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Abstract

constructing communication protocols from component service speci l icat ions, each of which specif ies a subfunction of the tarsetprotocol '  enables eff icient developnlent of a large and complex communication protocol. Concerning this construction, related techniquesha'e been alreadv proposed: integration of component protocol speci{ icat ions into a single proro.J specif icat ion and transformation ofsen' ice specif icat ions to protocol specif icat ions. However. the integration needs special knowledge of communication protocols. and thetransformation requires that a large and complex sen' ice specif icat ion should be developcd as input to produce the target protocol. In order tocope " '" ' i th these problems, this paper proposes a new methitd which at f i rst integrates component service specif icat ions into a single sen,icespecif icat ion' and then transforms the sen' ice specif icat ion into the target protocol by a frotocol synthesis technique. The most importantpoint of view is that component integration is performed at the scrvice specif icat ion level rather than the protocol specif icat ion level.Addit ional l l"  we define a class of 'wel l- fbrmed' 
service specif icat ion which ensures correctness of the target protocol. As a result,  thelntegratlon and transformation can be eff icientlv executed in small  state space without special knowledge of communication protocols.Final l l '  * 'e have shown the effcct i 'eness of the proposed mcthod br,constructing a part of the real- l i fe oSI protocol FIAM.

Kevxords:Senice specif icat ion: Componentl  Iniegration: protocol synthesis: (.orrectness

l .  Introduction

The recent rapid progress of computer communication
svstems enables the advancement and diversif icaticln of
communication services. Accordingly. the communication
protocols which realize the communication services become
larger and more complex. As a result, development of such
large and complex communication protocols has become a
serious problem.

In order to attack this problem, the following approach can
be considered as a practical solution: This approach consists
of the three stages:

Stage 1: Divide the functionality of a service into sub_
functions.

Stage 2: Describe service specifications for the subfunc_
tions as components (we call them c.omponenr
se rv ice s pecifications).

Stage 3: Obtain the target protocol specification (call i t
an integrated protocol specification) based on
the component service specifications.
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The major advantages of this approach are summarized
as follows: (a) since the service specification is used as
the starting point (that is, at Stage 2). the content of rhe
required services are clearly specified even b), the service
designer, who does not have special knowledge about the
communication protocols; (b) since a hierarchical design
is adopted, at Stage 2 we can easily develop each compo_
nent with a relatively smaller size, and focus on a sinele
function without considering interaction with other fuic_
tions; (c) if an effective decomposition is found at Stage
1, we can reuse subfunctions and thus reuse components
in a future development.

In this paper, we focus the discussion on Stage 3. and
propose a new technique to implement Stage 3. As des_
cribed before, Stage 3 derives an integrated protocol speci_
fication from the given component service specifications.
Fig. l(a) shows the content of Stage 3 schematicallv.

So far, hvo kinds of techniques, which are closely related
to the implementation of Stage 3, have already been pro_
posed. One is techniques that integrate component specifi_
cations into a single specification. All of the integration
techniques are at the protocol specifcation /euel. That is,
as shown in Fig. 1(b), these techniques integrate several
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Fig. 1. Derivation of integrated protocol specification

component protocol specifications into a single protocol
specification. Chow et al. [1, 2] proposed a constructing
algorithm for a multiphase protocol, in which multi-phases
are sequentially executed, and each phase performs a dis-
tinct subfunction. Next, Lin et al. [3] and Singh et al. [4]
extended this algorithm [1, 2] by removing some restric-
tions. Moreover, Lin proposed fwo nice integration algo-
rithms [5, 6]. In an alternating function protocol [5], the
user can select any one from several functions, but is
restricted to execute only one function at a time. On the
other hand, in a concurrent function protocol [6], several
functions can be performed concurrently.

The other techniques transform service specifications into
protocol specifications, as shown in Fig. 1(c). The most
efficient and reliable technique is a so-called protocol syn-
thesis technique 17-141 that automatically derives a pro-
tocol specification from a service specification without
specification errors.

In this paper, we propose a new method for protocol
derivation from component service specifications. Fig. 1(d)
shows the essential parts of the proposed method. At first,
we integrate the component service specifications into a
single service specification. The most important point is
that the component integration is performed al the service
specification level. The integration is executed using three
kinds of component integration (alternative, sequential and
recursive integrations) at the service specification level,
which corresponds to the existing protocol integration
methods [1, 2, 5]. Then, we transform the single service
specification into an integrated protocol specification by a
protocol synthesis method. The protocol synthesis algorithm
is fundamentally based on the protocol synthesis algorithms

le-12].

In the proposed method, we introduce a concept of 'well-

formed' service speciflcation. This'well-formed' service
specification plays an essential role in the proposed method.
If the given component service specifications are well-
formed, then an integrated service specification is also
well-formed. Additionally, if the integrated service specifi-
cation is well-formed, then we can obtain the correct proto-
col by the protocol synthesis. The advantages of the
proposed method are summarized as follows: (a) since the
component integration is carried out at the service speci-
fication level, we can efficiently execute the integration in
a much smaller state space; (b) by uti l izing the concept of
'well-formed' service specifications, we can ensure the
correctness of the target protocol at each integration step.

This paper is organized as follows. Section 2 gives neces-
sary definit ions of service and protocol specifications. and
Section 3 outl ines the proposed method. Then Section 4
presents the protocol synthesis algorithm, and Section 5
presents the component integration algorithm at the service
specification level. Section 6 shows the effectiveness of the
proposed method by constructing a part of FTAM according
to the proposed method, and evaluates the result. Finally.
Section 7 concludes the paper with future research.

2. Definit ions

2. l. Communication model

Fig. 2 shows the communication model which we adopt
in this paper. This describes a particular layer (a layer (t{))
and its interaction with the upper layer (a layer (N + 1)). The
layer (N ) protocol entities (PEs) provide the communication
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lntegrated Protoc
Specification

ProtocolSpeeification (a)
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sen'ices (called the layer (N) senlces) to the laver (N + 1)
users. A la-ver (N) service is realized by exchanging .sert tct '
primitit 'es between the la1"er (N + 1) users and the laver (N)
PEs through the interface, called sen'ice acce.s.s poirtts (SAPs).
The layer (1/) PEs exchange protocol nrcssages with each
other through the underlf ing communication medium,
whose functions are usuallv performed by the laver (N - 1)
services. The rules that govern the exchange of protocol
messages among the PEs are called the layer (1,,1) protocol.

In this paper. we define a service specilication as the
specification which describes a layer (,t{) service, and a
protocol specilication as the one which describes a layer
(N) protocol. We assume that the number of PEs is fwo,
and that there exists one-to-one correspondence among
Useri, PEi and SAPI with the same index (i: 1.2). More-
over. we assume that the communication medium is reliable.
and that the protocol messages are delivered in FIFO order.

