1634

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

|PAPER Special Section on Net Theory and Its Applications |

Automated Synthesis of Protocol Specifications from
Service Specifications with Parallelly Executable

Multiple Primitives

Yoshiaki KAKUDAT, Masahide NAKAMURATY and Tohru KIKUNO', Members

SUMMARY In the conventional protocol synthesis, it is
generally assumed that primitives in service specifications cannot
be executed simultaneously at different Service Access Points
(SAPs). Thus if some primitives are executed concurrently, then
protocol errors of unspecified receptions occur. In this paper, we
try to extend a class of service specifications from which protocol
specifications are synthesized by the previous methods. We first
introduce priorities into primitives in protocol specification so
that it always selects exactly one primitive of the highest priority
from a set of primitives that can be executed simultaneously, and
executes it. Then, based on this execution ordering, we propose
a new protocol synthesis method which can avoid protocol errors
due to message collisions, communication competitions and so
on. By applying the proposed synthesis method, we can automat-
ically synthesize a protocol specifications from a given service
specification which includes an arbitrary number of processes
and allows parallel execution of primitives.

key words: protocol engineering, protocol synthesis, parallel
execution of primitives

1. Introduction

Rapid progress of computer-communication systems
enables advancement and diversification of communi-
cation services. In order to realize such services, it is
required to establish efficient and reliable design
method for large-scale and complicated communica-
tion protocols.

Protocol synthesis is a method to derive a protocol
specification from a service specification and it is
recognized widely as one of the most promising
methods to meet the above requirement [5], [8]. The
principle of protocol synthesis is depicted in Fig. 1. As
shown in Fig. 1, service specification prescribes rela-
tionships between service primitives from either user in
a higher layer or process in a lower layer. On the other
hand, a protocol specification which is derived from
the given service specification defines relations between
messages from processes in the lower layer. Interfaces
between the higher layer and the lower layer are called
Service Access Points, shortly SAPs.

The behavior of protocols can be modeled by
Finite State Machines, shortly FSM. Thus both service
specification and protocol specification are represented
by FSM. Saleh et al. [6], [7] and Liu et al. [1], [2] have

Manuscript received May 12, 1994.
T The authors are with the Faculty of Engineering Sci-
ence, Osaka University, Toyonaka-shi, 560 Japan.

already proposed synthesis methods of protocol
specifications modeled by FSM. In these synthesis
methods, it is not allowed that parallel execution of
service primitives occurs at different SAPs. However,
it is generally observed that the parallel execution of
multiple primitives can occur in real communication
systems.

Figure 2 shows a sequence chart which illustrates
parallel execution of two service primitives. User |
sends a primitive Connection Request (CN_req1), and
then sends a primitive Abort Request (AB_reql) suc-
cessively before receiving the acknowledgement primi-
tive Connection Confirmation (CN_conf'1) from User
2. Parallel execution of two primitives Abort Request

USERI USER2

[3

USERn \
[

Service
specification
SAP1 SAP2 SAPn
A1 N D— D
N N e = 4
4 4 |
: ! : Protocol
PE1 PE2 PEn specification
] J
4 Y v

Reliable Communication Medium

Fig.1 Communication architecture model.

Userl PE! PE2 User2 PE2 PE3 User3
CN_reql
=~ CN_ind2
AB_reql| —rd CN_req2
[~ — .
S~ afapana| ~ | CNind3
el Je(’; (CN_resp3
~
-~ -
-~ 7~ &l AB_ing3
CN\':Nﬁ s
Chvgert _>< DD S
~

Fig.2 Sequence chart when parallel execution occurs.

KAKUDA et al: AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS

(AB_req2) from User 2 and Connection Response
(CN_resp3) from User 3 brings on a crossing of two
lines between processes PE2 and PE3. This situation is
called a message collision. Protocol ‘errors of
unspecified receptions are generally caused by a paral-
lel execution of service primitives, since the parallel
execution induces message collision and access compe-
tition in the lower layer.

Igarashi et al. [4] first proposed a protocol synthe-
sis method to derive a protocol specification including
message collisions from a service specification. How-
ever, in this method the number of processes in the
service specification is restricted to two. In this paper,
we extend the number of processes from two to n(=3)
and propose a new synthesis method which derives a
protocol specification from a service specification with
multiple primitives executable in parallel.

The rest of this paper is organized as follows. In
Sect. 2, definitions of service and protocol
specifications are given and the protocol synthesis
problem is formulated. Section 3 explains an outlines
of a new protocol synthesis method and Sect. 4
describes the details of the synthesis method. Section
5 gives the correctness proof of the proposed method.
In Sect. 6, conclusion and future researches are sum-
marized.

2. Definitions
2.1 Communication Model

As shown in Fig. 1, a communication service is
specified by service primitives exchanged between users
in the higher layer and processes in the lower layer
through service access points (SAPs), and the internal
architecture of communication system can be viewed as
a black box from user’s view point. The processes are
also called protocol entities which are denoted by PEs
in the following.

Services to Useri are provided by PEi through
SAPi. Each of PEs is linked by an underlying commu-
nication medium. In this paper, we assume that the
communication medium is reliable and that messages
are delivered in a FIFO order. Each channel between
any two PEs modeled by two unidirectional queues.

2.2 Service Specification

A service specification defines sequences of primitives
to be realized as communication services, which are
exchanged between users and processes through SAP.
Each service access point is denoted by SAPi, and each
protocol entity is denoted by PEi.

Definition 1: A service specification, shortly S-SPEC,
is modeled by a Finite State Machine (FSM) S =S,
2s, Ts, 0> where

(1) Ss is a non-empty finite set of service states (or

1635

S-SPEC

Fig.3 Example of a service specification S-SPEC.

simply states).

(2) X, is finite set of service primitives (or simply
primitives). Each primitive p&2Xs has, as an
attribute, an index of service access point through
which p passes. If primitive p passes through
SAPi, then we define a function sap (p) =i, and
also p; denotes it.

