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SUMMARY Many computer systems are designed to make it easy for
end-users to install and update software. An undesirable side effect, from
the perspective of many software producers, is that hostile end-users may
analyze or tamper with the software being installed or updated. This paper
proposes a way to avoid the side effect without affecting the ease of instal-
lation and updating. We construct a computer system M with the following
properties: 1) the end-user may install a program P in any conveniently ac-
cessible area of M; 2) the program P contains encoded instructions whose
semantics are obscure and difficult to understand; and 3) an internal inter-
preter W , embedded in a non-accessible area of M, interprets the obfuscated
instructions without revealing their semantics. Our W is a finite state ma-
chine (FSM) which gives context-dependent semantics and operand syn-
tax to the encoded instructions in P; thus, attempts to statically analyze
the relation between instructions and their semantics will not succeed. We
present a systematic method for constructing a P whose instruction stream
is always interpreted correctly regardless of its input, even though changes
in input will (in general) affect the execution sequence of instructions in
P. Our framework is easily applied to conventional computer systems by
adding a FSM unit to a virtual machine or a reconfigurable processor.
key words: software security, software protection, obfuscation, encryption

1. Introduction

Security is an overarching problem for today’s computer
systems including personal computers, their peripherals,
consumer electric devices, and any other machinery that
contains software programs. Some systems administrators,
and some software suppliers, require assurance that end-
users will not analyze or tamper with protected programs
or data. For example, a typical software digital rights man-
agement (DRM) system is designed to run in a “hostile” en-
vironment where the end-user is not fully trusted by the sup-
plier of the content whose rights are being managed. Typ-
ically, these DRM systems contain cryptographic keys and
algorithms that need to be kept secret [1]. There is, however,
no known method for completely concealing these keys and
algorithms from a determined attacker. For example, the
keys for the CSS encryption standard for DVD media con-
tent were revealed by a “crack” in 1999. As a result, pro-
grams which subvert DVD copy protection are now widely
distributed through the Internet [2]. Embedded software in
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consumer electric devices, e.g., mobile phones and set-top
boxes, also needs to be protected since these devices are
also susceptible to attacks by hostile users [3]. However,
it seems impossible to completely prohibit end-user access
to the software implementation, without also making it im-
possible to update this software to patch a “bug” or add a
“feature.”

In order to hide secrets in software implementation,
software obfuscation techniques have been proposed [4]–
[6]. Software obfuscations transform a program so that it
is more difficult to understand, yet is functionally equiva-
lent to the original program. Theoreticians have proved that
“perfect obfuscation” is feasible on some programs but not
for all programs, under a theoretically tractable but still in-
teresting definition of “obfuscation” [7], [8]. However, it
seems intuitively clear that a clever and well-equipped at-
tacker would eventually understand any desired aspect of
any program, no matter how well it is obfuscated, because
any obfuscated program still contains all its original seman-
tics. Thus, to maximise the security of a program, the widest
possible variety of complementary obfuscation techniques
should be used, for this will dissuade the widest possible
range of attackers.

Instead of obfuscating the program itself, this paper
presents a concept for obfuscating the program interpreta-
tion [9], [10]. If the interpretation being taken is obscure and
thus it can not be understood by a hostile user, the program
being interpreted is also kept obscure since the user lacks
the information about “how to read it.” This idea is similar
to the randomized instruction-set approach [11], [12]; how-
ever, in the randomization approach, the interpretation itself
is not obscure because randomized instructions still have a
one-to-one map to their semantics. On the other hand, our
aim is to provide a dynamic map between instructions and
their semantics.

In this paper we describe enhancements to our re-
cently proposed framework for constructing an interpreter
W, which carries out obfuscated interpretations for a given
program P [9]. Here P is a translated version of an origi-
nal program P0 written in a common programming language
(such as Java bytecode and x86 assembly.) The obfuscated
interpretation means that an interpretation W for a given in-
struction c is not fixed; specifically, the interpretation W(c)
is determined not only by c itself but also by previous in-
structions input to W (Figure 1).

In order to realize an obfuscated interpretation in W,
we employ a FSM that takes as input an instruction c where
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Fig. 1 Concept of obfuscated interpretation.

each state makes a different interpretation for c. Since tran-
sitions between states are made according to the input, the
interpretation for a particular type of instruction varies with
respect to previous inputs. Such a W we call a FSM-based
interpreter. In our framework, W is built independent of P0;
thus, many programs run on a single interpreter W, and any
of the programs can be easily replaced by an updated pro-
gram.

In our original proposal [9], we had required the op-
code encoding to preserve the number and type of the
operands. In this paper we demonstrate how to build a FSM
without this restriction. This increases the range of possibil-
ities from which the FSM W is chosen, which has an effect
analogous to increasing the “key length” of a cryptographic
cipher. That is, the proposal in this paper is more resilient to
brute-force enumerative (“naı̈ve key-search”) attacks. This
paper also extends its predecessor by demonstrating an ex-
ample in x86 assembly code rather than in Java bytecode;
this extension required us to add a dead-register analysis to
our process for the obfuscation of code by interpretation.
Note that a full but older version of our proposal has been
described in our technical report [10].

In some sense, the mechanism of our obfuscated inter-
pretation is a kind of stream cipher where a ciphered bit se-
quence is decoded one bit (or one byte) at a time dependent
on its context [13]; however, conventional stream ciphers
cannot be simply applied for encrypting the instructions in P
since the instruction stream (execution sequence) of P varies
according to conditional branches taken on its input. In our
framework, through the process of translation P0 → P, we
inject dummy instructions (or a special instruction for FSM
control) into P to force expedient state transitions in W so
that P is always interpreted correctly regardless of its input.