2.2. Serv,ice specificatiort

A service specil ication defines sequences of service
primitives to be realized as communication se rvices,
which are exchanged between users and protocol entit ies
through SAPs. A service specification is modeled by a Finite
State Machine (FSM). The FSM is usually represented by
a labeled directed graph. Thus, in this paper, we define a
service specification directly using a labeled directed graph.

Definition l. A sen'ice specifcation S is defned b,v a
labeled directed graph S : (y,. X,, T,.r '6) w,here.

. V, is a set of nodes representing service states (or simply
states).

. D, : S'P U L is a set of labels attached to the edges. S? is
a set of service pimitives (or simply primiti,es). Each
primitive p e S'P has, as an attribute, an index of SAP
through which p passes. If primitive p passes through
SAP/ (i: 1,2), then w,e define a function sap(p): i,
and a lso represent  i t  by p i .  Next ,  t :  ILp lp€52\ ,  and
each element Lp € L is called an L primitive.

. T, is a set of directed edges representing semice state
transitions (or simply transitions). For simpliciij-, we
use a triple (u,p,r'1 to represent a directed edge from a
node  u€V ,  t o  a  node  r ' €V ,  w i t h  a  l abe l  p€D , .  (The

directed edge (u,p.v,) intuiti,ely implies that state u of the

SAPr  pa th SAPl path

I
l

Fig. 3. Explanation tbr condition P.

serlicc specifcation S is changetl into state t'bt erecuting
pr imi t ive p, )  We cal l  an edge (u.p. r ' )  n ' i th  p€- i ' l  a
primitive transition and call an edge (u.p.t '1 v' it l t p € i

an L transition.
. l'rr € V. is an initial service state.

In this papeL, we assume that all sen'ice specifications S
are determinislic. that is. no fwo outgoing edges from anv
node have identical labels.

Remark 1. The service specification is different trom the
previous ones proposed in [13.  14] ,  in  the sense that  i t  mav
include the L primitives. L primitives lp are the auxil iarv
primitives for the protocol synthesis algorithm discussed in
Section 4, and are translated into receptions of a message
caused bv execut ion of  pr imi t ives p.

De f i n i t i on  2 .  A  pa th  p  :  ( t ' t . p t .  t , ) .  ( t ' , . p t . r ' . r ) .  . . . .
(t,r,p",t ' ,,*1) irt a sen'ice speciJication S^derives an execu-
tion ordering among primitives p' 2 p'
implies that any primitive p'(i. = i s n) must be erecutetl
earlier than other primitiv'es pt(i + 7 = j - ,r). I

Definition 3. A state u e V, is called a final state ift there
is no otttgoing transition (u.p.t ' | for any p and v. A state
rr € (( ls called a parallel state iff u has at least tv'o
pr imi t i t ,e  t ransi t ions (u.p. r ' t  and tu.q.v ' I  v t ' i th  sap(p\ :  I
and  sap (q ) :2 .  r �

De f i n i t i on  4 .  A  pa th  ( t , , . p ' , r ' : ) ,  . . . .  ( r ; ,  , . p "  
' .  , ' u ) .

(r 'n,p",t,,,11) itt a sen,ice speciJication S is called a
S A P i - p a t h  ( l : 1 . 2 )  t f f  s a p ( p ^ ) : i  ( k : 1 . . . . . n )  a n d
( r ' n * r , p n *  r . u n . 2 )  s u c h  t h a t  s a p { p " * 1 ) :  j  ( / :  1 . 2 ,
j# i) exists in S. Additionally, the states 11 and v,,-y ere
called a head state and a tqil state of the SAPi-path, respec-
tively, and the primitive p' is called a last pimitive ctf
the SAPi-path, A SAPi-path (i:1.2) is called a SAPi'
cycle iff its head state and its tail state are identical. A
SAPi-path (i: 1.2) is called a reachable SAPi-path iff
its tail state is a fnal state of S. I

Now, we define a class of service specification.

Definition 5, A service specifcation S is called a v'ell-

formed service specifcation iff no parallel state etisrs irr
S or the following condition P holds for any' parallel stote w'
lrr S.

Laye r  < ) i + l>

:
< N >  S c r v i c e

La1'er  <N>

USER2

FIFO Reliable Medium

Fig. 2. Communication architecture model
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Condi t ion P.  Consider  a SAPi-path f rom r ' (ca l l  i t  parh p)
and  SA? j -pa th  f r om x  ( ca l l  i t  pa th  p )  ( i . j : 1 .2 . i  +  j ) .
Suppose that P1 and Qiarc the last primitives of p and p,
respect ive ly ' .  Then.  (1)  the p is  nei ther  reachable SAPI-
path nor SAPi-cvcle. Similarly, the p is neither reachable
SAPj-path nor SAPT-cycle; (2) for anv state u on p. an L
t ransi t ion (y .LQi . r ' )  ex is ts  in  S;  and (3)  for  any state r  on p
and the ta i l  s tate l  o f  p.  an L t ransi t ion ( r .LPi . r )  ex is ts  in  S
(see Fig.  3) .  n

Remark 2. The class of service specification proposed in
Refs. [9, l0] is a subclass of the class of the well-formed
service specification, in the sense that service specification
in this paper allows outgoing primitives with an identical
SAP index from anv parallel state.

An example of service specification S is shown in Fig. 4.
All of the transitions are primitive transitions. and there is
no L transition. State 1 is an init ial state. State 4 is a final
state because there are no outgoing transitions from it.
Since there is no parallel state. S is well-formed. From
state 1,  there are fwo SAPl-paths (1,Dt_req1,2)  and
(1.DtEnd_req1.3), and from state 2 there is a SAP2-path
(2,Dt_ind2,1). and so on. There is no reachable SAP/-
path and no SA?l-cyc le for  anv i ( i :  1 ,2) .

This example models a data transfer service function
from user I to user 2. Primitives Dt_req. Dt_ind, DtEnd_req
and DtEnd_ind represent Data request. Data indication.
Data End request and Data End indication, respectivelv.
The scenario of this example is briefly described as follows:
User I repeatedly transmits data with a Data request primi-
tive. If the transmission is completed, user 1 informs user 2
of the completion of the data transfer using a Data End
request primitive.

2.3. I ntegration e.upression

As discussed in Section I, several service specifications
(we call them component service specifications), each of
which specifies a subfunction of the target protocol, are
integrated into one. The integration expressio,n gives us
information on how to intesrate the comoonent service
specifications.

