

 An Experiment of Evaluating Software Understandability

Shinji UCHIDA
 Electrical and Information Engineering, Kinki University Technical College,

2800 arima, kumano, Mie 519-4395, Japan

and

Kazuyuki SHIMA
Department of Computer Science, Hiroshima City University

3-4-1 Ozuka-Higashi, Asa-Minami-Ku, Hiroshima, 731-3194, Japan

ABSTRACT

Software understandability is one of important characteristics
of software quality because it can influence cost or reliability at
software evolution in reuse or maintenance. But it is difficult to
evaluate software understandability because understanding is
an internal process of humans. So, we propose “software
overhaul” as a method for externalizing process of
understanding software systems and propose a probability
model for evaluating software understandability based on it.
This paper presented the experiment of evaluating software
understandability using a probabilistic model.

Keywords: Software Understandability, Software Maintenance,

1. INTRODUCTION

Software reuse is promoted by object orientated technology or
component-ware technology [1]. However, the difficulty of
understanding the system limits reuse when developers try to
reuse a software system developed by other developers [3].
Even if the developers of the original system were in the same
organization at first, they may be transferred, or may change
their jobs or retire. It is not rare that changes to reused software
systems will be needed for enhancing functions, correcting
faults, or adapting them to new circumstances. If the
developers of the original system were absent, the developers
reusing it need to understand it. If it is difficult to understand,
changes to it may cause serious faults and a chain reaction of
changes. Such changes may cost more time than remaking the
software system.
Boehm defined software understandability as a characteristic of
software quality which means ease of understanding software
systems [2]. In his model, understandability is placed as a
factor of software maintenance. Although developers of the
original software system usually maintain it, they may be
transferred, or change their jobs or retire. Software
maintenance staffs need to understand and change it for
enhancing functions, correcting faults, or adapting it to new
circumstances. Changes to software systems are called software
evolution in the research field of software maintenance.
Changes to reused software systems can be considered as
evolution of reused software systems. Therefore, software
understandability can be placed as a factor of software
evolution in reuse or maintenance. In an experiment of code
inspection, 60% of issues which professional reviewers
reported were soft maintenance issues related to

understandability [6]. It means that professional reviewers
regarded understandability as important.
We propose “software overhaul” as a method for externalizing
process of understanding software systems [9]. Overhaul itself
does not change software systems. However, data from the
overhaul process can be used to measure software
understandability. This paper presents an experiment of
evaluating software understandability using a probability model.
We provide 20 modules (10 faulty modules and 10 non-faulty
modules) in the same software for overhaul. The result of
analysis using our model, we clarify that faulty modules are
worse understandability than non-faulty modules.

2. SOFTWARE OVERHAUL

Software overhaul consists of deconstruction and
reconstruction like overhaul of hardware e.g. engines, clocks,
etc. Deconstruction is to take a software system apart to
components. Reconstruction is to reproduce the software
system by putting the components together again.
Reconstruction simulates the construction which is to produce
the original software system by selecting or making the
necessary components and putting them together. In
reconstruction, workers are given the same components of the

deconstruct

overhaul

reconstruct

x

x=check

T = 0

>0

=0

T = T + 1

End

deconstruct

overhaul

reconstruct

x

x=check

T = 0

>0

=0

T = T + 1

End

Fig.1 The procedure of overhaul

original software system so that workers need not to select or
make components. This constraint reduces the time needed for
reconstruction. Workers use a tool to “overhaul”. The tool
deconstructs the original software system and checks the
software system reconstructed by workers. When the tool
checks the reconstructed software system, it fixes components
in the same place with the original so that the workers use only
remaining components at the next reconstruction. Therefore,
workers can overhaul by trial and error. Fig. 1 shows a
procedure of software overhaul.

3. PROBABILISTIC MODEL

When a worker needed to reconstruct one software system
many times until he/she correctly reconstructs it, it can be
considered the software system is difficult for him/her to
understand. Needless to say, understanding depends on not
only understandability of the software system, but also
comprehension of the worker. If many workers overhauled
many software systems, the average number of attempts needed
for correct reconstruct can be a metric of understandability or
comprehension. The average number of attempts needed for
correct reconstruction that one worker reconstructed many
software systems means comprehension of the worker. The
average number of attempts needed for correct reconstruction
that many workers reconstructed one software system means
understandability of the software system. However, if the
amount of data is small, such average number does not carry
high confidence as an estimator. This section presents
probabilistic models to estimate comprehension and
understandability. The followings are given.
L : the number of workers
N : the number of software systems

nM : the number of components of the software system n
(n=1~N).

nlT : the number of reconstructing when the worker l
overhauled the software system n (l=1~L, n=1~N).

