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Abstract

Constructing communication protocols from component service s
protocol. enables efficient development of a large and complex comm

pecifications, each of which specifies a subfunction of the target
unication protocol. Concerning this construction, related techniques

have been already proposed: integration of component protocol specifications into a single protocol specification and transformation of
service specifications to protocol specifications. However, the integration needs special knowledge of communication protocols, and the
transformation requires that a large and complex service specification should be developed as input to produce the target protocol. In order to
cope with these problems, this paper proposes a new method which at first integrates component service specifications into a single service
specification. and then transforms the service specification into the target protocol by a protocol synthesis technique. The most important
point of view is that component integration is performed at the service specification level rather than the protocol specification level.
Additionally. we define a class of *well-formed” service specification which ensures correctness of the target protocol. As a result, the
integration and transformation can be efficiently executed in small state space without special knowledge of communication protocols.
Finally, we have shown the effectiveness of the proposed method by constructing a part of the real-life OSI protocol FTAM.
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1. Introduction

The recent rapid progress of computer communication
systems enables the advancement and diversification of
communication services. Accordingly, the communication
protocols which realize the communication services become
larger and more complex. As a result, development of such
large and complex communication protocols has become a
serious problem.

In order to attack this problem. the following approach can
be considered as a practical solution: This approach consists
of the three stages:

Stage 1: Divide the functionality of a service into sub-
functions,

Stage 2: Describe service specifications for the subfunc-
tions as components (we call them component
service specifications).

Stage 3: Obtain the target protocol specification (call it

an integrated protocol specification) based on
the component service specifications.
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The major advantages of this approach are summarized
as follows: (a) since the service specification is used as
the starting point (that is, at Stage 2), the content of the
required services are clearly specified even by the service
designer, who does not have special knowledge about the
communication protocols; (b) since a hierarchical design
is adopted, at Stage 2 we can easily develop each compo-
nent with a relatively smaller size, and focus on a single
function without considering interaction with other func-
tions: (c) if an effective decomposition is found at Stage
1, we can reuse subfunctions and thus reuse components
in a future development.

In this paper, we focus the discussion on Stage 3. and
propose a new technique to implement Stage 3. As des-
cribed before, Stage 3 derives an integrated protocol speci-
fication from the given component service specifications.
Fig. 1(a) shows the content of Stage 3 schematically.

So far, two kinds of techniques, which are closely related
to the implementation of Stage 3, have already been pro-
posed. One is techniques that integrate component specifi-
cations into a single specification. All of the integration
techniques are at the protocol specification level. That is,
as shown in Fig. 1(b), these techniques integrate several
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Fig. 1. Derivation of integrated protocol specification.

component protocol specifications into a single protocol
specification. Chow et al. [1, 2] proposed a constructing
algorithm for a multiphase protocol, in which multi-phases
are sequentially executed, and each phase performs a dis-
tinct subfunction. Next, Lin et al. [3] and Singh et al. [4]
extended this algorithm [1, 2] by removing some restric-
tions. Moreover, Lin proposed two nice integration algo-
rithms [S, 6]. In an alternating function protocol [5], the
user can select any one from several functions, but is
restricted to execute only one function at a time. On the
other hand, in a concurrent function protocol [6], several
functions can be performed concurrently.

The other techniques transform service specifications into
protocol specifications, as shown in Fig. 1(c). The most
efficient and reliable technique is a so-called protocol syn-
thesis technique [7-14] that automatically derives a pro-
tocol specification from a service specification without
specification errors.

In this paper, we propose a new method for protocol
derivation from component service specifications. Fig. 1(d)
shows the essential parts of the proposed method. At first,
we integrate the component service specifications into a
single service specification. The most important point is
that the component integration is performed at the service
specification level. The integration is executed using three
kinds of component integration (alternative, sequential and
recursive integrations) at the service specification level,
which corresponds to the existing protocol integration
methods [1, 2, 5]. Then, we transform the single service
specification into an integrated protocol specification by a
protocol synthesis method. The protocol synthesis algorithm
is fundamentally based on the protocol synthesis algorithms
[9-12].

In the proposed method, we introduce a concept of ‘well-
formed’ service specification. This ‘well-formed’ service
specification plays an essential role in the proposed method.
If the given component service specifications are well-
formed, then an integrated service specification is also
well-formed. Additionally, if the integrated service specifi-
cation is well-formed, then we can obtain the correct proto-
col by the protocol synthesis. The advantages of the
proposed method are summarized as follows: (a) since the
component integration is carried out at the service speci-
fication level, we can efficiently execute the integration in
a much smaller state space; (b) by utilizing the concept of
‘well-formed’ service specifications, we can ensure the
correctness of the target protocol at each integration step.

This paper is organized as follows. Section 2 gives neces-
sary definitions of service and protocol specifications, and
Section 3 outlines the proposed method. Then Section 4
presents the protocol synthesis algorithm, and Section 5
presents the component integration algorithm at the service
specification level. Section 6 shows the effectiveness of the
proposed method by constructing a part of FTAM according
to the proposed method, and evaluates the result. Finally,
Section 7 concludes the paper with future research.

2. Definitions
2.1. Communication model

Fig. 2 shows the communication model which we adopt
in this paper. This describes a particular layer (a layer (N))

and its interaction with the upper layer (a layer (N + 1)). The
layer (N) protocol entities (PEs) provide the communication
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services (called the laver (N ) services) to the layer (N + 1)
users. A layer (N) service is realized by exchanging service
primitives between the layer (N -+ 1) users and the layer (V)
PEs through the interface, called service access points (SAPs).
The layer {(N) PEs exchange protocol messages with each
other through the underlying communication medium,
whose functions are usually performed by the layer (N — 1)
services. The rules that govern the exchange of protocol
messages among the PEs are called the layer (N ) protocol.
In this paper, we define a service specification as the
specification which describes a layer (N) service, and a
protocol specification as the one which describes a layer
(N) protocol. We assume that the number of PEs is two,
and that there exists one-to-one correspondence among
Useri, PEi and SAPi with the same index (i = 1.2). More-
over, we assume that the communication medium is reliable,
and that the protocol messages are delivered in FIFO order.