Definit ion 6, Consider a context free grammar G,:
( { E . T . F  } . D . P . f  ) , w h e r e  D :  {  . 1 . * . ( . t . [ . ] , x i . ( i : 7 . 2 .
. . . . n \ . y i (  j  :  r . 2 . . . . .m) j ,  The  se r  o f  p roduc t i on  ru les  P  i s

L
a \*)DtEnd-reql  Dr_ieqt  Dr_indl

A A__)\-/ \:-,/
DtEnd ind2

s

Tah le  1

Produc t ion  ru les  P

Nu. Product ion Rulc l \  o . Produsl ipn Pr1.

T  -  i E r

T : : : r i  ( 1 < i = n r
F  - \ i  i l < ; < - '

E . . _  ^

shown in Table l. Let L(Gr) denote a lttnguage generated
b.v G1. We introdtrce a sttbstitution r which substitutes x,
and yi by a c'ertain component sen'ice specifcation and a
certain set of positit'e integers, respectirel\,, ond also trans-
forms [a.0, f .  l l  and [a.y . {  in to cx!  ̂ ,8  and cr '1  ,  respec-
tiv'ely. Then an integration expression is a string obrainetl
by appl)'ing the substitutiott r to any terminal string in
L t G , r .

For  example,  le t  So.  56,  S, .and Sp be component  sen' ice
specifications; then the strings S.. I Sa, S.o I Su Sa. and
(SA |  (SB I  Sc) i r . r )  Sp are in tegrat ion expressions.

Remark3 .  The re  a re  t h ree  k inds  o f  svmbo ls '  ' . ' l ' und ' * '

in the integration expression. These represent the following
three integration operations on component service specifi-
cations: an alternativ,e integration S, ] Ss : a sequential
integration S,r lSt; and a recursiy,e integration Sl. The
definit ions of the operations wil l be presented in Section ,5.

2.1. Protocol specifcatnn

A protocol specification consists of a pair of specifi-
cations for protocol entit ies (PEs). As in Definit ion 1. u'e
also define the protocol entity speciflcation using a labeled
directed graph.

Definit ion 7.A protocol entity specification PE,1r : 1.2)is
defined by a labeled directed graph PEi - (Vpi.Xoi. In,. rli)
( i  :  1 .  2\  where.

' 
\,i is a set of nodes representing protocol states (or sintplt,
stqIes ).

. Dp; : i" U -ll/as is a set of labels attached to the e(lges.
SP is the same es that in Delinition 1.:11:L\ is a set of
protocol message events, and each element h jlf,ls is
specifed either lm or ?m, where m is a protocol message.

' Toi is a set of directed edges representing protocol stqte
transitions (or simply transitions). As in Delinition l, y+,e
use a t r ip le (u.p, t ) .  u .v  e Vni .  p  €Dpi  to  represent  d
directed edge from node u to node v with label p. (lntui-
tivel,v", fu,p.f) implies that state u in PE; is changed into
state v by executing p. Especiall l ' ,  p: lnt and p -')nt

represent sending m and receiy'ing m, respecti,ell'.)
. rir, € Vri is an initial protocol state.

A protocol specification (or simplr- protocol) P consists
of two protocol entiry specifications PE, and PE,. Thus, v,e
represent it by P : (PE..PE.), n

I

l

.l
-+

:
6

7
8

F ' ' _  T

E : : :  T  E
E : : :  I T .  E .  F .  1 ]
T  -  [ 1 . n . * I

Fig.  .1.  Example of  senice speci f icat ion
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Definition 8. A state u € V6 A Vrz is called a final state iff
there is no outgoing transition (u,p,v) for any p and v. A
state u e Vpr U Vnz is called a receiving state iff any out-
going transition from u is a message receiving event
(u,?m,v)  for  any m and v, .  n

Definition 9. A global state of a protocol P : (PE t. PE.) is
a quad-tuple g:  [u .  w,x,y) ,  where y €V4.  w €Vnz,  and x
and y are strings over the protocol messages in'TILS. (ntui-
tively, node v represents the current state of PE1 and string
x represents messages stored in a communication medium

ftom PE, to PEy Similarly, node w and stringy have the
same meaning for 

'state of PE2' instead of 'state of PE1'
and'from PEl to PE2' instead of 'from PE2 to PE1'.) The
init ial global stqte is go - [ i,or.ro:, e.ef where e is the
empry string. tr

Definit ion 10. Let g: [y,r..t.] l  be a global state of a
protocol P = (PE1.PE). Then, the global state g' defined
by the following is called the next global state of g. In the

following, E1 and Et ar€ primitives in PE1 and PE2, e
represents a protocol message, and ' is a concatenation
operator.

Case  l :  I f  ( v ,E1 ,v ' )  €  74 ,  t hen  g '  :  [ v ' ,  w ,x , y ] .
Case 2:  I f  (w,E2,w')  € Tpz,  then g '  -  [ r , ,  w ' ,x , -v1.
Case  3 :  I f  ( v , l e , v ' )  €  Tp t ,  t hen  g '  -  [ v '  ,w ,x , y '  e ) ,
Case  4 :  I f  (w , l e ,w ' )  €Tpz ,  t hen  g '  -  [ v ,w ' , x  e . y ] .
Case  5 :  I f  ( v . l e , v ' )  e  T t  and  x  :  € ' x ' ,  t hen  g '  :

l r " .  w . r ' . 1 ' 1 .
Case  6 :  I f  (w ,?e ,w '  )  €  To2  and  y  :  e ' l ' ,  t hen  g '  :

[ v ' ,w '  , x , y ' ] ,  n

Definition ll. A global state I of a protocol P is reachable
iff g is the initial global state of the P or there exists ar
least one sequence of global states g0,gt,...,En - g sttch
that  each B,+t0 

-  0, . . . .n  -  1)  ls  the next  g lobal  s tate

M. Nakamura et al.iComputer Commmtication.t I9 (1996) 1200-1215

Fig.  5.  Example of  protocol  speci f icat ion

( b )

(a)  A protocol  speci l icat ion;  (b)  sequence chan.

In this paper, we focus on the following rwo types of
protocol errors: unspecified reception and deadlock.

Definit ion 12. A reachable global state g : [t,.w.x.t '] of a
protocol P is called an unspecified reception state iff g
satisfies the following conditions (l) or (2):

(1) v is either a receiving state or a final state, x : e'x' and
( v , ? e , v ' )  4  T r l

(2) w is either a receiving state or a fnal state, :- : e' ,\' and
( w , ? e , w ' )  4  T p 2 .  J

Definition 13. A reachable global state g : lv.w,,x,t'l of a
protocol P is called a deadlock state iff both t' and w, are
receiv ing states and r : I :  € .  t r

Definition 14. A protocol P is safe {f any reachable global
state of the P is neither an unspecified reception state nor a
deadlock state. n

Fig. 5(a) shows an example of protocol specification,
State 3 of PE1 and state 4 of PE2 are final states. and
state 2 of PEl and state I of PE2 are receiving states. This
protocol is safe, since any reachable global state is neither
an unspecified reception state nor a deadlock state.