The rest of this paper is organized as follows. In
Section 2, a framework for obfuscated interpretation is de-
scribed. Section 3 shows a case study of obfuscated inter-
pretation. Section 4 discusses several attacks and defences.
Section 5 compares our approach with conventional soft-
ware encryption approaches. Finally, Section 6 concludes
the paper with some suggestions for future work.

2. Framework for Obfuscated Interpretation

2.1 Overview

Before going into the mechanism of the FSM-based inter-
preter W, we describe the surroundings of W (Figure 2),

Fig. 2 Framework for obfuscated interpretation.

then clarify the aim of our framework. The following are
brief definitions of materials related to W.

P0: is a target program intended to be hidden from hos-
tile users. We assume that P0 is written in a low level
programming language, such as bytecode or machine
code, where each statement in P0 consists of a single
opcode and (occasionally) some operands.

W0: is a common (conventional) interpreter for P0, such as
a Java Virtual Machine, a Common Language Runtime
or an x86 processor.

Px: is a “translated program” containing encoded instruc-
tions whose semantics are determined during execution
according to their context. This Px is an equivalently
translated version of P0, i.e., Px has the same function-
ality as P0.

I: is an input of P0 and Px. Note that P0 and Px take the
same input.

x: is the specification of a FSM that defines a dynamic map
between encoded instructions (inputs of the FSM) and
their semantics (outputs of the FSM). This x is used in
both a FSM-based interpreter Wx and a program trans-
lator Tx.

Wx: is a FSM-based interpreter that can evaluate encoded
instructions of Px according to the current state of the
FSM built inside. This Wx is an extension of W0 with a
FSM unit of given specifications x.

Tx: is a translated program translator that automatically
translates P0 into Px with respect to the specifications
x.

Mx: is a computer system delivered to and/or owned by a
program user.

In our framework, we assume Wx is hidden from the
program user as much as possible, e.g., if Mx is an elec-
tronic device such as a mobile phone, then Wx should be
built in a non-accessible part of Mx so as to prevent the user
from reading the implementation of Wx. However, Px must
be delivered to the user and put in an accessible area of Mx

so as to enable its updating. There should be many func-
tionally different Wx, and ideally each machine Mx would
be manufactured with a different Wx so that an adversary
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cannot easily guess one machine’s interpreter after having
“cracked” some other machine’s interpreter.

Building an efficient Tx in a systematic manner is a fun-
damental part of this framework. Since Px is quite different
from ordinary programs, even though the program developer
knows x, writing Px from scratch is extremely difficult for
the developer. In our framework, we provide a systematic
method Tx to construct Px from any given P0 and x.

2.2 FSM-Based Interpreter

2.2.1 Design Types

We identify five types of design choices for the FSM-based
interpreter, which are dependent upon the instruction set
used for Px. Let InsP0 and InsPx be the instruction sets for
P0 and Px, and let LP0 and LPx be the programming language
for P0 and Px, respectively. We call InsP0 a set of “cleartext
instruction” and InsPx a “encoded instruction.” We define
five types of designs. Note: in our original proposal [9] we
had not defined “Type 2.5.”

(Type 1) InsPx is the same as InsP0 and all Px have correct
static semantics in LP0 (e.g. Px would pass Java’s byte-
code verifier if P0 were valid Java bytecode) although
the dynamic semantics are determined during execu-
tion. Thus Px is executable in the original interpreter
W0 although its outputs would be incorrect.

(Type 2) LPx has the same syntax as LP0 , but the static se-
mantics of Px may be incorrect (e.g., if LP0 is Java byte-
code, the stack signature of some opcodes in Px may
be incorrect). The number of different FSMs that could
be used to interpret Px is larger than in Type 1, which
will increase the size of the search space in a brute-
force attack. However, there is a security tradeoff, for
an attacker might use a static syntax checker to quickly
discard many possible de-obfuscations in a brute-force
search. So we do not, as yet, know which type of ob-
fuscation will give the most security in practice.

(Type 2.5) LPx has different operand syntax to LP0 ; indi-
vidual opcodes in P0 are translated into opcodes in Px

with the same number of bytes; and the opcode sets and
encodings in InsP0 and InsPx are identical. Because
the type and number of operands (and their specifiers)
associated with each opcode may differ from LP0 , Px

is generally not a valid program in LP0 . The number
of different FSMs that could be used to interpret Px is
larger than in Type 2.

(Type 3) InsPx includes InsP0 with some extra (“Type-3”)
instructions. These may be used to control the FSM.
The number of different FSMs is larger than in Type
2.5.

(Type 4) InsPx differs completely from InsP0 , however,
there exists some (secret) many-to-one mapping which
transforms InsPx into an InsP0 instruction set. That is,
Px appears to be written in a totally different language
than P0. The number of different FSMs is larger than
in Type 3.

Fig. 3 Pipelined stages of FSM-based interpreter.

In the rest of this paper, we focus on Type 2.5 designs.

2.2.2 Architecture

Figure 3 shows a suitable architecture for a FSM-based in-
terpreter, characterized by simplified pipelined stages of in-
terpretation. In this paper we focus on the opcodes to be
translated in the FSM. In Type 2.5 design, the FSM-based
interpreter is augmented by an additional pipeline stage,
called a FSM unit, which translates a “Type-2.5” encoded
opcode into a cleartext opcode, passing it to a conventional
opcode decode unit. Then, the cleartext opcode is (syntac-
tically) decoded, and the number of operands to be fetched
is determined. After the required operands are fetched in an
operand fetch unit, the instruction is executed in an execute
unit. This architecture is applicable to many present Java
Virtual Machines (JVMs) and reconfigurable processors.