2.2. Service specification

A service specification defines sequences of service
primitives to be realized as communication services,
which are exchanged between users and protocol entities
through SAPs. A service specification is modeled by a Finite
State Machine (FSM). The FSM is usually represented by
a labeled directed graph. Thus, in this paper, we define a
service specification directly using a labeled directed graph.

Definition 1. A service specification S is defined by a
labeled directed graph S = (V,, L, T.v,) where,

* V. is a set of nodes representing service states (or simply
states).

* L, =SPU Lis a set of labels attached to the edges. 5P is
a set of service primitives (or simply primitives). Each
primitive p € S? has, as an attribute, an index of SAP
through which p passes. If primitive p passes through
SAPi (i =1,2), then we define a function sap(p) =i,
and also represent it by p;. Next, L = {Lp|p € 5P}, and
each element Lp & L is called an L primitive.

T, is a set of directed edges representing service state
transitions (or simply transitions). For simplicity, we
use a triple (u,p.v) to represent a directed edge from a
node u €V, to a node v € V, with a label p € L. (The
directed edge (u, p.v) intuitively implies that state u of the

Layer <N+i{>
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Fig. 2. Communication architecture model.
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service specification S is changed into state v by executing
primitive p.) We call an edge (u.p.v) with p €SP a
primitive transition and call an edge (u.p.v) with p € £
an L transition.

* v, € V, is an initial service state. =

In this paper, we assume that all service specifications §
are deterministic, that is, no two outgoing edges from any
node have identical labels.

Remark 1. The service specification is different from the
previous ones proposed in [13, 14], in the sense that it may
include the L primitives. L primitives Lp are the auxiliary
primitives for the protocol synthesis algorithm discussed in
Section 4, and are translated into receptions of a message
caused by execution of primitives p.

Definition 2. A path p= (Vl.pl.\':).(\':.p:. Videooo
(v, p" . V1) in a service specification S derives an execu-
tion ordering among primitives p' = p° = -+ = p" which
implies that any primitive p"(l = 1< n) must be executed

earlier than other primitives p’(i + 1 = j = n). O

Definition 3. A state u € V, is called a final state iff there
is no outgoing transition (u.p.v) for any p and v. A state
u €V, is called a parallel state iff u has at least mo
primitive transitions (u,p.v) and (u,q.v") with sap(p) = 1
and sap(q) = 2. ]

Definition 4. A path (v;.p'.va). ... (v op" e

(v " vuiq) in a service specification S is called a
SAPi-path (i=1.2) iff sap(pk) =i (k=1.....n) and
Opa " vais) such that sap(p"T')y=j (j=1.2.
J # 1) exists in S. Additionally, the states v| and v, _, are
called a head state and a tail state of the SAPi-path, respec-
tively, and the primitive p" is called a last primitive of
the SAPi-path. A SAPi-path (i =1.2) is called a SAPi-
cycle iff its head state and its tail state are identical. A
SAPi-path (i =1,2) is called a reachable SAPi-path iff
its tail state is a final state of S. g

Now, we define a class of service specification.

Definition 5. A service specification S is called a well-
formed service specification iff no parallel state exists in
S or the following condition P holds for any parallel state w
in S.
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Condition P. Consider a SAPi-path from w (call it path p)
and SAPj-path from w (call it path p) (i.j = 1.2.i# ).
Suppose that P; and Q; are the last primitives of p and g,
respectively. Then. (1) the p is neither reachable SAPi;-
path nor SAPi-cycle. Similarly, the p is neither reachable
SAPj-path nor SAPj-cycle; (2) for any state v on p, an L
transition (v.LQ;.v) exists in S; and (3) for any state » on p
and the tail state ¢ of p. an L transition (r.LP.1)existsin S
(see Fig. 3). 0

Remark 2. The class of service specification proposed in
Refs. [9, 10] is a subclass of the class of the well-formed
service specification, in the sense that service specification
in this paper allows outgoing primitives with an identical
SAP index from any parallel state.

An example of service specification § is shown in Fig. 4.
All of the transitions are primitive transitions, and there is
no L transition. State 1 is an initial state. State 4 is a final
state because there are no outgoing transitions from it.
Since there is no parallel state, S is well-formed. From
state 1, there are two SAPl-paths (1,Dt reql,2) and
(1,DtEnd_reql.3), and from state 2 there is a SAP2-path
(2,Dt_ind2.1), and so on. There is no reachable SAPi-
path and no SAPi-cycle for any i (i = 1,2).

This example models a data transfer service function
from user 1 to user 2. Primitives Dt_req. Dt_ind, DtEnd_req
and DtEnd_ind represent Data request, Data indication.
Data End request and Data End indication, respectively.
The scenario of this example is briefly described as follows:
User 1 repeatedly transmits data with a Data request primi-
tive. If the transmission is completed, user 1 informs user 2
of the completion of the data transfer using a Data End
request primitive.

2.3. Integration expression

As discussed in Section 1, several service specifications
(we call them component service specifications), each of
which specifies a subfunction of the target protocol, are
integrated into one. The integration expression gives us
information on how to integrate the component service
specifications.

Definition 6. Consider a context free grammar G, =
({E.T.F}.E.P.E), where L= {[.l.*.(.).[.].x.(i =1.2.
Ly (=12, m)}. The set of production rules P is

DtEnd_reql Dt_req! Dt_ind2

DtEnd_ind2

S

Fig. 4. Example of service specification.