This protocol realizes a data transfer function prescribed
by the service specification in Fig. 4. The protocol messages
a, b and c are caused by executions of primitives Dt_reql.
Dt_ind2 and DtEnd_req1, respectively. A sequence chart in
Fig. 5(b) describes the execution sequence of data transfer
performed by this protocol.

3. Outline of protocol derivation

The protocol derivation problem to be discussed in this
paper is defined as follows:

Input. A set of component service specifications

{S,r ,Sr , . . . .Sc}  and an in tegrat ion expression e; rp.

l c

t
( 1 )

P E I

n

t
,(-(f*l
I  i a

C @ro'-''"'r:
DrEnd ind l

n f o
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Table l
Transi t ion s l 'nthesis ru les

Output. A protocol specification P - (PE j.PE.) which
satisfies the following conditions C1 and C2:

Condition C1. The protocol P is safe.
Condition C2. The execution ordering of primitives derive d

in each component service specification is kept in the
protocol P. !

The protocol derivation algorithm consists of the follow-
ing stages:

Stage I (Component Integration). The component service
speciflcations are integrated into an integrated service
specification in accordance with the given integration
expresslon erp.

Stage 2 (Protocol Synthesis). The single service specifica-
tion obtained in Stage I is transformed into a protocol
specification.

Since the result of the protocol synthesis is needed to i l lus-
trate dynamic behavior of the result of the component inte-
gration. we explain the protocol synthesis in the next section,
and then discuss the component inteqration in Section 5.

4. Protocol synthesis

1.1. Protocol sv-nthesis method

In this section. we describe a protocol synthesis method
which transforms an integrated service specification into an
integrated protocol specification. The protocol synthesis
algorithm is essentially the same as that in [9-12], and is
an extension of Saleh's synthesis algorithm [13, 14].

The protocol svnthesis problem is defined as follows:

Input. A service specification S obtained by Stage 1.
Output. A protocol specification P : (PE r, PE 2) satisfying

the followins conditions R1 and R2.

Condition Rl. The protocol P is safe.
Condition R2. The execution ordering of primitives derived

in S is kept in the protocol P.

The protocol synthesis algorithm consists of the follorl '-
ing steps.  In  the fo l lowing.  we suppose that  i . /  €  {1.2} .
i * j unless specified otherwise,

Stepl. At this step, fwo service specifications SAPI-S.
SAP2-S are obtained by projecting a given sen'lce
specification S onto each SAP1, SAP2. respectivelv.
In the projection, each primitive transition of S. which
is not associated with SAPI. is substituted b1, e in
SAPi-S.

Step2. This step synthesizes the protocol specification
P : (PEt,PE 1) from the projected service specifications
SAPl-S, SAP2-S. Actually. the svnthesis is performed
by applying transition synthesis rules shown in Table 2.
In Table 2, Ei denotes a primitive in SAPI-S. and e
denotes a protocol message caused bv the primitive 6i.
Additionally, a function OUT(s) returns a set of indices of
primitives outgoing from a node s in the sen'ice specifi-
cation. Each pair of rules Ak and Bk (1 '< l i  < 3) is
together  appl ied to pai rs  of  input  t ransi t ions (Sl . f l .S: )
in  SAPI-S and (S1,e.S21 in SAPj-S,  respect iveh, .  As a
result, pairs of input transitions are substituted bv pairs
of corresponding output transitions if a corresponding
condition holds.

The intuit ive concepts for these ruies are explained
briefly as follows:
Rule Al,B1. These rules implv that anv messages need
not be exchanged among PEs because two primitives
are successively executed at the same SAP(SAP/ ).
Rule A2,B2. After the primitive El occurs at SAfl. other
primitive can be executed at other SAP (SAP7). There-
fore, a protocol message e is transmitted to the other
PE (PEj) for the synchronization. The protocol message
e is uniquely generated for each primitive El. Then u'e say
that message e is caused by primitive El. (The name of
each message can be determined by the protocol designer.
In the real-l i fe protocol. there exists a correspondence
between a primitive and a protocol message, e.g. Connec-
tion Request primitive corresponds to CR PDU.)
Rufe A3,B3. These rules transform the L primitive LEi
into a message reception ?e where e is caused by fi.
Step3. Finally, e transitions are removed from the proto-
col specification bv applying the e removal algorithm
in  t 15 l .

For a more detailed description of this protocol svnthesis
algorithm, the reader is referred to Refs. [9-12]. In the
fo l lowing,  we use the term 'synthesize ' to represent 'svnthe-
size by the proposed method in Section 21.1'unless specified
otherwise.

Fig. 5(a) shows a protocol specification which is obtained
from the service specification shown in Fig. 4 by the pro-
posed synthesis method.

oUT(S2)= { i }

n E i  - l e n
e_K,N)
- - -  z F ' t  _ � _ � _ � - -
^ " P

at--+Q,
PEt

Message e  is
caused by Ei
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1.2. Il'ell-fornted sen'ice spec'ifcation

81'the protocol synthesis algorithm presented in Section
.1.1., Conditions Rl and R2 a/n,a_l's cannot be assured to
hold.

Consider a service specification S shown in Fig. 6(a).
It specifies the function of a data transfer with a cancel.
The part of states 1. 2, 3 and .1 specifies a data transfer
function from user 1 to user 2. which is the same as the
service specification in Fig. ,1. Next, the part of states 1. -5,
6. I and 8 specifies a cancel function from user 2 to user 1.
Primitives Can_req, Can_ind, Can_resp and Can_conf
represent Cancel Request, Indication, Response and Con-
firmation, respectively. Note that the executions of data
transfer and transfer cancel are triggered b.v user 1 and
user 2, respectivelv.

Then Fig. 6(b) shows a protocol specification P :
(PEt.PE.) synthesized from S. This protocol does work
correctly if only one of fwo functions is triggered bv
users. However, if user 1 and user 2 simLtltaneously execute
fwo primitives Dt_req1 and Can_req2. respectively, then
fwo requests cause a coll ision as shown in Fig. 6(c). Then
P may reach an unspecified reception state via the following
global  s tate t ransi t ion sequence:  [ .  1 .  e.  e l ,  [100.  1.  e,  e] ,

[ 100 ,  104 ,  e .  e ] ,  [ 2 ,  104 ,  e .a ] , 12 .5 .d .a  l .  Thus  P  i s  no t  sa le .
Similarly, a coll ision of DtEnd_req1 and Can_req2 induces
the unspecifled reception in P.