RANDOM RECONSTRUCTION
Some workers may randomly reconstruct just by trial and error
when they can not understand the software system because the
workers are not good at comprehending or the software system
is not well-understandable. Let us define:

RH : the hypothesis that the worker randomly rearranges all
components of the software system in reconstructing.

)(TfM : the probability that the worker correctly rearranges

M components at the T reconstructing under RH .

kkMkM PCP ′′×=′ : the number of permutations of the M
components in which k components are different from the
original permutation and the other (M-k) components are the
same with the original permutation.

MMM PP ′=′′ : the number of permutations in which all M
components are different from the original permutation.
The following equations can be derived.

1)0(0 =f .

0)0(=Mf when 0>M .

0)(0 =Tf when 0>T .

10000 =′=′′=′ PPPM .

kkMkM PCP ′′×=′ .
When the worker rearranged M components and k of M
components are different from the original software system,
he/she rearranges k components at the next attempt to
reconstruct. Therefore,

∑
=

−′=
M

k
kkMM TfP

M
Tf

0

)1(
!

1)(when 0>M and

0>T .

kM P′ and MP ′′ can be calculated as follows:

!
0

MP
M

k
kM =′∑

=

.

∑
−

=

′−=′
1

0
!

M

k
kMMM PMP when 0>M .

∑
−

=

′′×−=′′
1

0
!

M

k
kkMM PCMP when 0>M .

SIGNIFICANCE TEST OF UNDERSTANDING
In order to confirm that the worker did not randomly
reconstruct the software system,)(TfM can be used to

statistically test RH as follow:
T : the observed number of reconstructing.
t : the random variable of reconstructing.

∑
=

=≤=
T

t
MRM tfHTtPTF

0
)()|()(: the probability

that the worker correctly rearranges M components within T
reconstructing.
α : the significance level such as 0.05, 0.01, 0.005, or 0.001.

For example, when α≤)(TFM , RH is significantly

rejected. Therefore, probably RH . If α>)(TFM , RH is
accepted. However, it is not significant. That is, it does not
mean that is proved. This relationship is described as follows:

)()|(
)()|()(

RR

RR

HPHTtP
TtPTtHPTtHP

≤=
≤≤=≤∩

)(
)()()|(

TtP
HPTFTtHP RM

R ≤
=≤ .

If a worker could overhaul a software system within T
reconstructing, he/she can usually overhaul the same software
system within T reconstructing at the next time because he/she
can remember the original software system. Therefore, it can
be considered 1)(=≤TtP . When the worker overhaul the

software system many times,)(RHP will decrease because
he/she remembers the original software system. However, it is
difficult to estimate)(RHP at the first overhaul. Therefore,

we use 1)(≤RHP to derive the following inequality.

)()|(TFTtHP MR ≤≤ .

)(1)|(1)|(TFTtHPTtHP MRR −≥≤−=≤ .

Therefore, if)(TFM is small, the probability of RH is large.
It means that the worker could understand the software system
at least a little. However, even if)(TFM is large, maybe

RH or maybe RH .

})(|max{)(max α≤= ∀ TFTMT M : the maximum

number of attempts to reconstruct of which)(TFM is less
than the significance level α .

Fig. 2 shows)(max MT when =0.05, 0.01, 0.005, or 0.001.
The horizontal axis shows the number of components. The
vertical axis shows the number of reconstructing. If

0)(max =MT , the results of overhaul can never be
significant because the number of reconstructing is one at least.
If 1)(max =MT , the comparison of results is meaningless
because the number of reconstructing is always one when it is
significant. Therefore,)(max MT should two at least. It
means that 6, 7, 8, or 9 components are required for the
significance levels 0.05, 0.01, 0.005, or 0.001, respectively.
If workers needed to rearrange all components in every attempt,
the probability that workers succeed to correctly reconstruct is
1/M! in every attempts, and then, it is too difficult for them to
succeed to correctly reconstruct within practical attempts.
However, even if the workers randomly rearrange the
components, the number of components that they need to
rearrange will decrease because the tool fix components in the
same place with the original in each attempt. Fig. 3 shows the

feasibility of overhaul. The horizontal axis means T. The
vertical axis means)(TFM .)(TFM is more than 0.9 at
T=14, 26, 37, 48, 59, or 70 when M=10, 20, 30, 40, 50, or 60,
respectively. Although workers may be tired if they repeated to
reconstruct in such number of times, they can succeed at final.