Table 1
Production rules P

No. Production Rule No. Production Rule

1 E:=T 5 To=(E»

2 E:=T'E 6 Ti=xi (l=i=m
3 E:=(T.E.F.|] 7 Fu=yj (1<j=m)
4 Ti=[T.F.*] 8 Fi=e

shown in Table 1. Let L(G}) denote a language generared
by G,. We introduce a substitution 7 which substitutes x,
and y; by a certain component service specification and a
certain set of positive integers, respectively, and also trans-
forms [a.B,v.|] and {a.vy.*] into o , B and oz*;, respec-
tively. Then an integration expression is a string obtained
by applying the substitution 7 to anyv terminal string in
L(G)). =

For example, let S4. Sp, S¢ and Sp be component service
specifications; then the strings S!Sz, Sy 1S5|Ss and
(S4 [(Sp 1Sc)j35,) | Sp are integration expressions.

Remark 3. There are three kinds of symbols *|", *|" and "*"
in the integration expression. These represent the following
three integration operations on component service specifi-
cations: an alternative integration Sy |Sz: a sequential
integration S, | Sg; and a recursive integration S}. The
definitions of the operations will be presented in Section 5.

2.4. Protocol specification

A protocol specification consists of a pair of specifi-
cations for protocol entities (PEs). As in Definition 1, we
also define the protocol entity specification using a labeled
directed graph.

Definition 7. A protocol entity specification PE, (i = 1.2)is
defined by a labeled directed graph PE; = (V,;.L,,. T;.vy;)
(i = 1,2) where,

* Vi is a set of nodes representing protocol states (or simply
states).

* L, =SPUNMES is a set of labels attached 1o the edges.
SP is the same as that in Definition 1. AES is a set of
protocol message events, and each element in AfES is
specified either 'm or ?m, where m is a protocol message.

* 1, is a set of directed edges representing protocol state
transitions (or simply transitions). As in Definition 1, we
use a triple (u.p.v), u,vE€V,.pE L, to represent a
directed edge from node u to node v with label p. (Intui-
tively, (u,p.v) implies that state u in PE; is changed into
state v by executing p. Especially, p='m and p =m
represent sending m and receiving m, respectively.)

* vy € V,; is an initial protocol state.

A protocol specification (or simply protocol) P consists
of two protocol entity specifications PE| and PE,. Thus, we
represent it by P = (PE,.PE »). |
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Fig. 5. Example of protocol specification. (a) A protocol specification; (b) sequence chart.

Definition 8. A state u € V,; U V)5 is called a final state iff
there is no outgoing transition (u,p.v) for any p and v. A
state u € V,,y U V5 is called a receiving state iff any out-
going transition from u is a message receiving event
(u,?m,v) for any m and v. OJ

Definition 9. A global state of a protocol P = (PE . PE-) is
a quad-tuple g = [v.w, x,y], where v € Vo wE Vo, and x
and y are strings over the protocol messages in MES. (Intui-
tively, node v represents the current state of PE| and string
X represents messages stored in a communication medium
from PE, to PE,. Similarly, node w and string y have the
same meaning for ‘state of PE,’ instead of ‘state of PE,’
and ‘from PE| to PE -’ instead of ‘from PE, to PE,’.) The
initial global state is gy = [vy;.vo2. €. 8] where € is the
empty string. d

Definition 10. Ler g = [v,w.x.y] be a global state of a
protocol P = (PE,.PE). Then, the global state g’ defined
by the following is called the next global state of g. In the
following, E| and E» are primitives in PE, and PE-, ¢
represents a protocol message, and * is a concatenation
operator.

Case 1: If (v,E1.v') E Ty, then g' = [v',w,x.,y].

Case 2: If (w,E;,w') € T, then g' = [v,w' . x.y].

Case 3: If (v,!e,v') E Ty, then g' = [v . w.x.y"e].

Case 4: If (w,le.w’) € T, then g =[w.,xeyl

Case 5:If (v.?e,v')ET, and x=e'x, then g =
L w,x',y)

Case 6:If (w.%e,w')ET,, and y=e-y', then g =
[v,w’,x,y’]. O

Definition 11. A global state g of a protocol P is reachable
iff g is the initial global state of the P or there exists at

least one sequence of global states gy, g1.....8, = g such
that each g, (r =0,...,n— 1) is the next global state
of & O

In this paper, we focus on the following two types of
protocol errors: unspecified reception and deadlock.

Definition 12. A reachable global state g = [v,w.x,y] of a
protocol P is called an unspecified reception state iff g
satisfies the following conditions (1) or (2):

(1) v is either a receiving state or a final state, x = e *x’ and
v, %.v') & T,
(2) wis either a receiving state or a final state, y = ey and

(w,%,w') & T,a. 7

Definition 13. A reachable global state g = [v,w.x.y] of a
protocol P is called a deadlock state iff both v and w are
receiving states and x =y = e. U

Definition 14. A protocol P is safe iff any reachable global
state of the P is neither an unspecified reception state nor a
deadlock state. O

Fig. 5(a) shows an example of protocol specification.
State 3 of PE, and state 4 of PE, are final states, and
state 2 of PE, and state 1 of PE are receiving states. This
protocol is safe, since any reachable global state is neither
an unspecified reception state nor a deadlock state.

This protocol realizes a data transfer function prescribed
by the service specification in Fig. 4. The protocol messages
a, b and c are caused by executions of primitives Dt_reql,
Dt_ind2 and DtEnd_reql, respectively. A sequence chart in
Fig. 5(b) describes the execution sequence of data transfer
performed by this protocol.