The protocol synthesis algorithm proposed in Section .1.1

is  an extension of  Saleh 's  synthesis  method [13,  14]  in  the
sense that our method allows the parallel execution of

Col l i yon  o I  Dt  req  I  and Can_req l
r f i | :  L'n.pecif i  ed Receprion r

( c )

Fig.6. Erample ofparal lcl  execution. (a) A senice specif icat iont (b) a protocol spccif icat ion: (c) sequence chart

+
q9,

l d

PEI

prinit ives at different SAPs. As explained in the above
example.  the paral le l  execut ion of  pr imi t ives outgoing
fiom a parallel state (for example. state I in Fig. 6(a))
may induce the unspecified reception in the svnthesized
protocol specification. To avoid the unspecified reception.
some extra receiving transitions must be added in thc
protocol specification. So. as an extension to Saleh's
method, we have newlv introduced L primitives into the
service specification as shown in Definit ion 1. Then. we
define Transition Svnthesis Rules A3.B3 such that an L
transition Lp; is translated into a recepticln of a message
caused by the execution of primitive p' in the protocol
synthesis. As a result, even when the sen'ice specifi-
cation includes parallel states, we can obtain the correct
protocol.

Consider again the service specification in Fig. 6(a). If * 'e
add ibur L transitions (2.LCan_req2,-5), (3.LCan_req2.-5).
(5,LDt_reql ,5)  and (5,LDtEnd_req1.5)  to S.  then for  a
new service specification extra transitions (2. ' ld. -5 ).
(3,  ?d.5)  in  PEy and (5.  ?a.  -5) .  ( -5.  ?c.5)  in  Pf  .  are neu' lv
generated and appended to the protocol specification in
Fig. 6(b) by the transition synthesis rules A-3,83. As
a result, even if the parallel execution of rwo primi-
tives Dt_reql and Can_req2 occurs, unspecified reception
never occurs.

A set of service specifications, from which protocol
specifications satisfying Conditions R1 and R2 are svnthe-
sized, forms a special class of service specifications. Such
a service specification is in a class of well-formed service
specifications as defined in Definit ion 5.

t/-:\
\:/

l e
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Lemma l, IJ a service spec'ification S is n'ell-forntecl, then a
protocol .speciftcation P : (PEr.PE.) st'nrhesized fi 'otn S
sotisfies ('onditictns R1 cirrl R2.

Proof (Sketch). From Definit ion -5. in the sen'ice specifi-
cation .S no parallel state exists or Condition P holds for
anv parallel state in .t.

Case l .  I f  no paral le l  s tate er is ts  in  S.  para l lc l  cxecut ion
of  pr imi t ives does nc l t  occur .  Thc proof  in  th is  case is
a l readv g i r "en in  [13.  11] .

Case 2.  Consider  the case that  S inc ludes some paral le l
s tates.  Suppose that  n '  is  a para l le l  s tatc  in  S and that  r ,
and  r ' ,  ( i .  j  €  {1 .2 \ .  i +  7 }  a re  p r im i t i ves  l eav ing  f rom
rr'. Bv Condition P. there exists SAPI-path p and SAPj-
path p. both of vr'hich start from n'. Let the last primirives
of the SAPI-path p and SAPj-path p be P1 and Q,. respec-
t ive lv .  Note thatP1 and O, mav be ident ica l  wi th-r ,  and_] , .
respect ive l r ' .

F ig.  7 shor l 's  a protocol  speci f icat ion P:  (PEi .PEj)
svnthesized trom 5. Without loss of generalit l ' .  suppose
that  r  :  I . j  :2 .  Consider  a subcase that  at  the g lobal  s tate

Iw' .  w.  e.  e]  the paral le l  erecut ion of  pr imi t ives r ,  and _r i  does
not  occur .  Then i t  is  a l readl 'proved [13.  11]  that  P reaches
neither an unspecified reception state nor a deadlock state,
and execution ordering derived in S is kept in the protocol P.

Next .  cc lns ider  a subcase that  the paral le l  execut ion of
x; and ,\r 'r occurs at Lrr'. 11'. e.el. PEi moves on the path
corresponding to p. Then after the primitive P, is executed,
PEi transmits a message p to PE jand enters state r. On the
other hand. Pf7 moves on the path corresponding tcl pr.
Then. Pf1 surelv receives the message p transmitted b1'
PEi and enters / via state s. because state s is u receiving
state according to transition svnthesis rules. A message q
rvhich mav be transmitted by PE7 is also received by PEi
on the path from w to /, because I is surely a receiving state.
Thus. the protocol P surelv reachcs a global state [r. r. e. el
q'ithout dropping in some unspecified reception states clr
deadlock states. Additionall l ' .  the execution ordering is
kept behveen primitives P; and fi 1in fig. 7). although
some redundant primitives mav be interleaved. Next. a
global state [r. r. e. e] is nothing more than a global state
which P reaches afier onlv the primitive -t '  is executed at

t l  
l P  , / ' , -

\  I  / : ,C
\ /4i' ' ' {o\:/ \:-\ Y,u
d'5 

-"t--5'
PEi PEr

fo r  l -en tma 1 .

f  n .  r r ' .  e .  e l .  Af ter  P reaches [ t .  t .  s .  e ] .  th is  subcase is
reduced to the case that no parallel execution occurs. Srt.
even if parallel execution of primitives occurs. Conditions
Rl and R2 are satisfied.

5. Component integration

In th is  sect ion.  we d iscuss the cc lmponent  in tegrat ion
state. in which component sen,ice specifications arc inte-
grated into a service specification.

The component integration problem is defincd as fcll lo*s:

Input. A set of component sen ice specifications

{S.r .Sr i . . . . .Sc }  and an in tegrat ion e.xpression e. tp.
Output. An integrated sen,ice specification S.

The component  in tegrat ion is  carr ied out  bt  execut in{
sequential integration, rcctrrsit 'c integratiutt and ulternatiye
integratiott.In Sections -5.1 and -5.2 n'e describe these three
integrations. then in Section 5.3 we suntmarize main results
ohta ined for  component  in tegrat ions.

5.1. Seqttential integration and recursire integrariotl

Thc Seqttential integration combines t$'o component
service specil ications S.a and Sp by' joining some final
state of 51 with the init ial state of 56 and gets an integrated
service speciflcation. We denote the resultant service speci-
fication bl' S.r JSs. The protocol. which is obtained bv
applying protocol synthesis to S, J 56. performs nro sen,icc
functions ofS, and SB successivell ' . Although the sequential
integration can be executed on the sen'ice specification
level, similar sequential integration is alreadv presented
on the protocol speciflcation level in [1. 2].

