generated code and without a
GUI, if the in-module clone inclusion rate is about 8.2% and the
inter-module clone inclusion rate is about 1.3%, the amount of

Spring 2005

clones ‘in the software is average for open source software in
general. On the other hand, if the clone inclusion rates are higher
than these average values, the software may be difficult to
maintain, and it may be necessary to remove some clones.

RELATED WORK
This section gives a brief survey of existing papers on code

clone analyses, especially analyses on industrial systems (i.e. not
open source). Table 6 shows the result of our survey. Although

Journal of Computer Information Systems 8

akito-m
長方形

becsran e

the CRate (clone inclusion rate) depends on the clone detection
tool being used and on the minimum clone length, which is a
criterion for clone detection, all the industry products appearing
in existing papers had a CRate greater than 11.3%, which is the
average CRate in our case of 125 open source software products.
From this result, we expect that many of open source software
products will contain relatively few code clones, -which we
hoped should give us a guideline for the allowable amount of
code clones.

TABLES
Average Clone Inclusion Rate of Four Kinds of Software

(a) Clone Inclusion Rate

Code Generation
Yes No
GUI Yes 16.9% 13.8%
No 13.4% 7.2%
{b) In-module Clone Inclusion Rate
Code Generation
Yes No
GUI Yes 13.6% 11.7%
No 7.9% 6.1%
(c) Inter-module Clone Inclusion Rate
Code Generation
Yes No
GUI Yes 4.9% 3.4%
No 6.6% 1.3%

CONCLUSIONS

In this paper, we examined 125 open source software
products written in C to analyze the code clones contained in the
software. Our main findings are outlined below.

e A great variation in the clone inclusion rates existed, with
the average being 11.3%, the minimum 0%, and the
maximum 61.2%. On average, the in-module clone
inclusion rate was greater than the inter-module clone
inclusion rate by 3.4 times.

e Software that has been ported for multiple platforms and
which includes codes dependent on each platform tend to
have many clones. In software of this type, clones among
platform-dependent codes are allowable, but clones among
non-dependent codes are not necessarily allowable.

e Codes that are generated by a program generator tend to
become clones, but as long as the program generator and
the input for it are provided, these clones will not
necessarily reduce maintainability.

o In software containing GUIs, codes related to the
generation of GUI parts can easily become clones, so
attention to the design phase is required. Where GTK+ is
used, the GUI object inheritance feature can be used to
reduce clones.

s The part of clones generated by copy and paste can be
eliminated by combining them into a new function called a
wrapper function. However, if the clones involve a number
of assignment statements for local variables, it is not
desirable to simply combine the clones into a wrapper
function. In such cases, a more broad-ranging improvement
of the design is required.

s For software that included neither generated code nor a
GUI, the average in-module clone inclusion rate was 8.2%,
and the average inter-module clone inclusion rate was
1.3%. These results can serve as a quantitative guideline for
software developers.

TABLE 6
Overview of Results in Previous Research
Minimum

Paper Software Language Loc Clone Tool Clone Length CRate
Baker (2) AT&T System C 200,000 Dup 30LOC 23.0%
15LOC 38.0%
Baxter (6) Process-control C 400,000 CloneDR n.s. 12.7%
Ducasse et al. (9) DatabaseServer | Smalltalk 245,000 DupLOC 10LOC 36.4%
Ducasse et al. (9) Payroll system COBOL 40,000 DupLOC 10LOC 59.3%
Monden et al. (29) | Mainframe MIS | COBOL/S 1,000,000 CCFinder 30L0C 154%
This paper 125 open source | C - CCFinder 50 Tokens 11.3%

(21LOC)

The software we examined for this paper is not exclusive so
other researchers may use the same source codes to conduct
follow-up tests, and thereby improve the accuracy of our
analysis and the reliability of our results.

In the future, we intend to perform a deeper analysis on a
large number of software products, and to perform similar
analysis for software in languages other than C.

ACKNOWLEDGEMENT

We wish to thank Dr. Shuuji Morisaki of Intemet Initiative
Japan Inc. and Dr. Masatake Yamato of Red Hat, K.K. for their

Spring 2005

enthusiastic debate and advice. This study was supported by the
Industrial Technology Research Grant program from the New

Energy and Industrial Technology Development
Organization(NEDO) of Japan.
REFERENCES

1. Aoyama, M. “Perspective on Open Source Software,” IPSJ
Magazine, 43:12, December 2002, pp. 1319-1324.

2. Baker, B.S. “A Program for Identifying Duplicated Code,”
Proc. 24™ Symposium on the Interface Computing
Science and Statistics, Texas, Maerch 18-21, 1992, pp. 49-

Journal of Computer Information Systems 9

akito-m
テキストボックス
15.4

akito-m
長方形

20.

21.

57.