3. Outline of protocol derivation
The protocol derivation problem to be discussed in this
paper is defined as follows:

Input. A set of component service specifications
{84,585, ....5¢} and an integration expression exp.
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Table 2
Transition synthesis rules
Rule Input Condition Output
Al Ei Ei
| __ L sapes — [OUT(S2)={i} _EE_"___
B . Go—=(
SAPj-S PEj
A2 OUT(S2)=(j} | DO
| o Anes | Jor o PE_
. OUT(S2) e
B.2 ={1.2) Go—=()
SAPj-S PEj
A3 LEi
SAP:’-S 9 Message e is @ PEi @
_____________ caused by Ei. |T7T T T T 7T
€ Te
B3 |+ @O ®

Output. A protocol specification P = (PE|.PE,) which
satisfies the following conditions C1 and C2:

Condition C1. The protocol P is safe.

Condition C2. The execution ordering of primitives derived
in each component service specification is kept in the
protocol P. O

The protocol derivation algorithm consists of the follow-
ing stages:

Stage 1 (Component Integration). The component service
specifications are integrated into an integrated service
specification in accordance with the given integration
expression exp.

Stage 2 (Protocol Synthesis). The single service specifica-
tion obtained in Stage 1 is transformed into a protocol
specification.

Since the result of the protocol synthesis is needed to illus-
trate dynamic behavior of the result of the component inte-
gration, we explain the protocol synthesis in the next section,
and then discuss the component integration in Section 5.

4. Protocol synthesis
4.1. Protocol synthesis method

In this section, we describe a protocol synthesis method
which transforms an integrated service specification into an
integrated protocol specification. The protocol synthesis
algorithm is essentially the same as that in [9-12], and is
an extension of Saleh’s synthesis algorithm {13, 14].

The protocol synthesis problem is defined as follows:

Input. A service specification S obtained by Stage 1.
Output. A protocol specification P = (PE,, PE,) satisfying
the following conditions R1 and R2.

Condition R1. The protocol P is safe.
Condition R2. The execution ordering of primitives derived
in S is kept in the protocol P.

The protocol synthesis algorithm consists of the follow-
ing steps. In the following, we suppose that i.j € {1.2}.
i # j unless specified otherwise,

Stepl. At this step, two service specifications SAPI-S,
SAP2-S are obtained by projecting a given service
specification S onto each SAPI1, SAP2, respectively.
In the projection, each primitive transition of S. which
is not associated with SAPI, is substituted by & in
SAPi-S.

Step2. This step synthesizes the protocol specification
P = (PE|,PL-) from the projected service specifications
SAP1-S, SAP2-S. Actually, the synthesis is performed
by applying transition synthesis rules shown in Table 2.
In Table 2, Ei denotes a primitive in SAPi-S, and e
denotes a protocol message caused by the primitive Ei.
Additionally, a function OUT (s) returns a set of indices of
primitives outgoing from a node s in the service specifi-
cation. Each pair of rules Ak and Bk (1 =k=3) is
together applied to pairs of input transitions (S,.Ei.S>)
in SAPi-S and (51.¢.5,) in SAP/-S, respectively. As a
result, pairs of input transitions are substituted by pairs
of corresponding output transitions if a corresponding
condition holds.

The intuitive concepts for these rules are explained
briefly as follows:
Rule A1,B1. These rules imply that any messages need
not be exchanged among PEs because two primitives
are successively executed at the same SAP(SAPi).
Rule A2,B2. After the primitive Ei occurs at SAPI, other
primitive can be executed at other SAP (SAPj). There-
fore, a protocol message e is transmitted to the other
PE (PE}) for the synchronization. The protocol message
e is uniquely generated for each primitive Ei. Then we say
that message e is caused by primitive Ei. (The name of
each message can be determined by the protocol designer.
In the real-life protocol, there exists a correspondence
between a primitive and a protocol message, e.g. Connec-
tion Request primitive corresponds to CR PDU.)
Rule A3,B3. These rules transform the L primitive LE:
into a message reception e where e is caused by Ei.
Step3. Finally, € transitions are removed from the proto-
col specification by applying the & removal algorithm
in [15]. -

For a more detailed description of this protocol synthesis
algorithm, the reader is referred to Refs. [9-12]. In the
following, we use the term ‘synthesize’ to represent "synthe-
size by the proposed method in Section 4.1 unless specified
otherwise.

Fig. 5(a) shows a protocol specification which is obtained
from the service specification shown in Fig. 4 by the pro-
posed synthesis method.
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Fig. 6. Example of parallel execution. (a) A service specification: (b) a protocol specification: (c) sequence chart.

4.2, Well-formed service specification

By the protocol synthesis algorithm presented in Section
4.1., Conditions R1 and R2 always cannot be assured to
hold.

Consider a service specification S shown in Fig. 6(a).
It specifies the function of a data transfer with a cancel.
The part of states 1, 2, 3 and 4 specifies a data transfer
function from user 1 to user 2, which is the same as the
service specification in Fig. 4. Next, the part of states 1, 5
6, 7 and 8 specifies a cancel function from user 2 to user 1.
Primitives Can_req, Can_ind, Can_resp and Can_conf
represent Cancel Request, Indication, Response and Con-
firmation, respectively. Note that the executions of data
transfer and transfer cancel are triggered by user 1 and
user 2, respectively.

Then Fig. 6(b) shows a protocol specification P =
(PE,.PE>) synthesized from §. This protocol does work
correctly if only one of two functions is triggered by
users. However, if user 1 and user 2 simultaneously execute
two primitives Dt_reql and Can_req2, respectively, then
two requests cause a collision as shown in Fig. 6(c). Then
P may reach an unspecified reception state via the following
global state transition sequence: [1.1.e.g], [100,1. g, €],
[100.104.¢e.€],[2.104,e,a], [2,5.d.a]. Thus P is not safe.
Similarly, a collision of DtEnd_reql and Can_req2 induces
the unspecified reception in P.