In  the fo l lowing,  we use V;(S)  to denote a set  of  a l l
f inal states in the service specification S. The sequential
integration (S.A Jr SB) is defined as follows:

Input. Two service specifications S.1 and Ss. and a set of
final states F C Y/ (S4 )

Output. An integrated service specification. denoted bv
S.a l rSa.  Especia l ly  when F:  V/(S.o) .  we omit  F and
denote it just by S.4 J SB.
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Connect ion
Setup

Data

Transfer

( d )

(a)  Component senice speci f icat ions:  (b)  an integrated sen' ice speci f icat ion:  (c)  r  protocol  speci f icat ion

repeatedly. The recursive integration tS.l.) is defined as
follows:

Input. A service specification S.a and a set of f inai states
r E yf (sA)

Output. An integrated service specification, denoted bv
Sjo. _Especially 

when F : V,f , we omit F and denote it
bY  so .

Procedure (Sj. 1. loin anv final state w € F with the init ial
state r,0 of S.a, and generate a new state w.r,6. The init ial state
of S,a newly becomes the init ial state of the integrated
service specification Sr,. tr

Remark 4. In the sequential and recursive integrations. we
assume that S, includes at least one final state. If S.o does not
have any final state, these integrations cannot be appiied.

For sequential integration and recursive integration, the
following lemmas hold.

Lemma 2. An integrated service specification S.a I p 56 is
well-formed if both component sery,ice specifcations S^ and
S6 are well-formed.

Proof. Let w be any final state in F and r,0 be the initial state
of 56. The outgoing transitions from the new state w.l1 in

C-conf l

t/-\
r,-tP-lr l l

D l E n d r e q l  O t _ i e q t  D r _

i i l
G) GP
v

DLE.nd_rnd?

t
q1/ .s4 ,.ta

(b )

.la

l r

A
b-\l-l(l-Fr

Y/

l e

I
Lq,

DtEnd_ ind2
i

(t,P E I

( c )

lntegratronFig.  8.  Explanat ion for  sequent ia l
(d)  sequence chart .

Procedure (S.4 lrSa). Join any final state w € F of Sr with
the init ial state r,0 of 56, and generate a new state w.lL)
(concatenation of w and i '0). The init ial state of S.a becomes
newly the init ial state of the integrated service specification
s.r li.sr. r

For example, consider nvo component service specifica-
tions S,1 and 56 shown in Fig. 8(a). S.a specifies a connection
setup function from user 1 to user 2, where primitives
C_req, C_ind, C_resp and C_conf denote Connection
request, Connection indication. Connection response and
Connection confirmation, respectively. Sp represents a
data transfer function as mentioned before. By combining
the flnal state 5 of S.a with the init ial state 6 of 56, we can
obtain a new service specification S.,r I Sa shown in Fig. 8(b).
Note that the service specification S..r I Sa is transformed
into a protocol specification P in Fig. 8(c) by the protocol
synthesis. This protocol P implements the functions of
connection setup and data transfer as fwo sequential phases
as shown in Fig. 8(d).

Next, the recursi,e integration combines one com-
ponent service specification So with itself. We denote the
resultant service specification by S, The protocol, which
is synthesized from Sl , performs the service function S.r



Sa JpSa are also the outgoing transitions from r.,0, because
w has no outgoing transitions in S.a. Therefore, no other
parallel states except for those in Sr and Ss are newly gene-
rated by sequential integration. Since 51 and 56 are well-
formed, no parallel state exists in S, and 56, or Condition P
is satisfied for any parallel state in S; and Ss. Therefore,
no parallel state exists in S, J r. Sr or Condition P is satisfied
for any parallel state in S, lrSa. n

frmma 3. An integrated senice specification S.l, is
well-formed if the component sen,ice specification S.a
is well-formed.

Proof. As in sequential integration, no other parallel states
except for those in S.a are newly generated by recursive
integration. So if Sa has no parallel state, then no parallel
state exists in Sj,. Next, consider the case that 51 has some
parallel states. Subconditions (2) and (3) of Condition P
are clearly satisfied for any parallel state in Sl, because
Condition P is satisfied for any parallel state in Sa. By
recursive integration, a cycle p containing parallel state r
may be newly generated in S,1o by recursive integration.
However, p never forms SAPi-cycle because S; has no
reachable SAPI-path from which r starts according to sub-
condition (1). Hence, subcondition (1) holds for any para-
llel state in Sio. Thus, Condition P is satisfied for any
paral le l  s tate in  S,  n.  ^ F

5.2. Alternative integration

The alternative integration combines two component
service specifications Sr and 56 by joining fwo initial states
of S,1 and 56. We denote the resultant service specification
by S,a 56 The protocol, which is obtained by applying
protocol synthesis to the service specification SolSs, per-
forms the function of either S.a or 56, but not simul-
taneously. Although the alternative integration can be
executed on the service specification level, similar alterna-
tive integration is already presented on the protocol speci-
fication level in Ref. [5].

For example, Fig. 9(a) shows fwo component seryice

Dt  req l  D r

specifications S.a and 56. As discussed before. S, specifies
a data transfer function from user I to user 2. and Sg
specifies a cancel function frclm user I to user L Bv joining
the init ial states of S-1 and 56, we get the integrated senice
specification S; 56 shown in Fig. 9(b). 5r 56 specifies the
function of a data transf'er with cancel.

However. just combining only two init ial states clf trvo
component service specifications does not necessarilv
assure the safety of the resultant protocol. To assure the
safety, we must address a new other problent contponent
competition.

The component competit ion arises when the protocol
tries to init iate the executions of both functions of S.a and
56 simultaneously. Consider again the integrated service
specification in Fig. 9(b). Since the service specification
S,1 56 is the same as S shown in Fig. 6(a). the protocol
synthesized from Sa ]56 becomes the protocol specification
P in F ig.6(b) .  As a l read-v d iscussed in Sect ion -+.1.  S1 SB
is not a well-formed service specification, and parallel
execution of Dt_reql and Can_req2 leads the protocol P
to unspecified reception state. The reason why P reaches the
unspecified reception state is considered as the competit ion
of fwo service functions Sr and 56: when two primitives
Dt_req1 and Can_req2 are executed in parallel bv user I
and user 2, respectively, PEl init iates the data transfer func-
tion of S-r while Pf . init iates the data cancel tunction of
56. Then, two functions compete with each other and the
coordination between PEy and PE, is lost.