(3) Ts is a partial transition function: SsXXs— Ss.
For simplicity, we use T also as a set of triples (u,
p,v) such that v=T;(u, p) (u, vESs, pE3s).

(4) 0= Ss is an initial service state.

A service specification S is often represented by a
labeled directed graph. We call this graph a S-SPEC
graph. However, we often refer the S-SPEC graph by
S-SPEC.

In the S-SPEC graph, a node is defined for each
state in Ss. For each transition (u, p, v) € Ts(u, vE
Ss, PEXs), we define an edge from node u to node v,
and attach a label p to the edge. In the following, we
refer this edge by (u, p, v).

An example of the S-SPEC graph is shown in Fig.

~ 3. In this figure, an oval denotes a service state, an

arrow denotes a transition between states. The state
drawn by bold line is an initial state.

Next, projection is used for dividing a service
specification into a set of projected service
specifications (PS-SPEC). Each service specification
PS-SPECi corresponds to each PEi.
Definition 2: Let §=<S;, 25, T5, 0> be a given service
specification. Then a service specification $'=<S§", X,
Tis, 0'> defined by the following (1) through (4) is
called a projected service specification, shortly PS-
SPECi, of §.
(1) §'=Ss.
(2) Zis={plp=Z;s and sap (p) =i} U{e}.
(3) Tw={(u, p, v)|(u, p, v) ETs and sap (p) =i}

U{(u, &, v)|{u, p, v) =Ts and sap (p) ==i}.

(4) o’'=o.

In the projected service specification PS-SPECI,

1636

g AB_ind3 s
- CN_conf2
CN_resp2
2
CN_confl 3 €
%) @
PS-SPEC1 PS-SPEC2 PS-SPEC3

Fig.4 Example of projected service specifications PS-SPECs.

all service primitives that do not contribute to PE/ are
substituted by a primitive &. The primitive & is null
primitive that causes no message sending. As in the
case of S-SPEC, we use a labeled directed graph to
represent PS-SPECi. We call this graph a PS-SPECi
graph. However, we refer the PS-SPEC/ graph by
PS-SPECi. ‘
Definition 3: Consider an S-SPEC graph which repre-
sent a service specification §=<Ss, X, Ts, 0>. For any
node which represents a service state & Ss in §, define
OUT (s) ={i|p is a label attached to an edge outgoing
from s and sap (p) =i}

S-SPEC, shown in Fig. 3, is projected to PS-
SPECI1, PS-SPEC2 and PS-SPEC3 shown in Fig. 4.
From Definition 3, each PS-SPECi has the same
number of states as S-SPEC and the correspondence
between states in PS-SPECi and S-SPEC is clear.
Next, we give some examples of function OUT on
S-SPEC in Fig. 3. For instance OUT (1) ={1}, OUT
(2)={1,2}, oUT (3) ={2}, and OUT (6) = ¢.
Definition 4: For a service state s=S;, let d*(s)
denotes the number of edges outgoing from s in the
S-SPEC graph. We classify service states into four
kinds of states.

(1) If d*(s) =0, then s is called final state.

(2) If d*(s) =1, then s is called normal state.

(3) If d*(s)=2 and |QUT (s)|=1, then s is called
choice state. ‘

(4) If d*(s)=2, |OUT(s)|>1 and |OUT (s)|=

d*(s), then s is called parallel state.

Remark 1: From Definition 4, we do not consider a
case of d¥(s) =2, |OUT (s)|>1 and |OUT (s)|+d*
(s). By the following Restriction 2, we restrict a class
of service specifications not to include this case.

Consider again S-SPEC shown in Fig. 3. In this
S-SPEC, both states 6 and 13 are the final states
because d*(6) =d*(13) =0. Next, state 2 is a parallel

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

state, since d*(2)=2, |OUT (2)|=[{1,2}|]=2>1 and
thus d*(2)=|0OUT (2)]. It implies that at state 2,
primitives AB_reql and CN_ind?2 can be concurrently
executed at SAPI and SAP2 respectively. Other states
1,3,4,5,7,8,9,10, 11 and 12 are normal states. It
implies that at each normal state a primitive is executa-
ble at a certain SAP.

This paper imposes the following two restrictions
R1 and R2 to assure correctness of the proposed
protocol synthesis method.

Restriction R1: The S-SPEC is a tree. Additionally,
any state in the S-SPEC graph is exactly one of normal
state, final state, choice state and parallel state.
Restriction R2: For any parallel state s, let Pal(s)
denote a set of primitives attached to edges outgoing
from s. Then, for each parallel state s in the S-SPEC,
priorities are assigned to all primitives in Pal (s).

R1 implies that in the given S-SPEC there exists at

most one directed path between any two states. Based
on tree structure, we introduce execution ordering for
primitives: Consider two adjacent transitions (u, E,
v) and (v, E’, w). Then we say primitive £ must be
executed before primitive E’. R1 also implies that any
branch states, that is a state s with d*(s) =2, is either
choice state or parallel state.
Definition 5: Consider a S-SPEC graph satisfying
Restriction R1 (that is, the S-SPEC graph is a tree).
For any path (w, pi, we) (te, po, Us) - (Ur, i, Usn+1)
where u; is a root and u4+; is a leaf node, then we
define an execution ordering among primitives pi, ps,
-+, P» such that any primitive p; must be executed
before primitives p;i1, Pit+a, ***, De-

2.3 Protocol Specification

Transmission and reception of messages are defined as

follows.

Definition 6: If message e is transmitted to PEj, then

it is denoted by an event message !e (j). If message e

is sent to PEj;, PEj, -+, PEjs, then it is denoted by an

event message le(ji, -**, j.). On the other hand, if
message e is received from PEj, then denoted by an

event message ?e (f).

The protocol specification consists of n-tuples of
specifications for protocol entities. PEs communicate
with each other through underlying communication
medium. The protocol specification is also modeled
by FSM.

Definition 7: A protocol entity specification PE-SPEC

i is defined as a FSM P, =<8, Xip, Tip, 0:py Where

(I) Sy is a non-empty finite set of protocol states (or
simply states).