SIGNIFICANCE TEST FOR MULTIPLE OVERHAULS
Needless to say, whether the worker can understand the
software system or not depends on not only understandability
of the software system, but also comprehension of the worker.
Therefore, experimenters may assign one software system to
multiple workers for accurate measurement. Suppose the result
of only one worker rejected RH and the results of others

accepted RH . The experimenter can logically think that RH
is rejected when the number of workers is not large. However,
if 20 workers randomly reconstructed the software system, one
lucky worker may reject RH with the significance level 0.05.
The Kolmogorov-Smirnov one-sample test is a test of
goodness-of-fit [7]. It is concerned with the degree of
agreement between the distribution of a set of sample values
(observed scores) and some specified theoretical distribution.
Therefore, it can be used to determine whether results in
overhaul by multiple workers can reasonably be thought to
have come from a population having the theoretical distribution
under RH . The tested hypothesis is that RH for all workers.
The Kolmogorov-Smirnov test focuses on the maximum
deviation D as follows:

|)(|max
L
STFD nl

nlMn
−= where Nn ,...,2,1= ,

Ll ,...,2,1= , and nl S is the number of workers whose the

number of reconstructing were equal to or less than nlT .
The sampling distribution of D under the hypothesis is known
(for example, see [7]). If the observed D is more than the
sampling value, the hypothesis is rejected. It means that some
of workers can understand the software system.

4. EXPERIMENT

In order to evaluate software understandability using our model,
we conducted an experiment. In the experiment, at first, the
subjects were given the source code and the documents. Then
they started to carry out the overhaul using overhaul tool.

AN OVERHAUL TOOL
We developed an overhaul tool for source code. This tool
consists of a client and a server which are written in Java. The
server is one of WWW servers so that workers can use WWW
browsers to access it. At first, workers open a home page on the
server. The home page contains the client as a Java applet so
that the WWW browsers download and execute it. Therefore, it
does not need to install the client into workers' computers in
advance.
Workers can access the server any time and any where even
when experimenters are absent. Therefore, this tool has a
simple login session in order to distinguish workers. The client
asks workers to register their personal data or to enter their
name and ID. The personal data are the name, birth year, job,
etc. which are needed to know the characteristics of workers.
When workers have registered, the client sends the personal

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
M : the number of components

T
: t

he
 n

um
be

r o
f a

tte
m

pt
s t

o
re

co
ns

tru
ct 0.05

0.01
0.005
0.001

Fig2. The maximum number of attempts to
reconstruct with significance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

T : the number of attempts to reconstruct

T
h
e
 p

ro
ba

bi
lit

y

M=10

M=20

M=30

M=40

M=50

M=60

Fig. 3 The number of attempts to reconstruct
vs the probability

data to the server. The server assigns an ID and replies it to the
client. The client shows the ID. When workers entered their
name and ID, the client sends them to the server. The server
checks them with the registered data and replies the result. If
the name and ID are the same with the registered data, the
client starts overhaul session. If not, the client ask workers their
name and ID again.
At first of overhaul session, the client asks the server to send a
file of source code. The server randomly selects a file from
files of the software system and sends it to the client. The client
shuffles lines of the file and shows them. Fig. 4 shows a
window of the client. Gray lines (of which background are
gray) are shuffled. When workers click two of gray lines, the
two lines are exchanged. When workers click the 'Answer
Check' button at the bottom of the window, the client checks
gray lines that workers rearranged with the original lines. The
client makes gray lines that are the same with the original lines
white. Gray lines that are different from the original lines
remain. The client sends the number of times when workers
clicked the 'Answer Check' button to the server.

SUBJECTS
73 subjects participated in the experiment and were assigned to
carry out the overhaul independently. All subjects are graduate
school student. We separated the subjects into two groups. One
group (46 subjects) overhauled the non-faulty module. Another
one (27 subjects) overhauled the faulty module.

TARGET PROGRAM
The program was developed for the European Space Agency
(ESA) in the C language within Microsoft Visual C++ 1.5
environment. The program consists of almost 10,000lines of
code (6,100 executables) and is organized in three subsystems
of parser, computation, and formatting. This program consists
of 139 modules and includes 33 faults. We choose 20 modules
in the program (10 faulty modules and 10 non-faulty modules).