The protocol synthesis algorithm proposed in Section 4.1
is an extension of Saleh’s synthesis method [13, 14] in the
sense that our method allows the parallel execution of

primitives at different SAPs. As explained in the above
example, the parallel execution of primitives outgoing
from a parallel state (for example. state 1 in Fig. 6(a))
may induce the unspecified reception in the synthesized
protocol specification. To avoid the unspecified reception.
some extra receiving transitions must be added in the
protocol specification. So, as an extension to Saleh’s
method, we have newly introduced L primitives into the
service specification as shown in Definition 1. Then, we
define Transition Synthesis Rules A3,B3 such that an L
transition Lp; is translated into a reception of a message
caused by the execution of primitive p, in the protocol
synthesis. As a result, even when the service specifi-
cation includes parallel states, we can obtain the correct
protocol.

Consider again the service specification in Fig. 6(a). If we
add four L transitions (2,LCan_req2,5), (3,LCan_req2.5),
(5,LDt_reql1,5) and (5,LDtEnd_reql.5) to S. then for a
new service specification extra transitions (2.7d.5).
(3.7d.5) in PE, and (5.7a,5).(5.7¢.5) in PE, are newly
generated and appended to the protocol specification in
Fig. 6(b) by the transition synthesis rules A3,B3. As
a result, even if the parallel execution of two primi-
tives Dt_reql and Can_req2 occurs, unspecified reception
never occurs.

A set of service specifications, from which protocol
specifications satisfying Conditions R1 and R2 are synthe-
sized, forms a special class of service specifications. Such
a service specification is in a class of well-formed service
specifications as defined in Definition 5.
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Lemma 1. [f a service specification S is well-formed, then a
protocol specification P = (PE . PE ) svnthesized from S
satisfies Conditions R1 and R2.

Proof (Sketch). From Definition 5. in the service specifi-
cation S no parallel state exists or Condition P holds for
any parallel state in S.

Case 1. If no parallel state exists in S. parallel execution
of primitives does not occur. The proof in this case is
already given in [13. 14].

Case 2. Consider the case that S includes some parallel
states. Suppose that w is a parallel state in S and that x;,
and v; (i.j € {1.2}. i #j} are primitives leaving from
n. B}; Condition P. there exists SAPi-path p and SAPj-
path u. both of which start from w. Let the last primitives
of the SAPi-path p and SAPj-path u be P; and Q. respec-
tively. Note that P; and Q; may be identical with x; and y;.
respectively.

Fig. 7 shows a protocol specification P = (PEi.PEj})
svithesized from S. Without loss of generality. suppose
that i = 1. j = 2. Consider a subcase that at the global state
[w.w.e. g] the parallel execution of primitives x; and y; does
not occur. Then it is already proved [13, 14] that P reaches
neither an unspecified reception state nor a deadlock state,
and execution ordering derived in S is kept in the protocol P.

Next, consider a subcase that the parallel execution of
x; and y; occurs at [w.w.e.e]. PEi moves on the path
corresponding to p. Then after the primitive P, is executed,
PEi transmits a message p to PEj and enters state r. On the
other hand. PEj moves on the path corresponding to p.
Then, PEj surely receives the message p transmitted by
PEi and enters ¢ via state s, because state s is a receiving
state according to transition synthesis rules. A message ¢
which may be transmitted by PEj is also received by PFEi
on the path from w to ¢, because ¢ is surely a receiving state.
Thus. the protocol P surely reaches a global state [1.1.&. €]
without dropping in some unspecified reception states or
deadlock states. Additionally. the execution ordering is
kept between primitives P; and P; (in Fig. 7). although
some redundant primitives may be interleaved. Next. a
global state [r.r.e.¢] is nothing more than a global state
which P reaches after only the primitive x; is executed at

[w.w.e.e]. After P reaches |r.r.e.g]. this subcase 1is
reduced to the case that no parallel execution occurs. So.
even if parallel execution of primitives occurs. Conditions
R1 and R2 are satisfied. —

5. Component integration

In this section, we discuss the component integration
state, in which component service specifications are inte-
grated into a service specification.

The component integration problem is defined as follows:

Input. A set of component service specifications
{S4.Sp.. .. Sc} and an integration expression exp.
Output. An integrated service specification S.

The component integration is carried out by executing
sequential integration, recursive integration and alternative
integration. In Sections 5.1 and 5.2 we describe these three
integrations, then in Section 5.3 we summarize main results
obtained for component integrations.

5.1. Sequential integration and recursive integration

The sequential inregration combines two component
service specifications S, and Sz by joining some final
state of S, with the initial state of Sg and gets an integrated
service specification. We denote the resultant service speci-
fication by S4 |Sg. The protocol, which is obtained by
applying protocol synthesis to S, | S, performs two service
functions of S, and Sy successively. Although the sequential
integration can be executed on the service specification
level, similar sequential integration is already presented
on the protocol specification level in [1, 2].

In the following, we use V;(S) to denote a set of all
final states in the service specification S. The sequential
integration (S, | f Sp) is defined as follows:

Input. Two service specifications S and Sp. and a set of
final states F C V,(Sy).

Output. An integrated service specification, denoted bv
Sa L ¢ Sp. Especially when F = V;(S,), we omit F and
denote it just by Sy | Sp.
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Fig. 8. Explanation for sequential integration. (a) Component service specifications: (b) an integrated service specification: (c) a protocol specification:

(d) sequence chart.