(2) X is a non-empty finite set of protocol events.
2p=2:iUMEX;U{e}, where X is a set of primi-
tives in Definition 2, and MEX; is a set of event
messages which are sent from PEi7 or received by
PEi.

KAKUDA et al:

(3) T is a partial transition function: Sip X Xip— Sip.

For simplicity we use T also as a set of triples (u

p, v) such that v="T,(u, p).
(4) 04»< S is an initial protocol state.
Protocol specification P-SPEC P consists of n-tuples
of PE-SPECi P/s (1<i<n), and P-SPEC P is de-
noted by a FSM P =<S,, 3, Tp, 0p> where
(1) Sp=>S1pXS2p X +++ X Spp.
(2) Zp=21pUZpU-+-UZpp.
(3) To={(T1p, T2p, ", Trp)-
(4) op=(01p, O2p, an)
Definition 8: Suppose that a current state of PEj is
state . If transition (u, E, v) or (u, E/le(X),v) is
specified in T}, then we say primitive E is executable
or primitive E and transmission of message e are
executable, respectively. If primitive E is executed,
PEj enters into state v.
Consider a case that messege x that is sent by PEi is on
the top of FIFO channel from PEi to PEj (j=i).
If transition (u, ?x(i), v) is specified in T}, then we
say reception of message x from PEi is executable. If
PE; receives message x, then x is deleted from top of
the queue and PEj enters state v. If multiple transi-
tions are executable, one of those is non-
deterministically chosen and executed.
Definition 9: Consider a case that message x that is
sent by PEi is on the top of FIFO channel from PEi to
PEj (j=i) and a current state of PEj is state u. If
there does not exist any edge (¢/, ?x (i), v) in T}, such
that there exists a path from state u to #” which only
includes (a, r, b) in T;, where 7 is a primitive, trans-
mission of a message or executable reception of a
message from other PEL (k=={), then we say that an
unspecified reception with respect to x occurs in
PE-SPEC;j.

As in Definition 1, we use a labeled directed graph
to represent PE-SPECi. We call this graph a PE-

PE-SPEC1

PE-SPEC2

PE-SPEC3

Fig. 5 Example of a protocol specification P-SPEC.

AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS

1637

SPECi graph or simply a PE-SPECi. For a P-SPEC
we similarly use a labeled directed graph, and call it a
P-SPEC graph or simply a P-SPEC.

An example of a P-SPEC is shown in Fig. 5. In
this figure, an oval denotes a protocol states, and an
arrow from u to v denotes transition (u, p, v) or (u, p/
q,v) where p&El; and ¢ € MEX U MEX,U---
UMEX,. “p/q” denotes a successive execution of
transmissions of primitive p and message event g. At
first, all PE-SPECs are at initial states drawn by bold
line. For example, PE1 is in state 1, receives primitive

'CN_regq from user 1, and sends message “a” to PE2.

After PE1 enters state 2. Similarly, PE2 receives

message “a” from PE1 at state 1 and enters state 2.

Definition 10: Let §=<S;, X5, Ts, 6> be a given ser-

vice speciﬁcation. Then a protocol entity specification

P,;={S%, X%, T?, ob> satisfying the following (1)

through (4) is called a fundamental protocol entity

specification based on S, shortly f-PE-SPECI.

(1) S{p:Ss-

(2) Xp=2isUMEX;U{e).

(3) T,p—{(u,p, v) or (u,plg, v)|(u, p,v)ETs and
sap(p) =i and gEMEX;}U{(u, g, v) or (u, ¢, v)

|(u, p, v) =Ts and sap(p) +i and g MEX;).
(4) oh=0.

Remark 2: A fundamental protocol entity
specification f-PE-SPECi has the same number of
states and edges as that of the service specification
S-SPEC. There exists one-to-one correspondence
between any state in f-PE-SPEC/{ and that in S-SPEC,
and between any edge in f-PE-SPEC/ and that in
S-SPEC.

Based on the S-SPEC in Fig. 3, PE-SPECs in Fig.
6 are {-PE-SPECs.
Definition 11: Let S7, be a set of states @; in f-PE-
SPECi. Then an n-tuple (m, a, ***, @x) is called a

CN. 2
7e(2) /1 e(lie;sp &
CN_confl 3 €

PE-SPEC1

PE-SPEC2 PE-SPEC3

Fig. 6 Example of fundamental protocol entity specifications
f-PE-SPECs.

1638

global state. Let S-S be a set of n-tuples of (8, Bz, -+,

Bn) where B; (1<i<n) is a state in S-SPEC (5, Ss).

A function 7: S{p X S%p X+ XS4~ S-S is defined as

follows.

For each ¢;=S5% (1<i<n), then r(a, @, -, @n) =

(B1, Bz, -, Bn), where B;=a; (1<i<n).

Definition 12: Consider a S-SPEC satisfying Restric-

tion R1 (that is, a tree graph), and a P-SPEC consist-

ing of f-PE-SPECis.

Let @; be a state in f-PE-SPEC:. If an n-tuple of states

(e, a, -+, an) = (B, B2, -+, Bn) satisfies the follow-

ing Conditions S1 and S2, then we say a global syn-

chronization is kept at global state (a1, @, -+, @) and
such global state is called k-global state. Otherwise the
global synchronization is lost at global state (a1, as, ***,

@») and such global state is called /-global state.

Condition S1: There exists a path p from a root to a

leaf of the S-SPEC, such that p contains all of 8.

Condition S2: Consider for any 8; and 3; such that £;

is an ancestor of 8, in the S-SPEC. If there exists an

edge (u, p, v) such as sap (p) =i in the path from B; to

B;, then for any edge (a, g, b) in the path from v to 5,

sap(q) *j.

We call transition from /-global state to k-global state

recovery of global synchronization. On the contrary,

we call transition from k-global state to /-global state
the loss of global synchronization.