Baker, B.S. “On Finding Duplication and Near-duplication
in Large Software System,” Proc. 2* IEEE Working
Conf. on Reverse Eng., Toronto, Ontario, July 14-16,
1995, pp. 86-95.

Balazinska, M., E. Merlo, M. Dagenais, B. Lagfie, and K.A.
Kontogiannis. "Measuring Clone Based , Reengineering
Opportunities,” Proc. 6th IEEE Intl. Symposium on
Software Metrics, Boca Raton, FL, Nov. 4-6, 1999, pp.
292-303.

Balazinska, M., E. Merlo, M. Dagenais, B. Lagie, and K.A.
Kontogiannis. "Partial Redesign of Java Software Systems
Based on Clone Analysis,” Proc. 6® IEEE Working Conf.
on Reverse Eng., Atlanta, GA, oct. 6-8, 1999, pp. 326-336.
Banerjee, D. and C. Simpson. “A Formal Methodology for
Subject Area Identification in IEF™ Re-engineering
Projects,” J. of Computer Information Systems, 34:4,
1994, pp. 37-39.

Baxter, L.D., A. YUahin, L. Loura, M. Sant’Anna, and L.
Bier. “Clone Detection Using Abstract Syntax Trees,”
Proc. IEEE Intl. Conf. on Software Maintenance,
Bethesa, MD, Nov. 16-20, 1998, pp. 368-377.
CloneWarrior homepage: http://se.aist-nara.ac.jp/
clonewarrior/

Ducasse, S., M. Ricger, and S. Demeyer. "A Language
Independent Approach for Detecting Duplicated Code,"
Proc. IEEE Intl. Conf. on Software Maintenance,
Oxford, UK, Aug. 30-Sept. 3, 1999, pp. 109-118.
fdesign(XForms) homepage: http://world.std.com/~xforms/

. flex homepage: http://www.gnu.org/software/flex/

Fowler, M. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

Gettext homepage: hitp://www.gnu.org/software/gettext/
Glade homepage: http://glade.gnome.org/
GNU Project and FSF: http://www.gnu.org/
GNU Bison
httpz//www.gnu.org/software/bison/bison.html
gperf homepage: http://www.gnu.org/software/gperf/
GTK+ homepage: http://www.gtk.org/

Imai, T., Y. Kataoka, and T. Fukaya. "Evaluating Software
Maintenance Cost Using Functional Reduncancy Metrics,”
Proc. 26® Intl. Computer Software and Applications
Conference, Oxford, England. Aug. 26-29, 2002, pp. 299-
306.

Inoue, K., T. Kamiya, and S. Kusumoto. “Code-Clone
Detection Methods,” Computer Software, 18:5, 2001, pp.
47-54,

Kamiya, T. and Y. Ueda. “CCFinder/Gemini Web Site,”

homepage:

Spring 2005

22

23.

24.

25.

26.

27.

28.

29.

30.
31

32.
33.

34,

3s.

http://sel.ics.es.osaka-u.ac.jp/cdtools/index.html.en
Kamiya, T., F. Ohata, K. Kondou, S. Kusumoto, and K.
Inoue. "Maintenance Support Tools for Java Programs:
CCFinder and JAAT," Proc. 23™ Intl. Conf. on Software
Eng., Toronto, Canada, May 12-19, 2001, pp. 837-838.
Kamiya, T., S. Kusumoto, and K. Inoue. “CCFinder: A
Multi-linguistic Token-based Code Clone Detection
System for Large Scale Source Code,” IEEE Trans.
Software Engineering, 28:7, 2002, pp. 654-670.

Johnson, J.H. “Ildentifying Redundancy in Source Code
Using Fingerprints,” Proc. IBM Centre for Advanced
Studies Conference, Toronto, Ontario, October 24-28,
1993, pp. 171-183.

Johnsen, J.H. “Substring Matching for Clone Detection and
Change Tracking,” Proc. IEEE Intl, Conf. on Software
Maintenance, Victoria, British Columbia, Sep. 19-23,
1994, pp. 120-126.

Kontogiannis, K.A., R. Mori, E. DeMerlo, M. Galler, and
M. Bermnstein. “Pattern Matching Techniques for Clone
Detection and Concept Detection,” J. of Automated
Software Eng. 3, 1996, pp. 770-1108.

Lagué, B., EM. Merlo, J. Mayrand, and J. Hudepohl.
“Assessing the Benefits of Incorporating Function Clone
Detection in a Development Process,” Proc. IEEE Intl.
Conf. on Software Maintenance, Bari, Italy, Sep. 29-Oct.
3, 1997, pp. 314-321.

Mayland, J., C. Leblanc, and E.M. Merlo. “Experiment on
the Automatic Detection of Function Clones in a Software
System Using Metrics,” Proc. IEEE Intl. Conf. on
Software Maintenance, Monterey, CA, Nov. 4-8, 1996,
pp. 244-253.