The FSM unit has a switch to start/stop the obfuscated
interpretation to enable us to run both an ordinary program
and a translated program on the same interpreter. If the FSM
unit is stopped, the interpreter works as an ordinary one, and
if it is started, the interpreter works as a FSM-based inter-
preter. The start/stop signal could be invoked by a system
call, or by a special Type-3 instruction.

2.2.3 FSM Unit

The FSM unit (denoted aswx) is a DFA (Deterministic Finite
Automaton) defined by 6-tuple (Q,Σ,Ψ,∆,Λ, q0) where

Q = {q0, q1, ..., qn−1} is the states in the FSM.
Σ = {c0, c1, ..., cn−1} is the input (encoded opcodes).
Ψ = {c0, c1, ..., cn−1} is the output (cleartext opcodes).
δi : Σ→ Q is the next-state function for state qi.
∆ = {δ0, δ1, ..., δn−1} is the n-tuple of all next-state func-

tions.
λi : Σ→ Ψ is the output function for state qi.
Λ = {λ0, λ1, ..., λn−1} is the n-tuple of all output functions.
q0 ∈ Q is the starting state of the FSM.

In Type 2.5 design, the instruction set for Px is the same
as that for P0, i.e., InsPx = InsP0 . We assume InsPx = Σ∪O
where elements ci ∈ Σ are encoded instructions, and oi ∈ O
are non-encoded instructions. This means that Px contains
both ci and oi, and, if the FSM unit recognizes a ci ∈ Σ
as input, then it is translated into a cleartext opcode by the
FSM and it is passed to the execute unit, otherwise an input
oi ∈ O will not be translated (directly passed to the execute
unit). In our Type-2.5 design, each underlined symbol ci

in Ψ denotes the normal (cleartext) semantics for the corre-
spondingly indexed opcode ci ∈ Σ.

The input (and output) alphabet is partitioned into two
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classes by an integer b, such that symbols c0, c1, ..., cb−1

are in the first class C1 (of branching opcodes includ-
ing non-conditional jump) and the remaining symbols
cb, cb+1, ..., cn−1 are in the second class C2(of non-branching
opcodes). The FSM design has the following constraints.

1. Each δi : Σ → Q is a bijection; we write its inverse as
δi
−1 : Q→ Σ.

2. Each λi : Σ → Ψ is a bijection, defining λi
−1 : Ψ → Σ.

Note that the opcode sets in Σ and Ψ are identical in
our Type-2.5 FSM design.

3. For all i and j, the length of the cleartext opcode λi(c j)
is the same as the encoded opcode c j so that the opcode
fetch unit can correctly fetch encoded opcodes.

4. For all pairs of states qi, qk there exists a “dummy in-
struction sequence” dj with the following three proper-
ties. First, dj is a short sequence of instructions con-
taining exactly one encoded instruction. Second, an
FSM initially in state qi will be in state qk after it takes
dj as input. Third, dj (cleartext dummy sequence) has
no effective functionality. Thus dj is an efficiently ex-
ecuted no-op that forces the FSM to make any desired
transition. Note that for any pair of states qi, qk there
exists cz such that δi(cz) = qk, because the next-state
function δi is a bijection. The encoded instruction in dj

is λi(cz).
5. For all states qk and branching instructions c j ∈ C1,

there exists a state qi with the property δi(c j) = qk. That
is, if we have a branching instruction c j and a desired
state qk to be reached, we can find some initial state qi

that reaches qk via the input c j. (When we translate a
branch instruction c j, we apply the previous constraint
to force the FSM into state qi if the instruction at the
target of the branch must be interpreted in qk.)

Figure 4 shows a simple example of wx where

Q = {q0, q1}
Σ = {add, sub}
Ψ = {add, sub}
∆ = {δ0(add) = q1, δ0(sub) = q0, δ1(add) = q0, δ1(sub) =

q1}
Λ = {λ0(add) = sub, λ0(sub) = add, λ1(add) =

add, λ1(add) = sub}

Fig. 4 Example of FSM wx.

Fig. 5 Example of instruction stream interpretation.

This wx takes an encoded opcode ci ∈ {add, sub} as
an input, translates it into its semantics (cleartext opcode)
ci ∈ {add, sub}, and outputs ci. Figure 5 shows an example
of interpretation for an instruction stream given by this wx.
Obviously, even this simple FSM has the ability to conduct
an obfuscated interpretation. As shown in Figure 5, the op-
code “add” is interpreted as either add or sub according to
its context.

2.2.4 Program Translator

In order to develop a program executable on the FSM-based
interpreter, a program translator Tx : P0 → Px is indispens-
able. Since the interpreter wx translates encoded instructions
in Px into cleartext instructions in P0, an inverse interpreter
of wx (denoted by wx

−1) is useful for translating instructions
in P0 into ones in Px. However, building wx

−1 is not suffi-
cient to process the translation Tx : P0 → Px. Let us assume
we have wx of Figure 4, and P0 of Figure 6 that computes a
summation p := 1 + 2 + 3 + ... + n. The loop in P0 must be
taken into account. We need a consistency of interpretation:
the instructions in each execution of the loop in Px must al-
ways be translated into the same instruction stream (in this
case, “add p, x” and “sub x, 1”). In other words, wx must
always be in the same state every time the execution reaches
the control-flow junction at the top of the loop body. Taking
advantage of constraints 4 and 5 in Section 2.2.3, we inject
a sequence of dummy instructions into the tail of the loop,
so that the FSM will reach the desired state at the top of the
loop without changing the program semantics.