Procedure (S4 | £ Sp). Join any final state w € F of S4 with
the initial state vy of Sp, and generate a new state w.y
(concatenation of w and vg). The initial state of S, becomes
newly the initial state of the integrated service specification
SalrSs. O

For example, consider two component service specifica-
tions S4 and Sp shown in Fig. 8(a). S, specifies a connection
setup function from user 1 to user 2, where primitives
C_req, C_ind, C_resp and C_conf denote Connection
request, Connection indication, Connection response and
Connection confirmation, respectively. Sp represents a
data transfer function as mentioned before. By combining
the final state 5 of §4 with the initial state 6 of Sz, we can
obtain a new service specification S4 | S shown in Fig. 8(b).
Note that the service specification Sy | Sp is transformed
into a protocol specification P in Fig. 8(c) by the protocol
synthesis. This protocol P implements the functions of
connection setup and data transfer as two sequential phases
as shown in Fig. 8(d).

Next, the recursive integration combines one com-
ponent service specification S, with itself. We denote the
resultant service specification by S;. The protocol, which
is synthesized from S:, performs the service function S,

repeatedly. The recursive integration (S:F) is defined as
follows:

Input. A service specification S, and a set of final states
FCVi(S4).

Output An integrated service specification, denoted by
AN Especmlly when F = V,;, we omit F and denote it
by 54

Procedure (S;f ). Join any final state w & F with the initial

state v, of S4, and generate a new state w.vy. The initial state

of S, newly becomes the initial state of the integrated

service specification S:F. O

Remark 4. In the sequential and recursive integrations, we
assume that S, includes at least one final state. If S, does not
have any final state, these integrations cannot be applied.

For sequential integration and recursive integration, the
following lemmas hold.

Lemma 2. An integrated service specification Sy | g Sg is
well-formed if both component service specifications Sy and
Sg are well-formed.

Proof. Let w be any final state in F and v, be the initial state
of Sp. The outgoing transitions from the new state w.vy in
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Sa LF Sp are also the outgoing transitions from v, because
w has no outgoing transitions in S,. Therefore, no other
parallel states except for those in S4 and Sp are newly gene-
rated by sequential integration. Since S and Sy are well-
formed, no parallel state exists in S, and Sg, or Condition P
is satisfied for any parallel state in S, and Sg. Therefore,
no parallel state exists in S4 | » S or Condition P is satisfied
for any parallel state in S4 | r Sp. 0

Lemma 3. An integrated service specification S‘:,‘ is
well-formed if the component service specification S,
is well-formed.

Proof. As in sequential integration, no other parallel states
except for those in §; are newly generated by recursive
integration. So if §4 has no parallel state, then no parallel
state exists in S;F. Next, consider the case that S, has some
parallel states. Subconditions (2) and (3) of Condition P
are clearly satisfied for any parallel state in S‘:P because
Condition P is satisfied for any parallel state in S,. By
recursive integration, a cycle p containing parallel state r
may be newly generated in S ,:F by recursive integration.
However, p never forms SAPi-cycle because S, has no
reachable SAPi-path from which r starts according to sub-
condition (1). Hence, subcondition (1) holds for any para-
llel state in S;F. Thus, Condition P is satisfied for any
parallel state in S . O

5.2. Alternative integration

The alternative integration combines two component
service specifications S, and Sp by joining two initial states
of 5,4 and Sz. We denote the resultant service specification
by S4/Sp. The protocol, which is obtained by applying
protocol synthesis to the service specification Sy |Sg, per-
forms the function of either S4 or Sy, but not simul-
taneously. Although the alternative integration can be
executed on the service specification level, similar alterna-
tive integration is already presented on the protocol speci-
fication level in Ref. [5].

For example, Fig. 9(a) shows two component service

specifications S, and Sg. As discussed before. S4 specifies
a data transfer function from user 1 to user 2, and Sy
specifies a cancel function from user 2 to user 1. By joining
the initial states of S, and Sg, we get the integrated service
specification S, |Sp shown in Fig. 9(b). S, |Sp specifies the
function of a data transfer with cancel.

However, just combining only two initial states of two
component service specifications does not necessarily
assure the safety of the resultant protocol. To assure the
safety, we must address a new other problem component
competition.

The component competition arises when the protocol
tries to initiate the executions of both functions of S, and
Sp simultaneously. Consider again the integrated service
specification in Fig. 9(b). Since the service specification
S4|Sg is the same as S shown in Fig. 6(a), the protocol
synthesized from S4|Sz becomes the protocol specification
P in Fig. 6(b). As already discussed in Section 4.2, S,|Sz
is not a well-formed service specification, and parallel
execution of Dt _reql and Can_req2 leads the protocol P
to unspecified reception state. The reason why P reaches the
unspecified reception state is considered as the competition
of two service functions S4 and Sg: when two primitives
Dt_reql and Can_req2 are executed in parallel by user 1
and user 2, respectively, PE initiates the data transfer func-
tion of S4 while PE; initiates the data cancel function of
Sp. Then, two functions compete with each other and the
coordination between PE, and PE - is lost.

The component competition happens if the following
condition Q holds:

Condition Q. Let vy and wy be the initial states of S, and
S, respectively. For i,j &€ {1,2}, i #j, when a transition
(vo, p, V) such that sap(p) = i exists in S, at least one tran-
sition (wy,q,w) such that sap(q) = j also exists in Sg
simultaneously. 0

To resolve the competition, we introduce the priority into
component service specifications in advance. When the
competition occurs, the execution of function with low
priority is aborted. In order to realize such mechanism,
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(c) sequence chart.

we systematically add some L transitions to the integrated
service specification.