Monden, A., D. Nakae, T. Kamiya, S. Sato, and K.
Matsumoto. "Software Quality Analysis by Code Clones in
Industrial Legacy Software,” Proc. 8* IEEE Intl.
Software Metrics Symposium, Ottawa, Canada, June 4-7,
2002, pp. 87-94.

Orbit homepage: http://orbit-resource.sourceforge.net/
Pascal to C translater homepage: http://www.mpsinc.com
/pas2c.html

rpegen (NetKit) distribution: http://freshmeat.net/projects/
netkit/

Saiedian, H., M. Zand, and J. Welborn. “On Challenges of
Reverse Engineering for Large Software Systems,” J.
Computer Information Systems, 33:1, 1992, pp. 37-40.
Sharpe, S. “Unifying Theories of Program
Comprehension,” J. Computer Information Systems,
38:1, 1997, pp. 86-93.

SWIG homepage: http://www.swig.org

Journal of Computer Information Systems 10

akito-m
長方形

APPENDIX

Analyzed software programs are listed below.

115 software programs downloaded from GNU project:

¢ded-0.5.5, glabels-1.89.0, gnutrition-0.3, fiproxy-1.3, galculator-0.8, cdparanoia-alpha9.8, gnofin-0.8.4, abcm2ps-1.3.3, pound-1.0,
vpTwkp-0.5.0, cdrtool-1.11, gnumeric-1.0.9, myleague-0.9.2, kadet-2.0.9, cukleides-0.9.2, glame-0.6.2, oleo-1.99.16, scoreboard-0.9,
vne_reflector-1.1.9, aide-0.8, lame-3.89, privoxy-3.0.0, abc2ps-1.3.3, gwcc-0.9.8, finger-1.37, normalize-0.7.4, gnubg-0.1.2, units-
1.55, gnobog-0.4.2, fwlogwatch-0.9, radioactive-1.4.0, asteroids-0.2.2, be-1.06, rws-0.9.6, gringotts-0.6.2, sound-1.9.1, dumb0.13.12,
statist-1.0.1, fingerd-1.4, openssh-3.4, gnuradio-0.3, freeciv-1.12.0, dap-1.7, bucob-0.1.2, siege-2.53, grip-2.99.2, gnuboy-1.0.3, euler-
1.60, ccache-1.9, tripwire-2.3.2-1, easytag-0.2.1, gnugo-3.2, spline-1.1, strace-4.4.1, zorp-1.4.6, sweep-0.1.1, xtux-20010107, gzip-
1.2.4, check-0.8.3, gtk-knocker-0.6.6, xcdroast-0.98, stereograph-0.31, avdbtool-0.3, led-2.0, firestarter-0.9.0, gmmusic-1.1.11,
plotutils-2.4.1, linuxtart-3.0.4, memwatch-2.67, razorback-1.0.2, gneomereadio-1.0, lib3ds-1.2.0, mtools-3.9.8, superopt-2.5,
sharesecret-0.2.0, geal-3.0.1, gmandel-1.1.0, reed-5.3, calcoo-1.3.13, ccvssh-0.9.1, Kalarm-0.7.5, danpei-2.8.6, battstat-2.0.11, gflow-
0.9.13, cvsadmin-1.0.2, xdiary-1.32, filmgimp-0.6, gbonds-0.7.5, postgis-0.7.3, cvsgraph-1.3.0, gaby-2.0.2, geomview-1.8.1, gneuro-
0.9.1, sunclock-3.46, expect-5.38, gnucash-1.6.6, cave-1.0, Ir-1.7, hh2000-0.7, sh-utils-2.0, rubrica-0.9.1, text-color-1.0.3.1, tea-
applet-1.1, hme-1.3.1, stm-1.2.4, toutdoux-1.2.7, lifelines-3.0.14, balance-2.33, gpsdrive-1.26, cvsps-1.3.3, barcode-0.98, pitchtune-
0.0.3, fnord-1.5, chemtool-1.5, install-log-1.9

10 software programs considered by the open source community to be examples of successful programs:

perl-5.005, emacs-21.2, csv-1.11.2, httpd-2.0.43, apache-1.3.27, samba-2.2.4, sendmail-8.12.6, tcl/tk-8.4.1, python-2.1.3, linux-kemel-
249

e

Spring 2005 Journal of Computer Information Systems 11

akito-m
長方形

JOURNAL OF COMPUTER
INFORMATION SYSTEMS

\ JCIS is the official journal of the

Is INTERNATIONAL ASSOCIATION FOR COMPUTER INFORMATION SYSTEMS

VOLUME XLV
NUMBER 3
SPRING 2005

akito-m
長方形