From the above discussion, we first build an inverse in-
terpreter wx

−1, then we use this wx
−1 and dummy instruction

sequences to translate P0 into Px. Our wx
−1 is the DFA de-

fined by 6-tuples (Q′,Σ′,Ψ′,∆′,Λ′, q0) where

Q′ = Q = {q0, q1, ..., qn−1} is the FSM’s states.
Σ′ = Ψ = {c0, c1, ..., cn−1} is its input.
Ψ′ = Σ = {c0, c1, ..., cn−1} is its output.
δ′i : Σ′ → Q′ is its next-state function for state qi, where
δ′i (c j) has the value δi(λi

−1(c j)) for all i, j.
∆′ = {δ′0, δ′1, ..., δ′n−1} is the n-tuple of all next-state func-

tions.
λ′i : Σ′ → Ψ′ is the output function for state qi, where each
λ′i : Σ′ → Ψ′ has the value λi

−1(c j) for all i, j.
Λ′ = {λ′0, λ′1, ..., λ′n−1} is the n-tuple of all output functions.
q0 ∈ Q′ is the starting state of this FSM.

Figure 7 shows an example of the wx
−1 corresponding

to the wx of Figure 4. As shown in Figure 7, wx
−1 has the

same number of states and transitions as wx.

Fig. 6 Example of P0.
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Next, we give a procedure for the translation Tx : P0 →
Px. Appendix shows this procedure where:

PC is a program counter (we assume PC is a line number
of P0).

codeP0 (PC) is an instruction in P0 at PC.
codePx (PC) is an instruction in Px at PC.
qs ∈ Q is a state of wx

−1.
state(PC) is a state in which codeP0 (PC) was interpreted.

Fig. 7 Example of wx
−1.

Fig. 8 Example of translated Px.

Table 1 Example of FSM w−1
x .

State Input / Output Transition State Input / Output Transition

EB jmp / 75 jne q4 EB jmp / 75 jne q6

75 jne / EB jmp q7 75 jne / EB jmp q4

55 pushl %ebp / 4D decl %ebp q2 55 pushl %ebp / 89 movl89 q2

q0 4D decl %ebp / 55 pushl %ebp q5 q4 4D decl %ebp / 4D decl %ebp q1

89 movl89 / 89 movl89 q1 89 movl89 / 29 subl q3

29 subl / 29 subl q6 29 subl / 8B movl8B q0

8B movl8B / 8D leal q3 8B movl8B / 8D leal q7

8D leal / 8B movl8B q0 8D leal / 55 pushl %ebp q5

EB jmp / 75 jne q1 EB jmp / EB jmp q2

75 jne / EB jmp q3 75 jne / 75 jne q1

55 pushl %ebp / 8D leal q4 55 pushl %ebp / 8B movl8B q4

q1 4D decl %ebp / 55 pushl %ebp q2 q5 4D decl %ebp / 55 pushl %ebp q0

89 movl89 / 8B movl8B q0 89 movl89 / 29 subl q3

29 subl / 29 subl q6 29 subl / 89 movl89 q6

8B movl8B / 89 movl89 q7 8B movl8B / 4D decl %ebp q5

8D leal / 4D decl %ebp q5 8D leal / 8D leal q7

EB jmp / 75 jne q7 EB jmp / 75 jne q5

75 jne / EB jmp q0 75 jne / EB jmp q2

55 pushl %ebp / 29 subl q6 55 pushl %ebp / 8D leal q4

q2 4D decl %ebp / 8D leal q5 q6 4D decl %ebp / 89 movl89 q1

89 movl89 / 55 pushl %ebp q4 89 movl89 / 8B movl8B q6

29 subl / 8B movl8B q3 29 subl / 4D decl %ebp q7

8B movl8B / 89 movl89 q1 8B movl8B / 55 pushl %ebp q0

8D leal / 4D decl %ebp q2 8D leal / 29 subl q3

EB jmp / EB jmp q3 EB jmp / 75 jne q0

75 jne / 75 jne q5 75 jne / EB jmp q6

55 pushl %ebp / 4D decl %ebp q2 55 pushl %ebp / 4D decl %ebp q5

q3 4D decl %ebp / 89 movl89 q6 q7 4D decl %ebp / 89 movl89 q3

89 movl89 / 29 subl q1 89 movl89 / 55 pushl %ebp q4

29 subl / 55 pushl %ebp q7 29 subl / 29 subl q1

8B movl8B / 8D leal q4 8B movl8B / 8D leal q7

8D leal / 8B movl8B q0 8D leal / 8B movl8B q2

We also assume this procedure Tx uses a stack (denoted as
S tack), and its operation push and pop, to accumulate val-
ues of PC.

Figure 8 shows an example of Px translated from P0 of
Figure 6. In this example, a dummy instruction “add p, 0” is
inserted into Px to force the state transition q1 → q0 so that
wx comes to q0 every time the execution reaches the entry
point of the loop.

3. Case Study

3.1 Program Translation

In this section we explain a more complex example of pro-
gram translation Tx : P0 → Px using the inverse inter-
preter wx

−1 given in Table 1. This wx
−1 is designed for

programs written in an Intel x86 instruction set. We use
the AT&T syntax (GNU assembler format) to write assem-
bly codes in LP0 and LPx . Our sample wx

−1 has eight states
Q′ = {q0, q1, ...q7} with q0 a starting state, and has eight
types of instructions Σ′ = {jmp, jne, pushl, decl, movl89,
subl, movl8B, leal}. Here, “movl89” indicates MOV instruc-
tions whose opcode byte is “89,” and “movl8B” indicates the
“8B” variant of this opcode. Two instructions (jmp and jne)
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are branching instructions (class C1). The other six are non-
branching instructions (class C2). For each instruction in Ta-
ble 2, a binary (hexadecimal) representation of the opcode
is shown.