Consider PE-SPECs shown in Fig. 6 and S-SPEC
shown in Fig. 3, then these PE-SPECs are f-PE-SPECs
according to Definition 10. Let @; be a current state of
PEi. Some examples of global synchronization are in
the following.

(1) Consider the case that ;;=11, @%»=8 and ¢5=9. In
order to map the current states of PEs on S-SPEC,
function r is applied. Since r(11,8,9)=(11,8,9)
=(p, B2, Bs), Conditions S1 and S2 in Definition
12 are satisfied. Therefore in this case a global
synchronization is kept.

(2) Consider the case that ¢;=3, =8 and as=9.
Similarly function r is applied and 7(3, 8,9) = (3,
8,9)=(B1, B, Bs). Since Condition S1 is not
satisfied, in this case a global synchronization is
lost.

(3) Consider the case that =13, =8 and az=9,
then 7(13,8,9)=(13,8,9)=(51, B2, Bs). Since
Condition S2 is not satisfied, in this case a global
synchronization is lost. Actually, this case cannot
happen in these PE-SPECs (shown in Fig.6).
Because the current state of PE1 is state 13 in
PE-SPECI1, PEI must receive message e from PE2
and primitive CN_conf'1 must be executed. On
the other hand, PE2 is at state 8 and message e is
not still sent to PEI.

2.4 Protocol Synthesis Problem

Protocol Synthesis Problem to be solved in this paper

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

is formally defined as follows:

Input: A service specification S-SPEC with restrictions

R1 and R2.

Output: A protocol specification P-SPEC which

satisfies Conditions P1 and P2.

Condition P1: The execution order of primitives

defined by S-SPEC is kept in P-SPEC.

Condition P2: No unspecified reception caused by

parallel execution of primitive occurs in P-SPEC.
The previous protocol synthesis methods [1], [6],

[7] could not assure Condition P2, if a service

specification which allows the parallel execution of

primitives at different SAPs is given. That is, a proto-

col specification includes unspecified receptions.

3. Outline of Protocol Synthesis Method
3.1 Outline

The proposed method to derive a protocol
specification P-SPEC from a service specification S-
SPEC consists of the following five steps.

Step 1: Based on given priorities of primitives, assign
the priorities to all primitive execution
sequences in a service specification S-SPEC.

Step 2: Obtain n(=2) projected service specifications
PS-SPECs by applying the projection to a
service specification S-SPEC.

Step 3: Construct n(=2) protocol entity specifi-
cations PE-SPECs by applying transition syn-
thesis rules (to be shown in Table 1) to PS-
SPECs.

Step 4: Add some transitions for parallel execution of
primitives to PE-SPECs refined at Step 3.

Step 5: Remove ¢ transitions from each PE-SPEC, and
obtain a protocol specification P-SPEC.

PS-SPECs in Definition 2 are realized in Step 2.

And one of f-PE-SPECs in Definition 11 are obtained

from S-SPEC in Step 2 and Step 3. Some transitions

are added into the f-PE-SPECs in Step 4 to avoid
unspecified receptions.

3.2 Key Idea

Protocol entities PEs are exchanging messages with
each other and provide the communication service
according to execution order of primitives described in
the service specification S-SPEC. However, since PEs
only have local states, they must keep the global syn-
chronization by exchanging messages between PEs.

If no parallel execution of primitives occur, the
global synchronization is kept and no unspecified
reception occurs as in the previous methods. On the
contrary, if a parallel execution of primitives occurs at
parallel states, the global synchronization is lost. If the
previous synthesis methods are applied to this case,
then unspecified receptions occur.

KAKUDA et al: AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS

Table 1 Transition synthesis rules.

1639

Rule Input Condition Output
p
Ei Ei
Al M S1 is not parallel @—_’®
PS-SPEC S‘ﬂ[‘.e] and OUT(S2) PE-SPEC1
e ={i1y. e]
£ £
B1 | &>—® GH—®
PS-SPEC j (¥ i) PE-SPEC j (¥ i)
Ei Ei/ le(X)
G)—»(GD | Stisnotparallel GCD—>Ed
A2 @ state and OUT(S2)
PS-SPEC1 * (i} . PE-SPECi
T T E T | x=outsy- i | o 2el) e
B | @@ !
PS-SPEC j (#1) PE-SPECj (j€X)| PE-SPEC k(k¢ X)
Ei Ei / le(X)
A3 $1is parallel state,
PS-SPEC i Y={yly=sap(p), g i
R i L _|VpimpsrsstEyy _ __ PESPECE |
€ 2e(i) €
B3 G)>—>(D |x=vUouTs2)-ii)
PS-SPEC j (i) PE-SPEC j jEX)| PE-SPEC k(kEX)

In order to solve this problem, in the proposed
method, we add some transitions for reception of
messages to PE-SPECs so that the global synchroniza-
tion can be recovered. The key idea of the proposed
method is as follows. Consider sequences of k-global
states starting from a parallel state, in which if one of
primitives leaving from the paralle] state is executed,
then global synchronization is kept and the execution
order of primitives follows that on S-SPEC. Suppose
that parallel execution of primitives occurs at the
parallel state and that priorities are assigned to primi-
tives. Then, the protocol enters /-global state. Recov-
ery from /-global state to some k-global state in a
sequence starting by execution of the primitive with the
highest priority is performed by transitions of message
reception which are added to PE-SPECs. In the recov-
ery, execution order of primitives is preserved and
unspecified receptions are avoided.

Consider the S-SPEC in Fig. 3 and PE-SPECs in
Fig. 6. Protocol specification which is synthesized
from the S-SPEC (Fig. 3) in the previous methods [6],
[7] is essentially equivalent to PE-SPECs shown in
Fig. 6.