The component competit ion happens if the tbllowing
condition Q holds:

Condition Q. Let rs and w1 be the init ial states of S4 and
56, respectively. For i, je 11.2\, i * j, v,hen a rransitiort
(r '0, p, v) such that sap(p) : i exists in 51, at least one tran-
sit ion (w11.q,w) such that sap(q) - j also e.risrs irr 56
simultaneously.

To resolve the competit ion, we introduce the prioritv inttr
component service specifications in advance. When the
competit ion occurs, the execution of function with low
priority is aborted. In order to realize such mechanism.

M. Nakamura et al.iComputer Communications l9 (1996) 1200-1215
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DtEnd_rcq  I

we svstematicall l '  add some L transitions to the integrated
service specification.

Now we present the alternative integration. In the
fo l lowing,  we sav that  a SAPI-path p ( i :1 .2)  in  51 56 is
inherited from Sa (or 56) iff the p is included in Sq 56
because p is in 51 1or 56). The alternative integration
(S.{ SB) is defined as follows:

Input. Two service specifications 51 and SB. Let r '1y and w,y
be the init ial states of S.1 and 56, respectively. Without
loss of generality, we assume that the priority of 56 is
higher than that of S,.

Output. Al integrated sen'ice specification. denoted by
S.,{ lSr.

Procedure (Sa 56):
Stepl: Combine the init ial states of t1 and 56. and generate

a new init ial St&te u6.w1y of 51 56.
Step2: If Condition Q is satisfied, then repeat the following

Substeps a and b as long as new L transitions can be
added to S.., Sr.

Substep a: if (r, is a tail state of a SAPr-path inherited
from Ss from r.'6.w6, and p; is a last primitit'e of
the SAPi-path) and (r' is a state which is reachable
from r,6.w6 by a SAPT-path inherited from Sa), then
add a transition (v,Lpi. w) to Sr l56.

Substep b: if (q, is a /asr primitit 'e of a SAPT-path
inherited from S.r from r11.w11) and (r is a state
which is reachabie from r11.ws by a SAPi-path
inherited from 56), then add a transition (r,Lqi,r1

to Sa 56.  n

i

v

Figure l0(a) shows an integrated service specification Sa ]56
obtained trom the component service specifications S1 and
56 shown in Fig. 9(a). Fig. 10(b) shows a protocol specifica-
tion for the data transfer protocol with cancel function
which is synthesized from Sr S3. As shown in Fig. 10(c).
when the competit ion occurs. the cancel function (specified
in 56) is executed while the data transfer (specified in Sa)
is aborted in accordance with the priority assignment.

Note that if hvo component service specifications 51 .S73
have commonly the same primitive outgoing from the
init ial state. then the integrated service specification is no
longer deterministic as required. However. this problem can
be resolved by relabeling the primitive in one of component
service specifications 5,t . Sa.

Now, we give the following lemma on the alternative
integration.

l,emma 4,An integrated sen,ice specilication S.a 56 is re1l-

formed if (condition Q does not hold, but the following
condition (1) holds) or (condition Q holds and the follow'ing
conditions (l)-(3) holdl :

Q) Both compotrcnt service specifcations S,a and Sp are
well-formed.

(2) Neither Ss nor S6 includes SAPi-cycle containing tlte
initial state.

(2) Neither S; nor56 includes reachable SAPi-path starritg

from the initial state.

Proof. For S 1 and 56, if Condition Q is not satisfied, then the
init ial state of 51 ]Ss is not a parallel state. Even if S.{ SB

Can- resp l
I

t1r.- -1-_,

P E I

( b )

req I and Can
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includes some parallel states. for any parallel state condition
P must hold b1" condition (1). Otherwise, if condition Q
holds.  then the in i t ia l  s tate of  Sal56 becomes a paral le l
state. Bv conditions (2), (3) and substeps (a), (b) of the
alternative integration, L transitions are added so that Con-
dition P is satisfied for the init ial state of S, l56. For other
parallel states in Sr SB. if they exist, Condition P holds by
cond i t i on  (1 ) .  n

5.3. Component inte gration al gorithnt

Sel'eral component service speci{rcations, which are
given as the input of the component integration problem,
are integrated into one b_v-' successive applications of three
integration operations according to the given integration
expression. The order of the applications is uniquelv deter-
mined using a so-called parsing tree for the integration
expression (that is, a context free language). After the inte-
grated service specification is generated by' the component
integration operations. it is transformed into the target
protocol specification bv the protocol synthesis algorithm.

As for three integration operations presented in Sub-
sect ions 5.1 and -5.2.  the fo l lowing lemma holds:

L,emma 5. The integrated sen'ice specil ications S.r JrSa,
presen'es the erecution ordering ctf primitives deriy'ed in
both component sen'ice specifcations Sa and Ss. Similarly,
SalSs preserves the execution ordering derived in hoth Sa
and SB, and S\, preserves the execution ordering derit 'ecl
irr S.a.

Proof. It is obvious that none of the three component
integration operations delete, duplicate or reorder the primi-
tive transitions in the component service specifications.
Therefore. the execution ordering derived in the component
service specifications is also derived in the integrated
service specification. l-

Now, we give the following theorem with respect to the
correctness of the target protocol.

Theorem l. If the integrated sen'ice specification S
obtained by the component integration algorithm is well-

formed, then the protocol specifcation P linally derived

from S by the protocol s,vnthesis algorithm satisfes Condi-
tions C7 and C2.

Proof. Since S is well-formed. P satisfies both Conditions
R1 and R2 according to Lemma 1. Condition R1 is just
the same as Condi t ion Cl .  Addi t ional ly .  by Lemma 5,  the
integrated service specification preserves the execution
ordering of primitives derived in the component service
specifications. Therefore, Condition C2 is also satisfied if
Condition R2 is satisfied. -�

Theorem 1 implies that the correctness of the target
protocol can be checked on the service specification level.
In other words, to check if the target protocol is correct or
not can be reduced to the decision problem if the integrated

service specification is well-formed or nclt. Lemmas l. 3
and 4 provide the sufficient conditions for the integrated
service specifications to be well-formed. So. u'e can find
the fbllowing guideline for constructing the correct protoccll
specification.

Component integration algorithm
Step 1. Develop the component sen'ice specifications so

that all of them are well-formed.
Step 2. Based on the integration expression. select nvo

service speciflcations as the components which are inte-
grated at this time (In the case of recursive intcsration. r 'u'e
select one sewice specil ication.)

Then, for the service specifications. check if the inte-
grated service specification wil l be rvell-formed or not
by using Lemmas 2, 3 or ,1. If i t wil l not be rvell-tbrmed.
abort the procedure and redesign the component scn ice
specifications (at Step 1 again).