Table 2 shows sequences of dummy instructions di for
each ci ∈ Σ′. The obfuscated (translated) dummy sequence
di = λ

−1
j (di) does not change the behaviour of Px, yet it

causes one state transition in wx. Some of these di modify

Table 2 Example of dummy instruction sequences.

opcode ci dummy sequence di

jmp .Lx
jmp any instructions

.Lx
jne .Lx

jne addl $0,%eax
.Lx

pushl pushl %eax
pop %eax

decl decl %eax
incl %eax

movl89 movl89 %eax,%ebx†

movl movl $0, %eax
subl %ebx,%eax

movl8B movl8B -4(ebp),%eax†

leal leal -4(ebp),%eax†
† these registers must be dead

1 q0 pushl %ebp
2 q2 movl89 %esp, %ebp
3 q4 subl $8, %esp
4 q4 movlC7 $0, -4(%ebp)
5 q4 movlC7 $1, -8(%ebp)
6 q4 .L3:
7 q4 movl8B -8(%ebp), %eax
8 q7 cmpl 8(%ebp), %eax
9 q7 jle .L6
10 q7 jmp .L4
11 q7 .L6:
12 q7 movl8B -8(%ebp), %edx
13 q7 movl89 %edx, %eax
14 q4 sarl $31, %eax
15 q4 shrl $31, %eax
16 q4 leal (%eax,%edx), %eax
17 q4 sarl $1, %eax
18 q4 sall $1, %eax
19 q4 subl %eax, %edx
20 q0 movl89 %edx, %eax
21 q1 cmpl $1, %eax
22 q1 jne .L5
23 q3 movl8B -8(%ebp), %edx
24 q4 leal -4(%ebp), %eax
25 q5 addl %edx, (%eax)

q5

26 q3 .L5:
27 q3 leal -8(%ebp), %eax
28 q0 incl (%eax)
29 q0 jmp .L3
30 q0 .L4:
31 q0 movl8B -4(%ebp), %eax
32 q3 leave
33 q3 ret

Fig. 9 P0 in GNU assembler format.

registers, and these must be “dead registers” to define our
desired no-op function. Dead registers can be detected eas-
ily by static analysis of P0 [14]. For increased security, in
a future implementation, we would make it difficult for an
attacker to discover that these registers are in fact dead; for
example, we could add their values to the parameter list of
a function so that they would be pushed and popped during
function calls and returns.

The target P0, which is to be translated, is shown in
Figure 9. This P0 is a x86 assembly program, compiled by
gcc from the C source program. This P0 computes a sum-
mation of odd numbers p := 1 + 3 + 5 + ... + n. Figure 10
shows Px corresponding to this P0. In Figure 9, numbers
described in the leftmost column indicate line numbers, and
their corresponding lines are described in Figure 10 as well.
The second column in Figure 9 describes the state of w−1 in
which each instruction is interpreted. Due to limited space,
we have not included a detailed explanation of our transla-
tion process in this paper. However, a full explanation of a
sample translation of a Java bytecode program for a Type-2
interpreter is shown in our previous paper [9].

On the basis of our case study, we can estimate the
overheads of our protection mechanism on a typical x86
code. Such codes have approximately one branch for ev-
ery seven instructions, and we will introduce approximately
1.5 dummy instructions for each branch. Thus the code-

1 decl %ebp
2 pushl %esp, %ebp
3 subl $8, %esp
4 movlC7 $0, -4(%ebp)
5 movlC7 $1, -8(%ebp)
6 .L3:
7 leal -8(%ebp), %eax
8 cmpl 8(%ebp), %eax
9 jle .L6
10 jne .L4
11 .L6:
12 leal -8(%ebp), %edx
13 pushl %edx, %eax
14 sarl $31, %eax
15 shrl $31, %eax
16 leal (%eax,%edx), %eax
17 sarl $1, %eax
18 sall $1, %eax
19 movlC7 %eax, %edx
20 movl89 %edx, %eax
21 cmpl $1, %eax
22 jmp .L5
23 leal -8(%ebp), %edx
24 pushl -4(%ebp), %eax
25 addl %edx, (%eax)

subl %eax ,%ebx ; dummy q5 → q3

26 .L5:
27 movlC7 -8(%ebp), %eax
28 incl (%eax)
29 jne .L3
30 .L4:
31 leal -4(%ebp), %eax
32 leave
33 ret

Fig. 10 Px in GNU assembler format.
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size of a translated program will increase modestly: by ap-
proximately 20%. Because our dummy instructions have no
data or control hazards (i.e., they will cause neither cache
misses nor branch mispredictions), they will execute more
efficiently than an average untranslated instruction. We con-
clude that the runtime and space overhead of our translation
process will be at most 20% on a typical x86 code.

3.2 Obscurity of Translated Program

The program Px obtained by our translation has some funda-
mental characteristics to make itself obscure. Below we de-
scribe the characteristics of Px in Figure 10 compared with
P0 in Figure 9.