Let a; be a current state of PEi and consider a case
(o, &, as) = (2,2,2). Then global synchronization is
kept. Suppose that AB_req]l is assigned higher prior-
ity than CN_ind2. If two primitives AB_regl and CN _
ind2 are concurrently executed at SAP1 and SAP2,
respectively, global state (2,2,2) moves to (3,7,2)
and global synchronization is lost. Then unspecified
reception with respect to message b to be sent from PE1
to PE2 occurs in PE-SPEC2. If a transition (s, ?b(1),
3)(s=7,8,9,10,11,12,13) is added in PE-SPEC2,
PE2 can enter state 3 in the sequence starting by

execution of AB_reqgl with higher priority and the
global synchronization can be recovered to (3,3,2).
Thus, in the proposed method, transitions are automat-
ically added to recover the lost global synchronization
and to avoid the unspecified reception.

4. Detail of Protocol Synthesis Method
4.1 Step |

In this step, priorities are assigned to all primitive in a
service specification S-SPEC. Priorities are used to
identify which primitive to be given preference of
execution, when the parallel execution of primitives
occurs. The real protocol specifications are usually
designed to deal with primitives executable in parallel.
For example, primitives related to RESET are given
the top priority, and primitives concerned with
ABORT are also assigned high priority.

In Fig. 2, a sequence CN_req, CN_ind, CN_resp
and CN_conf rtepresents “connection of communica-
tion path” and a sequence AB_req and AB_ind repre-
sents “abort of service.” Since higher priority is given
to ABORT sequence than CONNECTION sequence,
when parallel execution of these primitives sequences
occur, AB_reql is followed by AB_ind2, AB_req?2
and AB_ind3. On the other hand, CONNECTION
sequence is aborted at PE2.

From Restriction R2, priorities are pre-assigned to
some primitives, that is, primitives leaving from any
parallel state in S-SPEC. Based on the priorities of
those primitives, the priorities to all primitives are
assigned in the order of the Depth First Search.

An example of assignment is shown in Fig. 7.

1640

@ :Panliel state

. Choice state

Fig.7 Assignment of priority.

1y CN_resp3

Qo
1y CN_conf2

1y CN_resp2

19 CN_confl

Fig. 8 Example of a service specification S-SPEC after Step 1.

Figure 8 shows a S-SPEC obtained from a S-SPEC
shown in Fig. 3 by applying Step 1. In the figure,
priorities are described by numbers at the side of
transitions and the less the number is, the higher
priorities are assigned.

For the service specification S-SPEC in which
priorities are assigned to all primitives, we define
parallel sub-tree PST in the following.

Definition 13: Consider any parallel state w and a

primitive E attached to an outgoing edge from w in

the directed graph G representing S-SPEC. Assume

that sep(E)=i and a priority x is assigned to E.

Then a parallel sub-tree PST-S(w, E) is a connected

subgraph G’ of G which satisfies the following (1)

through (3).

(1) G’ is a tree with root w.

(2) For any edge (a,p,b) in G, sap(p)=+i and a
priority assigned to p is lower than x.

(3) There does not exist any graph (let it be G”)
satisfying (1) and (2) such that G'==G” and G’ is
some subgraph of G”.

And consider the directed graph H representing f-PE-

SPECi based on the S-SPEC G. Then PST-PEi(w,

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

E) is a connected sub-graph H’ of H such that H’ is

a fundamental protocol entity specification based on
PST-S(w, E).

4.2 Step 2

In this step, projected service specifications PS-SPECi
(Ii<n) are obtained from a service specification
S-SPEC by substituting each transition not associated
with SAPi by e. The formal definition of these substi-
tutions is given in Definition 2.

As an example, consider a service specification
S-SPEC shown in Fig. 3. Then Fig. 4 shows resultant
three PS-SPECs obtained from S-SPEC.

4.3 Step 3

In this step, n(=2) protocol entity specifications
PE-SPECs are obtained from 7 (=2) projected service
specifications PS-SPECs. This transformation is per-
formed by applying transition synthesis rules shown in
Table 1.

In Table I, E;(I=<i<n) denotes some primitives
in the PS-SPECi. Each pair of transition synthesis
rules Ak and Bk (1=k=3) is applied to # pairs of
transitions (S, E;, S») in PS-SPECi and (S}, ¢, S2) in
PS-SPECj (j=1), respectively. Message e is uniquely
generated for each primitive E; in Rules Ak and Bk (k
=2, 3).

The intuitive concepts for these rules are explained
as follows.

Rules Al, B1: These rules imply that any messages
need not be transmitted and received for global syn-
chronization because two primitives are successively
executed at the same SAP(SAPi).

Rules A2, B2: The primitive E; is executed at SAP/.
Following the occurrence of E;, other primitives can
be executed at other SAPs, therefore a message for
global synchronization is transmitted to other corre-
sponding protocol entities.

Rules A3, B3: E; occurs at parallel state. In this case,
a message for global synchronization is transmitted not
only to PEs in which other primitives are executed next
to E; but also to PEs concerned with primitives in
parallel sub-tree PST-S(Si, E;) (see Definition 13).
These transmissions are done for the parallel execution
of primitives. The message generated by these rules is
used to recover the loss of global synchronization due
to the parallel execution of primitives. However,
transitions for the parallel execution of primitives are
not generated from transition synthesis rules. The
transitions for parallel executions are added in Step 4.

Consider PS-SPECs in Fig. 4. Figure 9 shows all
parallel sub-trees in S-SPEC shown in Fig. 8. Con-
sider PS-SPECs in Fig. 4. Then, by applying transition
synthesis rules to these PS-SPECs, a protocol
specification shown in Fig. 6 is obtained. Examples of

KAKUDA et al: AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS

@

PST-S(2,AB_reql) PST-S(2,CN_ind2)

Fig.9 Example of parallel sub-tree PST.

application of typical three rules are explained in the
following.

(1) Transitions (1, CN_reql,2), (1,&,2) and (1, ¢,
2) in PS-SPECI1, PS-SPEC2, and PS-SPEC3 are trans-
lated into (1, CN_reql/'a(2),2), (1,%?a(1},2) and
(1, &,2) in PE-SPECI, PE-SPEC2 and PE-SPEC3 by
applying rules A2, B2 and B2 respectively. The reason
why rules A2 and B2 are selected is that, for i=1, state
1 is not parallel state and OUT (2) #{i}. These rules
generate message a from PE1 to PE2.