Now we present the alternative integration. In the
following, we say that a SAPi-path p (i = 1.2) in S;|Sp is
inherited from S, (or Sg) iff the p is included in S4|Sz
because p is in S4 {or Sp). The alternative integration
(54/Sp) is defined as follows:

Input. Two service specifications Sy and Sg. Let v, and wy,
be the initial states of Sy and Sy, respectively. Without
loss of generality, we assume that the priority of Sp is
higher than that of S,.

Output. An integrated service specification, denoted by
SalSk.

Procedure (S [S3):

Stepl: Combine the initial states of S, and Sg. and generate
a new initial state vg.w, of S4|S5.

Step2: If Condition Q is satisfied, then repeat the following
Substeps a and b as long as new L transitions can be
added to S, |S5.

Substep a: if (w is a tail state of a SAPi-path inherited
from Sp from vy.wg, and p; is a last primitive of
the SAPi-path) and (v is a state which is reachable
from v.w, by a SAPj-path inherited from S,), then
add a transition (v.Lp;,w) to S4|Sz.

Substep b: if (g, is a last primitive of a SAPj-path
inherited from S, from v,.w,) and (r is a state
which is reachable from vy.w, by a SAPi-path
inherited from Sg), then add a transition (r,Lq;,7)
to S4|Sz. a

Figure 10(a) shows an integrated service specification Sy |5
obtained from the component service specifications S, and
Sp shown in Fig. 9(a). Fig. 10(b) shows a protocol spectfica-
tion for the data transfer protocol with cancel function
which is synthesized from S, |Sz. As shown in Fig. 10(c).
when the competition occurs, the cancel function (specified
in Sp) is executed while the data transfer (specified in Sy)
is aborted in accordance with the priority assignment.

Note that if two component service specifications Sy.5g
have commonly the same primitive outgoing from the
initial state, then the integrated service specification is no
longer deterministic as required. However, this problem can
be resolved by relabeling the primitive in one of component
service specifications S,. Sp.

Now, we give the following lemma on the alternative
integration.

Lemma 4, An integrated service specification S, |Sg is well-
formed if (condition Q does not hold, but the following
condition (1) holds) or (condition Q holds and the following
conditions (1)—(3) hold):

(1) Both component service specifications Sy and Sg are
well-formed.

(2) Neither S; nor Sy includes SAPi-cycle containing the
initial state.

(2) Neither S nor Sy includes reachable SAPi-path starting
from the initial state.

Proof. For S and S, if Condition Q is not satisfied, then the
initial state of S4|Sg is not a parallel state. Even if S4]Sy
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includes some parallel states, for any parallel state condition
P must hold by condition (1). Otherwise, if condition Q
holds, then the initial state of S,|Sz; becomes a parallel
state. By conditions (2), (3) and substeps (a), (b) of the
alternative integration, L transitions are added so that Con-
dition P is satisfied for the initial state of S4|Sz. For other
parallel states in S4|Sg, if they exist, Condition P holds by
condition (1). 0

5.3. Component integration algorithm

Several component service specifications, which are
given as the input of the component integration problem,
are integrated into one by successive applications of three
integration operations according to the given integration
expression. The order of the applications is uniquely deter-
mined using a so-called parsing tree for the integration
expression (that is, a context free language). After the inte-
grated service specification is generated by the component
integration operations, it is transformed into the target
protocol specification by the protocol synthesis algorithm.

As for three integration operations presented in Sub-
sections 5.1 and 5.2, the following lemma holds:

Lemma 5. The integrated service specifications S, | r Sg,
preserves the execution ordering of primitives derived in
both component service specifications S, and Sg. Similarly,
p D A B )
S.|8p preserves the execution ordering derived in both S,
* . . .
and Sg, and S ,, preserves the execution ordering derived
inS,.

Proof. It is obvious that none of the three component
integration operations delete, duplicate or reorder the primi-
tive transitions in the component service specifications.
Therefore, the execution ordering derived in the component
service specifications is also derived in the integrated
service specification. ol

Now, we give the following theorem with respect to the
correctness of the target protocol.

Theorem 1. If the integrated service specification S
obtained by the component integration algorithm is well-
formed, then the protocol specification P finally derived
from S by the protocol synthesis algorithm satisfies Condi-
tions C1 and C2.

Proof. Since S is well-formed, P satisfies both Conditions
R1 and R2 according to Lemma 1. Condition R1 is just
the same as Condition C1. Additionally, by Lemma 5, the
integrated service specification preserves the execution
ordering of primitives derived in the component service
specifications. Therefore, Condition C2 is also satisfied if
Condition R2 is satisfied. =

Theorem 1 implies that the correctness of the target
protocol can be checked on the service specification level.
In other words, to check if the target protocol is correct or
not can be reduced to the decision problem if the integrated

service specification is well-formed or not. Lemmas 2. 3
and 4 provide the sufficient conditions for the integrated
service specifications to be well-formed. So. we can find
the following guideline for constructing the correct protocol
specification.

Component integration algorithm

Step 1. Develop the component service specifications so
that all of them are well-formed.

Step 2. Based on the integration expression. select two
service specifications as the components which are inte-
grated at this time (In the case of recursive integration. we
select one service specification.)

Then, for the service specifications, check if the inte-
grated service specification will be well-formed or not
by using Lemmas 2, 3 or 4. If it will not be well-formed,
abort the procedure and redesign the component service
specifications (at Step 1 again).

Step 3. Apply the integration operation to the service
specifications. If some integration operations still remain,
go to Step 2. Otherwise, we can obtain the well-formed
integrated service specification, which will be trans-
formed into a correct protocol specification by the proto-
col synthesis algorithm.

Note that Step 2 can be easily implemented by using a
simple path trace algorithm for the service specifications
(This fact implies that any special knowledge of protocol
verification is not necessary.)

6. Application
6.1. Part of FTAM

As an example, we try to construct a protocol for Bulk
Data Transfer part of the FTAM (File Transfer, Access and
Management 1SO 8571) [15, 16] OSI Application laver
using the proposed method.