1. As described in 2.2.1, Px uses the opcodes of an orig-
inal x86 assembly language LP0 , but it is not itself a
valid x86 program since the operand signatures in Px

are not all correct in LP0 . For example, in line 2 of Fig-
ure 10, the “pushl” opcode requires one operand in LP0 ,
however, it has two operands in Px. This indicates Px

cannot be parsed accurately by a disassembler for LPx

into instructions.
2. Instructions in Px do not have static binding to their se-

mantics. For example, “pushl” in line 2 is interpreted
as “movl89” via wx (see the same line in Figure 9), but
in line 24, it is interpreted as “leal.” Note that dummy
instructions, for example the one between line 25 and
26, also have non static semantics, so they are not stat-
ically recognizable as dummy instructions.

3. The control flow of P0 is not apparently preserved in
Px, i.e., if Px were executed without translation “just
as it appears,” it would take different branches than P0.
For example, the conditional jump “jne” in line 10 is
actually an unconditional JMP.

4. Security Analysis

In this section, we analyze the security of our scheme
against adversaries with varying resources, knowledge, and
persistence. However, due to limited space, here we de-
scribe the summary of our analysis. For more detailed anal-
ysis, please see our technical report [10].

Generally speaking, our security objective is to prevent
an adversary from understanding (and also tampering with)
the protected software. However, it is difficult to prevent all
the imaginable attacks. For example, it is difficult to com-
pletely prevent the making of small alterations in a program
to defeat a license check [15]. In this paper, we limit our ob-
jective to prevent the adversary from understanding the pro-
tected software sufficiently well to make large-scale alter-
ations in its behavior, for example by identifying, copying,
and re-using a substantial portion of its code (or its embed-
ded “secrets” such as a decryption key) in another software
product. Many cryptograhic systems require this kind of
tamper resistance [1]. In this paper, we consider that if an
attacker could discover the specification of the FSM, then,

the attacker is able to understand Px sufficiently well to mod-
ify Px. The immediate goal of this section is to analyze the
difficulty of discovering the specification of the FSM.

We characterize an adversary’s knowledge and re-
sources along three dimensions (labeled A, B, C), as listed
below. To simplify our analyses, we consider only adver-
saries who are equal on all dimensions. An adversary that
is at level-0 is a naive end-user. Our level-1 adversary is an
end-user with very limited technical skill and ability. Our
level-2 adversary has a debugger and good technical skills.

(A) FSM Interpretation

0. The level-0 adversary has a computer system Mx (con-
taining interpreter Wx as shown in Figure 2) and a copy
of the translated (protected) program Px. Note that
these resources are required to execute the protected
program.

1. The adversary has an algorithmic understanding of the
principles of FSM-based interpretation, as described in
this article.

2. The adversary has a debugger with “breakpoint” func-
tionality, attached to a translated software implemen-
tation of Wx. Alternatively, the adversary has a logic
state analyzer, attached to the inputs and outputs of a
hardware implementation of Wx.

(B) System Observation

0. In a level-0 observation, the adversary observes the
audio-visual outputs of the computer system Mx, as it
executes a program.

1. The adversary determines, by inspection of audio-
visual outputs, whether or not Mx is running a program
that has the same behavior as the protected program.

2. The adversary records a snapshot (i.e., a small number
of opcodes and operands, before and after FSM inter-
pretation) of the input and output of Wx. This means,
the level-2 adversary can observe (a few) cleartext in-
structions while the level-1 adversary can only guess at
them from the audio-visual outputs.

(C) System Control

0. The adversary operates the keyboard and mouse inputs
of the computer system Mx, as it executes the protected
program.

1. The adversary can modify the statements in program
Px in any desired way, before running it on computer
system Mx.

2. The adversary injects a small number of (arbitrary) in-
puts into Wx, after the unit has interpreted some (ar-
bitrary) number of opcodes and operands. These injec-
tions are at low speed, and for this reason they will gen-
erally not produce the same audio-visual output from
system Mx as if these inputs were normally presented
to Wx. Note that the level-2 adversary can interrupt
the execution of Px by using a debugger before inject-
ing instructions to Wx, while the level-1 adversary can
only run a modified Px from the beginning.
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Under our definitions above, level-0 adversaries have
very few avenues of attack. They might attempt “black-box
re-engineering” - inferring program code from program be-
havior. Such an attack is not feasible unless program behav-
ior is trivial, and in any event it would not breach any of our
security objectives.

We turn to the level-1 attacks. A cryptographically
skilled adversary with knowledge of programming language
semantics and our FSM algorithm would, we imagine, at-
tempt a brute-force attack by code injection.

A plausible first step in such an attack would be to build
a table of “dummy instruction sequences” dj similar to Ta-
ble 2. Note that the obfuscation on these sequences is weak.
Each dummy sequence consists of a short (possibly empty)
prefix of non-encoded instructions, a single encoded instruc-
tion, and a short (possibly empty) suffix of non-encoded in-
structions. Algorithm Tx will place a dummy instruction
sequence at the end of the branch to a predecessor instruc-
tion, except in the (relatively rare) cases where the FSM is in
the same state in both paths to the target instruction. There-
fore, the suffixes will be recognizable as commonly repeated
patterns before a backwards-branch or jump. Note that all
control-flow opcodes are recognizable (either as class-C1

opcodes, or as cleartext opcodes) in our Type 2.5 FSM de-
sign, although the adversary will certainly make a number of
mistakes in the recognition of branching opcodes wherever
instruction boundaries are obscure in the encoded code due
to the differing operand syntax in LP0 and LPx . For example,
a 0xEB byte in the encoded sequence is reasonably likely to
be an encoded branch opcode but it may also be an operand.