(2) Transitions (8, ¢,9), (8,¢,9) and (8, CN_ind3,
9) in PS-SPECI, PS-SPEC?2, and PS-SPEC3 are trans-
lated into (8,&,9), (8,¢,9) and (8, CN_ind3,9) in
PE-SPEC1, PE-SPEC2 and PE-SPEC3 by applying
rules Bl, Bl and Al respectively. These rules are
selected because for i=3, state 8 is not parallel state
and OUT (9) ={i}. No messages among PEs are gener-
ated. 3

(3) Transitions (2, AB_reql,3), (2,&,3) and (2, ¢,
3) in PS-SPECI, PS-SPEC2 and PS-SPEC3 are trans-
lated into (2, AB_reql/!6(2,3),3), (2,7b(1),3) and
(2,7b(1), 3) in PE-SPEC1, PE-SPEC2 and PE-SPEC3
by applying rules A3, B3 and B3. This is because state
2 is a parallel state. Since the set of indices of PEs
related to primitives in PST-S(2, AB_reql) is {2, 3} (=
Y) and OUT (3) ={2}, message b is transmitted from
PE1 to PE2 and PE3.

4.4 Step 4

According to the projection in Step 2, and the transi-
tion synthesis rules in Step 3, PE-SPECs obtained from
Step 3 are f-PE-SPECs based on the given S-SPEC.
There exists one-to-one correspondence between any
state in PE-SPEC{ and that in S-SPEC, and between
any edge in PE-SPECi and that in S-SPEC. In order
to recover the loss of global synchronization due to
parallel execution of primitives, some transitions of
message reception are added to PE-SPECs refined at
Step 3 such that global synchronization is recovered
and the global state converges in the primitive with the

1641

parallel state

Ei/!e(X) -
~
~ e -~
~
~ . L.
Primitives which have higher priorities
d than that of Ei.
P
e
/
PST-PEi(w,Ei)
PE-SPEC i
Primitives which have lower priorities
than that of Ei.
paraliel state
~
S~
~ \... ~ -~
~
Primitives which have higher priorities
- than that of Ei.
P
”
/
PST-PEj(w,Ei)
PE-SPEC j
(J€Y)

Primitives which have lower priorities
than that of Ei.

Fig. 10 Explanation for Procedure A in Step 4.

highest priority.

A concrete method for adding transitions to PE-
SPECs is as follows:
Consider any transition (w, E;/!e(X), v) such that it
leaves from a state w in PE-SPECi, where the state w
corresponds to a parallel state in S-SPEC, and that E;
is a primitive related to SAPi. The following proce-
dures A and B are performed.
Procedure A: Let Y be a set of indices of SAPs
through which primitives in PST-S(w, E;) pass. For
each state u except w in each PE-SPECj(j& Y), such
that u is in PST-PEj (w, E;), insert a transition (u, ?e
(D),).

Figure 10 illustrates the procedure A.
Procedure B: Consider transitions of message recep-
tions in PST-PEA(w, E;) for each PE-SPECh(hEY
U{i}). For each ?a(l) of message receptions, insert
transitions (s,?a(l),s) where states s are in paths
from v to states at which another message reception
from PE/ is specified.

Figure 11 illustrates the procedure B.
Remark 3: Let G be a graph representing PE-SPEC/
before Step 4, and let G’ be a graph representing
PE-SPEC: after Step 4. As mentioned above, G
represents a fundamental protocol specification f-PE-
SPECi. Then G is a subgraph of G’ and any state in
G’ corresponds to a state in G.

1642

Consider PE-SPECs in Fig.6. Then, Fig. 12
shows resultant protocol entity specifications in which
some transitions are added to PE-SPECs for recovery
of global synchronization. Examples of application of
these procedures A and B are explained in the follow-
ing:

Since the parallel state is state 2, consider transi-
tion (2, AB_req1/!b(2,3),3) in PE-SPECI.
Procedure A: As shown in Fig. 9, since there are

parallel state

Primitives which have higher priorities
than that of Ei.

PST-PEl(w,Ei)

7
P
X1/ 1 x(h)
Y1/1y(h)

PE-SPEC AN

Primitives which have lower priorities

(1€Y) than that of Ei.
W parallel state
U -
7a() S~
~ -~
~
P Primitives which have higher priorities
Ta(l) Py than that of Ei.
’ ?a(l)
PST-PEh(w,Ei)
Tx(1)
7y
PE-SPEC h T U W
i \ ¢
(hevU {ih Primitives which have lower priorities

than that of FEi.

Fig. 11 Explanation for Procedure B in Step 4.

AB_reql

/1b(2,3)
?7e(2)

-

7e(2) €

7¢(2) E

PE-SPEC1

PE-SPEC2

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

primitives which pass through SAP2 and SAP3 in
PST-S(2, AB_reql), Y={2,3}. Transitions ?h(1)
from states 7,8,9, 10,11 and 12 in PST-PE2(2, AB_
reql) to state 3 in PE-SPEC2. Transitions ?6(1) for
PE-SPEC3 are added in a similar way.

Procedure B: Since Y U{i}={1,2,3}, insert transi-
tions in PE-SPECI, PE-SPEC2 and PE-SPEC3.
Consider transitions of message receptions in PST-PEA
(2, AB_reql) (h&{1, 2, 3}). Since there exists a transi-
tion (11,?e(2),12) in PST-PE1(2, AB_reql), self
loops of ?e(2) are added at states 3,4,5 and 6 in
PE-SPECI. Similarly, self loops of ?d (3) are added at
states 3,4, 5 and 6 in PE-SPEC2, and self loops of ?¢
(2) are added at states 3 and 4 in PE-SPEC3.

4.5 Step 5

In this step, & transitions are removed from the PE-
SPECs. The e transitions are removed by applying the
¢ removal algorithm in [3]. Using this algorithm,
PE-SPECs can be reduced to equivalent finite state
machines in the sense that connectivity between any
pair of two states is preserved.