Step 3. Apply the integration operation ttr the sen'ice
speci f icat ions.  I f  some integrat ion operat ions st i l l  remain.
go to Step 2. Otherwise. we can obtain the u,ell-formed
integrated service specification. which u'i1l be trans-
formed into a correct protocol specification bv the prclto-
col s-vnthesis algorithm.

Note that  Step 2 can be easi lv  implemented bv us ing a
simple path trace algorithm for the service specifications
(This fact implies that any special knowledse of protocol
verif ication is not necessarv.)

6. Application

6.1. Part of FTAM

As an example, we trv to construct a protocol for Bulk
Data Transfer part of the FTAM (File Transfer. Access and
Management ISO 8571) [15,  16]  OSI Appl icat ion laver
using the proposed method.

In FTAM serv ice.  two senice users r ( ' r ' l ic ( ' i t t i r iaror
(simply init iator) and service responder (simply responder)
take part in an FTAM association. The Init iator ls a user
who begins the FTAM association and activates all opera-
tions of FTAM. The Responder is a corresponding user
who responds to all requests from the Init iator. Bulk Data
Transfer is triggered when the init iator executes either
the primitive F-READ request or F-WRITE request. If the
init iator executes the F-READ request. then the F-READ
service starts. Similarly, if the F-WRITE request is exe-
cuted. then the F-WRITE service starts.

The F-READ service specifies a data transfer trom the
responder to the init iator (that is. the init iator and responder
are the receiv'er and sender of the data, respectivelv). This
direction of data transfer is f ixed unti l the F-READ service
is completed. The data transfer continues unti l the responder
informs the init iator of the completion by executins an
F-DATA-END request primitive. When data transfer is
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Fig. 12. Bulk Data Transfer part of FTAM. (a)

the coll ision of an F-CANCEL requests happens). Addition-
ally, we assign a higher priority to SslS6 than that of 56
(since the F-CANCEL service has a higher priority than any
other services). We can verify that at each stage of the
integrations, the integrated service specification is well-
formed.

Similarly, we get the integrated service specification for
the F-WRITE service based on the integration expression
(Sc I (Sp I (sir lSc)) I 121(Sr Sri) I rqr(Sr lSo)).. Finally, rwo
service specifications for F-READ service and F-WRITE
service are integrated by the alternative integration, and
we get the well-formed service specification for Bulk Data
Transfer Service shown in Fig. 12(a).
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F  C a n _ r n d 2

W: F.( 'an_req2
/  I C A \ R Q

PE2.
(RESPONDER)

Service specification; (b) protocol specification.

This integrated service specification is then translated
into a protocol specification by applying the protocol syn-
thesis algorithm. As a result, we can obtain the target
protocol specification P : (PErPE2) shown in Fig. 12(b).
In this figure, for convenience, two successive transitions
(v1,a,v) ,  (v2,b,v)  are s imply represented by one t ransi -
t ion (v1,  a lb,v) .

6.2. Evaluation

The derived protocol shown in Fig. 12(b) is almost
same as the Bulk Data Transfer Protocol Machine which
is described usins a state transition table in ISO 8571-4
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[16]. However. in our protocol, some redundant protocol
messages a. b, c. d and e in Fig. 12(b) are generated.
although these do not appear in ISO 8571-,1.

Messages a, b and e may be deleted. but messages c and
d cannot be erased. Suppose that we remove transitions lc
and ?c from PE1 and PE2, respectively. Then we gct into
the following situation: if user 2 infinitelv executes the
F-DT_req2 at Data Reading state of PE2, then PE2 may
never receive the cancel request message CANRQ from
PE1. In the real-l i fe protocol. such situation is resolved bv
service functions in the lower layer (l ike the flow control
function. and so on). Really. messages c and d seem to
correspond to Receive Ready PDUs in the Network Layer.
However, since we model the lower layer only by a simple
FIFO queue, and also model the protocoi by a simple finite
state machine, such messages c and d are essentially neces-
sarv for the correctness of the protocol. The optimization of
redundant messages is one of our future works.

6.3. Comparison

In this paper, we propose three kinds of integration opera-
tions on the sen,lce specification level (we call them service
integrations). On the other hand. there exist several compo-
nent integration methods on lhe protocol specilication level
(call them protocol integrations). For example, alternative
integration in Ref. [5], and sequential and recursive integra-
tions in Refs. [1,2] are protocol integrations. Here we trv to
compare the effectiveness of the service integration and
protocol integration. In both integrations, we must verify
some conditions to ensure the correctness of the target
protocol by analyzing component specifications.

As  d i scussed  e l sewhere  [1 ,2 ,5 ] ,  t he  conven t i ona l
protocol integrations require validation of the protocols
using reachability analysis. Unfbrtunately, it is known
that reachability analysis exponentially takes a lot of time and
cost, because of the state explosion problem [17, 18]. There-
fore, if we integrate components with a very large size using
protocol integration, verification of the conditions would be a

bottleneck of the component integration. even though some
state reduction techniques can be bonou'ed.

On the other hand. in our service integration. such a
verif ication can be performed at the service specification
level, which generally has a much smaller state space than
the protocol specification. Moreover. the verif ication can
be easily done by an algorithm for a simple path trace on
the directed graph representing a service specification (as
ment ioned in Sect ion 5.3) .

Here. we compare the service and protocol integrations
with respect to the operational state spaces of specifications.
Table 3 shows the operational state space which is generated
in the construction of the FTAM protocol discussed in
Section 6.1. The column 'Service Function' represents the
service function prescribed in the service specification. The
column 'S-Int' represents the number of states in the service
specification obtained using service integration. and 'P-Int'

shows the number of reachable global states in the protocol
specification obtained using protocol integrations.

From Table 3, we can observe that the state space on the
protocol integration exponentially increases along with
the progress of integrations. when comparing with that
on the service integration.

Thus. a major advantage of the service integration is that
we can operate it in a much smaller state space, compared
with the protocol integration, especially when the size of
the components is  large.

7. Conclusion

In this paper, we have proposed a framework for design-
ing communication protocols from component service
specifications by using component integration and protocol
synthesis techniques. The most important point is that com-
ponent integration is performed at the service specification
level, which generally has a much smaller state space
than the protocol specification. Using the concept of a
'well-formed' service specification, we can guarantee at



the service specification level the correctness of the target
protocol specification. A1so, we have applied the proposed
method to the construction of a real-l i fe OSI protocol, and
evaluated the effectiveness of the proposed method.

However, the following further research still remains, and
is being studied:

(a) An extension of the proposed technique to n (>2) enti-
t ies protocol and unreliable communication medium.

(b) An optimization of the redundant messages in synthe-
sized protocols.
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