The adversary might examine the O(n2) loops to be rea-
sonably certain of having discovered all suffixes, so hypoth-
esizing dj may take days, but not months, if n < 256. Here,
n denotes the number of states in the FSM. The prefixes can
be recognized as commonly repeated short sequences that
occur immediately before a single (variable) instruction that
precedes a suffix. The attacker can prune the list of possible
dummy sequences by discarding any prefix-suffix pair that
is not a no-op for at least one choice of (variable) instruction
semantics.

The next step in this brute-force code-injection attack
is to find a sensitive loop, that is, a loop in which the mod-
ification of a single opcode will visibly and quickly affect
program operation (a level-1 observation). We imagine that
an adversary will quickly discover such a loop, if they inject
arbitrary opcodes into randomly chosen loops. The attacker
should also insert a short no-op sequence at this position,
to confirm that program correctness is not hypersensitive to
loop timing.

The third step is to construct a list of possible (hypoth-
esized) encodings for each dummy sequence dj identified in
the first step. Each entry djk in the list is a modified version
of dj, where the encoded opcode c j (the translated opcode
in dj) is replaced with another opcode ck.

The fourth step is to choose one pair di j, dkz of the
(hypothesized) encoded dummy sequences for insertion at
this point in the program. A small fraction of these pairs

(about 1/n2 = 1/40000 if there are n = 200 encoded op-
codes) will not affect program correctness. An adversary
can thus “crack” one of the n2 transitions in the FSM by
making O(n2) observations and controls on a modified P′x
for their machine Mx. After n2 such discoveries, the FSM
is completely cracked. This attack will take O(n4) observa-
tions and controls, where each observation (of whether or
not program correctness has been impaired) can be accom-
plished in a few seconds. This is thus a (barely) feasible
attack: a dedicated adversary will crack a single FSM in a
few months.

Faster attacks may exist, of course. As in any crypto-
graphic security analysis, we can only place a lower bound
on an attacker’s “crack time” if we are able to enumerate,
and then analyze, all possible attacks. This is generally not
feasible; there is always the possibility of an attacker find-
ing a previously unknown attack that will run much more
quickly than any known attack. However, our system will be
secure against level-1 attack unless someone, at some time,
devises a more efficient means of attack than the brute-force
code-injection attack described above.

If the brute-force attack described above is considered
to be a significant security risk in a certain application, then
we can easily modify our translation process to increase the
adversary’s search space. We could use multiple “dummy
sequences” for each instruction. We could randomize the
locations in which we insert “dummy sequences” (our trans-
lation algorithm Tx could insert a dummy sequence at any
point in the straight-line code leading up to a branchpoint
in P0). We could use a Type-2 or Type-2.5 design without
a partition between branching and non-branching opcodes.
We could use a Type-3 FSM to make it harder for the at-
tacker to recognize no-op suffixes and prefixes. Finally, we
could use a Type-4 FSM to increase n. We intend to explore
these options in future work.

We now briefly consider level-2 adversaries. A level-
2 adversary can correlate the outputs with the inputs of the
FSM, where these inputs are the ones associated with any
desired “breakpoint” in a (possibly modified) Px. This abil-
ity will greatly speed the brute-force attack described above
for our level-1 adversary, and it will allow new attack strate-
gies such as directly observing the translation λi(cz) of an in-
struction cz that occurs in (hypothesised) dummy sequences
in Px. Thus a single observation and control can be targeted
at each of the FSM’s n2 state transitions, so a level-2 attacker
will “crack” a FSM in O(n2) observations and controls, each
taking a few seconds.

When our design is applied to typical instruction sets,
for example Java bytecode or x86 machine code, then n ≈
200. In this case, the level-2 attack described above is quite
potent. We therefore recommend, on the basis of our secu-
rity analysis, that our FSM should be implemented in phys-
ically secure hardware on the CPU chip, with mechanisms
to obstruct logic analyzers (i.e., [14]).

We have considered more complex FSM designs, with
more than one state per opcode, however, we believe all
such designs would not be feasible for the foreseeable fu-
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ture. When n > 256, the RAM storage for the FSM’s state-
transition table becomes larger than n2 = 65, 536 bytes. This
will be expensive to fabricate on a CPU chip, and if it is
placed off-chip then it will be difficult to secure against di-
rect observation by the attacker.

We close our security analysis with a caution. Our
translation system is essentially cryptographic in nature, so
it should only be used to translate long programs that have
been “randomized” (i.e., obfuscated) before they are trans-
lated by our Tx. Otherwise the attacker will be able to make
a likely guess to the cleartext, which may greatly speed their
attack.

5. Related Work

The most commonly proposed method for hiding interpre-
tation is program encryption [16], [17]. Figure 11 illustrates
a typical scheme in which an encrypted program E(P0) is
delivered to the user, and a decrypter E−1 including a de-
cryption key k is put in a non accessible area of a computer
system Mk. This E−1 decrypts E(P0), and puts the resultant
P0 in a random-access memory R. Then, this P0 is passed
to the interpreter W0 for execution. In this approach, E(P0)
itself is not understandable to the user. Also, many different
programs can run on a single system Mk, and they are easily
updatable.