Figure 5 shows an example of a final protocol
specification P-SPEC after Step 5.

5. Proof of Correctness

In this section, we prove that the protocol specification
P-SPEC synthesized by the proposed method is correct,
that is, the following two conditions are satisfied.
Condition P1: Execution order of primitives defined
by S-SPEC is kept in P-SPEC.
Condition P2: No unspecified receptions caused by
parallel execution of primitives occur in P-SPEC.
We discuss the correctness for PE-SPECs after

CN_req2
te@@) 7¢(2)
-

3

PE-SPEC3

Fig. 12 Example of a protocol specification after Step 4.

KAKUDA et al: AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS

Step 4 (before Step 5). It is obvious that the & removal
algorithm [3] in Step 5 preserves the correctness of the
protocol specification synthesized by the proposed
method. ‘
From Remark 2 and Remark 3, each PE-SPEC
obtained at Step 4 has the same number of states as the
given S-SPEC. Since each state in PE-SPEC has
one-to-one-correspondence to that in S-SPEC, we simi-
larly define the global state and global synchronization
for PE-SPECs obtained at Step 4, as for {-PE-SPECs
obtained at Step 3.
We prove the correctness of the proposed method
for the following three cases respectively.
Case 1: No parallel state exists in the given S-SPEC.
Case 2: Only one of primitive which leaves from any
parallel state in S-SPEC must be executed
(that is, parallel execution of primitives does
not occur).
Case 3: Parallel execution of primitives occurs.

5.1 Casel

In this case, no transition is added at Step 4 since no
parallel state exists. PE-SPECs obtained at Step 3 is
nothing more than the protocol specification obtained
by using Saleh’s method [6], [7]. Proof for the correct-
ness of his method is already given in [6], [7].

5.2 Case 2

In this case, each parallel state is performed as a choice
state. Since parallel execution of primitives is not
allowed in the PE-SPECs, Condition SI is satisfied.
By the transition synthesis rules in Step 3, Condition
S2 is satisfied {6], [7]. Therefore, global synchroniza-
tion is kept for PE-SPECs.
Lemma 1: While global synchronization is kept for
PE-SPECs, Conditions P1 and P2 are satisfied.
Proof: By Condition S1 of Definition 12, the current
state in all PE-SPECs corresponds to some state in a
path of S-SPEC. Let the path be denoted by o= (u,
p1, Us), o, (Un, Pr, Yrer). By Condition S2 of
Definition 12, primitive p, such that sap (p;) =i, must
have been executed before p,, (I < m) such that sap (pn)
=j, (j=*i) is executed. Therefore, Condition P1 is
satisfied. Consider two successive transitions (u, p,
llz+1) and (u1+1, P+, uz+2) in the path 0 such that
sap (p;) =i and sap (p;+1) =j(j=+i). By the transition
synthesis rules at Step 3, a message x caused by occur-
rence of primitive p, in PE-SPECi must have received
before primitive p.41 occurs in PE-SPECj. And only
receptions of messages are added at Step 4. Therefore,
Condition P2 is satisfied.

By Lemma 1, Conditions P1 and P2 are satisfied in
this case.

1643

5.3 Case 3

In this case, parallel execution of primitives occurs. As
mentioned before, parallel execution causes the loss of
global synchronization between PEs.

Lemma 2: The number of /-global states is finite when
parallel execution of primitives is performed.

Proof: Let a sequence of k-global states be denoted by
Gy, Gy, ***, Gr, Grs1, -+, G in which following condi-
tions are satisfied:

(1) Parallel execution of primitives can occur at

global state G&.

(2) For each PE, either (a) a primitive and transmis-
sion of a message, (b) reception of a message, or

(c) an ¢ is executed in the transition from Gj to

Ga(1=5j=m—1).

Let denote p; for the primitive to be executed in
the transition from G; to Gj;. Suppose that by a
parallel execution of primitives px, g%, -+, ¢” at Gx in
this sequence, G moves to H; where H, is [-global
state. Also suppose that primitive p, has the highest
priority among px, ¢, -+, q".

By the protocol construction in Step 3 and Step 4,
a global state transition diagram is obtained as shown
in Fig. 13.

The length of the sequence of /-global states start-
ing from H; is finite due to the following reason.
Consider the A-th component in above /-global states,
that is, a current state of PE/A in the PE-SPECA. The
sequence of such states are included in PST-PEA (w,
pe) where Go=(w, ---, w). By the definition of PST-

1 2 1 (parallel execution of
Pk g q.-q primitives)

sap(Pk) =1, and
message e is sent
to all related PEs.

@ k-global state
(O 1-global state

Fig. 13 Global state transition diagram.

1644

PE#Z(w, p.) the following two cases are considered.
Case A: There is no transition leaving from a leaf of
PST-PE#A(w, p.) in PE-SPECh because S-
SPEC is a tree.
Case B: All sequence of transitions starting from a
leaf of PST-PEA (W, pk) are (Sl, Hh, Sz) , (Sz, P,
53), =+, (80, 7, S141) (I21) where n=g¢, -+, 7,1
=g and 7, is reception of a message. By the
protocol construction in Step 3, reception of
the message r; is not executable.
In either case, execution of the sequence of /-global
state starting from H; stops at some /-global state.
Therefore, Lemma 2 holds.
Lemma 3: When parallel execution of primitives is
performed, Condition P1 is satisfied.
Proof: Asshown in the global state transition diagram
of Fig. 13, each sequence of transitions starting from
H, reverts to some k-global state by reception of all
messages which are sent to the related PEs with execu-
tion of primitive p;. The last reception of such mes-
sages are depicted by arrows labeled ?¢ (i) in Fig. 13.
Note that not last reception of messages 7e(i) are
included in the sequence of /-global states. Reception
of message ?e (i) in each sequence of transitions which
starts from H, and finally reverts to some k-global state
corresponds to reception of message ?e(i) in each
PE-SPECj in Fig. 10.
Execution of primitives py, -**, pn—; in this order are
required in Condition P1. Although redundant primi-
tives except pi, -*-, Pn—; may be executed in the transi-
tions denoted by dotted lines in Fig. 13, by the proto-
col construction, p; must have been executed before
Di+1 is executed for all sequences of transitions which
starts from H; and finally reverts to some k-global
state.
Lemma 4: When parallel execution of primitives is
performed, Condition P2 is satisfied.
Proof: Consider the global state transition diagram in
Fig. 13. Messages which are caused by a primitive
except for primitives pi, ***, pp—; may be transmitted in
the sequence of transitions from H; to some k-global
state, which is denoted by a@. Such messages are surely
received in the above sequence or in the sequence of
k-global states Gi.i, -, Gn. Reception of such mes-
sages ?a(l) corresponds to ?a(l) in Fig. 11. There-
fore, Condition P2 is satisfied.
Theorem 1: Conditions P1 and P2 are satisfied for
P-SPECs obtained in the proposed method.
Proof: When global synchronization is kept, by
Lemma 1 Conditions Pl and P2 are satisfied. And if
parallel execution of primitives occurs and global
synchronization is lost, the lost global synchronization
is recovered and Conditions P1 and P2 are satisfied by
Lemma 3 and Lemma 4.