In FTAM service, two service users service initiaror
(simply initiator) and service responder (simply responder)
take part in an FTAM association. The Initiator is a user
who begins the FTAM association and activates all opera-
tions of FTAM. The Responder is a corresponding user
who responds to all requests from the Initiator. Bulk Data
Transfer is triggered when the initiator executes either
the primitive F-READ request or F-WRITE request. If the
initiator executes the F-READ request, then the F-READ
service starts. Similarly, if the F-WRITE request is exe-
cuted, then the F-WRITE service starts.

The F-READ service specifies a data transfer from the
responder to the initiator (that is, the initiator and responder
are the receiver and sender of the data, respectively). This
direction of data transfer is fixed until the F-READ service
is completed. The data transfer continues until the responder
informs the initiator of the completion by executing an
F-DATA-END request primitive. When data transfer is
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Fig. 12. Bulk Data Transfer part of FTAM. (a) Service specification; (b) protocol specification.

the collision of an F-CANCEL requests happens). Addition-
ally, we assign a higher priority to Sy|S; than that of Sg
(since the F-CANCEL service has a higher priority than any
other services). We can verify that at each stage of the
integrations, the integrated service specification is well-
formed.

Similarly, we get the integrated service specification for
the F-WRITE service based on the integration expression
(Sc L (Sp|(Sx|S6) L 7,(Sg|Si) L 10y(Se|Sy))". Finally, two
service specifications for F-READ service and F-WRITE
service are integrated by the alternative integration, and
we get the well-formed service specification for Bulk Data
Transfer Service shown in Fig. 12(a).

This integrated service specification is then translated
into a protocol specification by applying the protocol syn-
thesis algorithm. As a result, we can obtain the target
protocol specification P = (PEy, PE ;) shown in Fig. 12(b).
In this figure, for convenience, two successive transitions
(vi,a,va), (va,b,v3) are simply represented by one transi-
tion (v, alb,vs).

6.2. Evaluation
The derived protocol shown in Fig. 12(b) is almost

same as the Bulk Data Transfer Protocol Machine which
is described using a state transition table in 1SO 8571-4
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[16]. However. in our protocol, some redundant protocol
messages a, b, ¢, d and e in Fig. 12(b) are generated,
although these do not appear in ISO 8571-4.

Messages a, b and e may be deleted, but messages ¢ and
d cannot be erased. Suppose that we remove transitions !c
and ?¢ from PE1 and PE2, respectively. Then we get into
the following situation: if user 2 infinitely executes the
F-DT_req2 at Data Reading state of PE2, then PE2 may
never receive the cancel request message CANRQ from
PEL. In the real-life protocol, such situation is resolved by
service functions in the lower layer (like the flow control
function, and so on). Really, messages ¢ and 4 seem to
correspond to Receive Ready PDUs in the Network Layer.
However, since we model the lower layer only by a simple
FIFO queue, and also model the protocol by a simple finite
state machine, such messages ¢ and d are essentially neces-
sary for the correctness of the protocol. The optimization of
redundant messages is one of our future works.

6.3. Comparison

In this paper, we propose three kinds of integration opera-
tions on the service specification level (we call them service
integrations). On the other hand, there exist several compo-
nent integration methods on the protocol specification level
(call them protocol integrations). For example, alternative
integration in Ref. [5], and sequential and recursive integra-
tions in Refs. {1, 2] are protocol integrations. Here we try to
compare the effectiveness of the service integration and
protocol integration. In both integrations, we must verify
some conditions to ensure the correctness of the target
protocol by analyzing component specifications.

As discussed elsewhere [1, 2, 5], the conventional
protocol integrations require validation of the protocols
using reachability analysis. Unfortunately, it is known
that reachability analysis exponentially takes a lot of time and
cost, because of the state explosion problem [17, 18]. There-
fore, if we integrate components with a very large size using
protocol integration, verification of the conditions would be a

bottleneck of the component integration, even though some
state reduction techniques can be borrowed.

On the other hand, in our service integration. such a
verification can be performed at the service specification
level, which generally has a much smaller state space than
the protocol specification. Moreover, the verification can
be easily done by an algorithm for a simple path trace on
the directed graph representing a service specification (as
mentioned in Section 5.3).

Here, we compare the service and protocol integrations
with respect to the operational state spaces of specifications.
Table 3 shows the operational state space which is generated
in the construction of the FTAM protocol discussed in
Section 6.1. The column ‘Service Function’ represents the
service function prescribed in the service specification. The
column ‘S-Int’ represents the number of states in the service
specification obtained using service integration. and "P-Int’
shows the number of reachable global states in the protocol
specification obtained using protocol integrations.

From Table 3, we can observe that the state space on the
protocol integration exponentially increases along with
the progress of integrations, when comparing with that
on the service integration.

Thus, a major advantage of the service integration is that
we can operate it in a much smaller state space, compared
with the protocol integration, especially when the size of
the components is large.

7. Conclusion

In this paper, we have proposed a framework for design-
ing communication protocols from component service
specifications by using component integration and protocol
synthesis techniques. The most important point is that com-
ponent integration is performed at the service specification
level, which generally has a much smaller state space
than the protocol specification. Using the concept of a
‘well-formed’ service specification, we can guarantee at
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the service specification level the correctness of the target
protocol specification. Also, we have applied the proposed
method to the construction of a real-life OSI protocol, and
evaluated the effectiveness of the proposed method.

However, the following further research still remains, and
is being studied:

(a) An extension of the proposed technique to n (=2) enti-
ties protocol and unreliable communication medium.
(b) An optimization of the redundant messages in synthe-

sized protocols.
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