There are two types of architectures that can implement
this approach: (1) R is the processor’s ICache (instruction
cache), e.g., XOM [18], AEGIS [19] and Cerium [20], and
(2) a very large secure R is provided by the Operating Sys-
tem, e.g., Trusted Computing (also known as TCPA, Palla-
dium and NGSCB) promoted by TCG [21]. In the former
case, the ICache miss penalty is increased by the decryp-
tor’s latency. Since the long blocklengths of strong cryp-
tography add considerable latancy, it is intolerable in many
applications. Consider what happens on each unpredicted
branch into a not-yet-decrypted block. All bytes in this
block, prior to the branch target, must be fetched and de-
crypted before execution can recommence. By contrast, our
FSM-based approach has dummy instructions inserted into
cipher text (i.e., translated program) controlling the decryp-
tor (i.e., FSM-based interpreter) so that it allows something
akin to random-access to all branch targets (but only from
the source of the branch) without losing synchronization.
We expect that opcode translation ci → ci by the FSM would
take only 1 clock cycle, which would not not cause signif-
icant performance degradation in either the simplified pro-
cessor pipeline shown in Figure 3 or the deeper pipelines of
modern microprocessors.

In the latter case of a large secure RAM, there is no
additional ICache miss penalty. However, there is a startup
penalty since the entire program must be decrypted before
execution, while our FSM can start immediately. Another
concern is that, in this architecture, we need to trust the
OS. However, since it is difficult to guarantee that the OS
has no bugs or security holes, our interpretation obfusca-
tion can add another layer of protection. In addition, since

Fig. 11 Basic approach for program encryption.

building a secure RAM may increase the cost, our approach
may be an attractive approach. In our approach, building
the FSM-based interpreter Wx is easily realized by adding a
small FSM unit to current hardware-based virtual machines
(such as [22], [23]) and reconfigurable processors.

Program encryption may also be employed at the bus
level of a CPU architecture, rather than at the memory level
[24]. In this case, the address of the memory location
may be used as part of the cryptographic key. Typically
the blocklength of the cypher is short: for efficiency rea-
sons it may be a single 8-bit memory word. (Note that if
long blocklengths and strong cryptographic methods were
used, then the bus-encryption method would incur the la-
tency penalties noted in our discussion of Figure 11.) Be-
cause of its short blocklength, the bus-encryption method is
highly susceptible to brute-force chosen cyphertext attacks.
A level-1 attacker, in our taxonomy of Section 4, may place
an arbitrary cyphertext in memory and observe system be-
haviour. Kuhn has used this technique in a level-2 attack on
the bus-encryption security microcontroller DS5002FP. His
brute-force search revealed a short cyphertext sequence that
had the effect of block-translating all encrypted bytes in the
system memory [24]. Kuhn’s attack is not feasible against
our method, because the CPU in our system has no instruc-
tions that would export decoded opcodes outside the CPU
core.

We believe that the encryption of code, obfuscation
of code and obfuscation of interpretation are not exclusive
techniques, and indeed that all of these techniques can and
should be used as complementary techniques in highly se-
cure software systems. In our technical report [10], we dis-
cuss other techniques (e.g., [25]) that may be used to hide
program interpretation.

6. Conclusion

In this paper we proposed a framework for obfuscating
the program interpretation, which is more powerful than
code obfuscation, and is faster and cheaper than encryp-
tion schemes. We defined a FSM-based interpreter wx that
provides context-dependent semantics to program instruc-
tions. We also defined a program translator Tx to system-
atically construct a program Px, which is executable with
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wx, from a given program P0 written in a conventional pro-
gramming language. Our case study of a “Type 2.5” trans-
lation of an x86 assembly-language P0 into an “x86-like”
Px showed that instructions in Px have nonstatic semantics,
i.e., functionality is hidden from program users, yet Px is
still functionally equivalent to P0. Our preliminary secu-
rity analysis highlighted some areas where our design could
be improved, and we conclude that our design should only
be used to translate long programs that have been “random-
ized” (i.e., obfuscated) before they are translated. In the
future, we should develop a method for operand encoding
since operand values leak information about opcodes. We
will also develop detailed designs for interpreters of Type
1, 3 and 4, and we intend to clarify their advantages and
shortcomings.
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Appendix: Procedure for Tx : P0 → Px

Let state(k) := NULL for all line number k of P0

Let qs := q0

Set PC to the entry point of P0

loop:
If PC = exit of P0 then goto resume
If state(PC) � NULL && state(PC) � qs then{

Call choose&insert dummy
Goto resume

}
Let state(PC) := qs

If codeP0 (PC) ∈ Σ′ then { /* encoded instruction */
Interpret codeP0 (PC) via wx

−1, i.e.
Let qs := δ′s(codeP0 (PC))
Let codePx (PC) := λ−1

s (codeP0 (PC))
}else{ /* non-encoded instruction */

Let codePx (PC) := codeP0 (PC)
}
If codeP0 (PC) = branching instruction then {

If codeP0 (PC) � non-conditional jump then {
Do push(PC f alse) where PC f alse is a line number of

next instruction in f alse branch
Let state(PC f alse) = qs

}
Let PC := a line number of next instruction in true

branch
}else{

PC := PC + 1
}
Goto loop



122
IEICE TRANS. FUNDAMENTALS, VOL.E88–A, NO.1 JANUARY 2005

resume:
If S tack is empty then end
PC := pop()
qs := state(PC)
Goto loop

choose&insert dummy:
Let PCprev := previous value of PC
If codeP0 (PCprev) = non-branching instruction then{

Choose ci ∈ Σ′ that satisfies δ′s(ci) = state(PC)
Let di := a sequence of dummy instructions for ci

Let di := λ−1
s (di)

Insert di into Px right after the line number = PCprev

}else{
Choose k that satisfies δ′k(codeP0 (PCprev)) = state(PC)
Choose ci ∈ Σ′ that satisfies δ′state(PCprev)

(ci) = qk

Let di := a sequence of dummy instructions for ci

Let di := λ−1
s (di)

Insert di into Px at the line number = PCprev

state(PCprev) = qk

}
return
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