IEICE TRANS. FUNDAMENTALS, VOL. E77-A, NO. 10 OCTOBER 1994

6. Conclusion

In this paper, we have proposed a new synthesis
method of a protocol specification from a given service
specification which has an arbitrary number of proces-
ses and which allows concurrent execution of multiple
primitives at different SAPs. The characteristics of this
method are:

(1) When parallel execution of primitives occur, the
execution of primitives to which higher priority is
assigned takes precedence over that to which
lower priority is assigned.

(2) There are no protocol errors of unspecified recep-

- tions caused by parallel execution of primitives.

- Therefore, more reliable protocol specifications
can be efficiently synthesized than the previous
methods. However, further research remains, for
instance:

+ The relaxation of the restriction that a directed
graph representing the service specification S-
SPEC is a tree.

- Synthesis of protocol specifications on unreliable
communication medium.

References

[1] Chu, P. M. and Liu, M. T., “Protocol synthesis in a state
transition model,” Proc. COMPSAC’SS, pp- 505-512,
Oct. 1988.

[2] Chu, P.M. and Liu, M.T., “Synthesizing protocol
specifications from service specifications in the FSM
model,” Proc. Computer Networking Symp., pp. 173-182,
Apr. 1988.

[3] Hopcrof, J. E. and Ullman, J. D., Introduction to Auto-
mata Theory, Language, and Computation, Chapter 3,
Addison-Wesley, 1979.

[4] Igarashi, H., Kakuda, Y. and Kikuno, T., “Synthesis of
protocol specifications for design of responsive proto-
cols,” IEICE Trans. Inf. & Syst, vol. E76-D, no. 11, pp.
1375-1385, Nov. 1993,

[5]1 Liu, M. T., “Protocol engineering,” Advances in Com-
puters, vol. 29, pp. 79-195, Academic, 1989.

[6] Saleh, K., “Automatic synthesis of protocol specifications
from service specifications,” Proc. Int'l. Phoenix Confer-
ence on Computers and Communications, pp. 615-621,
Mar. 1991.

[7] Saleh, K., “A service-based method for the synthesis of
communication protocols,” Special issue on distributed
computing and systems, International Journal of Mini
and Microcomputers, vol. 12, no. 3, pp. 97-103, 1990.

[8] Saleh, K. and Probert, R. L., “Synthesis of communica-
tion protocols: Survey and assessment,” IEEE Trans.
Comput., vol. 40, no. 4, pp. 468-475, Apr. 1991.

KAKUDA et al: AUTOMATED SYNTHESIS OF PROTOCOL SPECIFICATIONS
1645

Yoshiaki Kakuda was born in Hiro-
shima, Japan, on June 29, 1955. He
received the B.S. degree in electronic engi-
neering from Hiroshima University, Hiro-
shima, Japan, in 1978. He also received
the M.S. degree and Ph.D. degree in sys-
tem engineering from the same university
in 1980 and 1983, respectively. From 1983
to 1991, he was with Research and Devel-
opment Laboratories, Kokusai Denshin
Denwa Co., Ltd. (KDD), where he last
held the position of Senior Research Engineer. From 1991 he has
been an Associate Professor with the Department of Information
and Computer Sciences, Faculty of Engineering Science, Osaka
University. His current research interests include protocol engi-
neering and responsive systems. He was a program co-chairman
of the Second International Workshop on Responsive Computer
Systems in 1992. He is a member of the IEEE Computer Society
and the Information Processing Society of Japan. He received the
Telecom. System Technology Award from Telecommunications
Advancement Foundation in 1992.

Masahide Nakamura was born in
Hyogo, Japan, on January 14, 1972. He
received the B.E. degree in information
and computer sciences from Osaka Uni-
versity, Toyonaka, Osaka, Japan in 1994.
He is currently studying towards the M.E.
degree in the Graduate School of Engi-
neering Science in the same university. He
has been engaged in research on protocol
synthesis.

Tohru Kikuno was born in Ehime,
Japan, on September 11, 1947. He
received the B.E., M.Sc., and Ph.D.
degrees in electrical engineering from
Osaka University, Toyonaka, Osaka,
Japan, in 1970, 1972, and 1975, respective-
ly. He joined 'Hiroshima University from
1975 to 1987. He is currently a Professor
in the Department of Information and
Computer Sciences, Faculty of Engineer-
ing Science. Osaka University since 1990.
His research interests include analysis and design of fault-
tolerant systems, quantitative evaluation of software develop-
ment process and design of testing procedure of computer proto-
cols. He was a general co-chairman of the Second International
Workshop on Responsive Computer Systems in 1992. He is a
member of the IEEE(U.S.A), ACM(U.S.A) and Inf. Proc. Soc.
(Japan). He received the Paper Award from the Institute of
Electronics, Information, and Communication Engineers of
Japan in 1993.