5. RESULT

Fig. 5 shows the observed number of attempts to reconstruct
and the number of lines. The number of attempts to reconstruct
depends on the number of executables rather than lines of code.
The modules that have less than 30 executable lines of code are
almost non-faulty module (42 non-faulty modules and 12 faulty
modules). On the other hand, the modules that have more than
30 executable lines of code are faulty module (3 non-faulty
modules and 14 faulty modules). This figure shows that the

fault is included in the module that has longer executable lines
of code.
Fig. 6 shows a comparison of executables and)(TFM
between the faulty files and non-faulty files.
In less than 10 executable lines of code, all modules are non-
faulty module. From 10 to 30 executable lines of code, the
modules of which understandability is low are almost faulty
modules. In more than 30 executable lines of code, almost
modules are faulty module. This figure shows faulty modules
are worse understandability than non-faulty modules.

6. RERATED WORKS

There are some techniques used to measure software
understanding, such as code review, Recall and Fill-in-the-
blank.
Code review is static analysis aimed at identifying fragments of
code consistently associated with faulty behavior. However,
reviewer must know beforehand what kind of source code is
how unclear by development experience or training.
In general, recall tests usually involve presenting a subject with
a segment of code and allowing them to study it for an allotted
time [4]. Once this time is over, the code is removed/hidden
and subjects are asked to recall as much of the code as possible.
In some cases, both of these steps are repeated several times, in
others subjects are also allowed to modify if they think it
necessary, their previous attempts at recalling the code.
Software overhaul does not have the necessity of learning
about software beforehand. Recall is dependent on a subject's
memory. So, Software overhaul differs from Recall.

Fig.4 An overhaul tool for source code

1E-20

1E-19

1E-18

1E-17

1E-16

1E-15

1E-14

1E-13

1E-12

1E-11

1E-10

1E-09

1E-08

1E-07

1E-06

1E-05

0.0001

0.001

0.01

0.1

1

0 10 20 30 40 50 60 70

Executable lines

P
ro

ba
bi

lit
y

o
f
ra

n
do

m
 r

e
c
o
n
st

ru
c
ti
o
n

non-faulty

faulty

Fig. 6 Size and understandability between faulty
modules and non-faulty modules

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Executable lines of code

N
um

be
r

o
f
R

ec
o
ns

tr
u
ct

io
n

Non-faulty

Faulty

Fig. 5 The observed number of attempts to
reconstruct

Fill-in-the-blank usually involves presenting subjects with a
piece of code with a line missing [4]. The code presented in the
experiment in [10] had not been previously seen by the
experiments subjects, who had to fill in a single blank line in
the program. In the software overhaul, a subject is shown the
portion of a source code in the state where it was arranged at
random. In Fill-in-the-blank, source code is shown which
corrects by making a specific portion blank.

7. CONCLUSION

This paper presented the experiment of evaluating software
understandability using a probabilistic model. In the
experiment, we provide 20 Modules (10 faulty modules and 10
non-faulty modules) in the same software for overhaul. The
result of experiment, we clarify that faulty modules are worse
understandability than non-faulty modules. In the future, we are
planning to conduct further experimental investigation based
on the model.

8. ACKNOWLEDGMENT

Parts of this work were funded through a grant from the
National Space Development Agency, Japan (NASDA), the
predecessor of the Japan Aerospace Exploration Agency
(JAXA) and a grant (No. 14780324) from Japanese
Government.

9. REFERENCES

[1] M. Aoyama, “Component-based software engineering: can
it change the way of software development?”, Proc. of the
20th International Conference on Software Engineering,
vol. 2, 1998, pp. 24-27.
[2] B. W. Boehm, et al, Characteristics of Software Quality,
North-Holland, 1978.
[3] G. Caldiera, and V. R. Basili, “The qualification of reusable
software components”, pp. 117-119 in [8].
[4] A. Dunsmore and M. Roper, "A Comparative Evaluation of
Program Comprehension Measures"，The Journal of Systems
and Software，vol. 52，no. 3，2000, pp. 121-129 .
[5] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy,
“Predicting fault incidence using software change history,”
IEEE Transactions on Software Engineering, vol. 26, no. 7,
2000, pp. 653-661.
[6] A. A. Porter, H. P. Siy, C. A. Toman, and L. G. Votta, “An
experiment to assess the cost-benefits of code inspections in
large scale software development,” IEEE Transactions on
Software Engineering, vol. 23, no. 6, 1997, pp. 329-346.
[7] Sidney Siegel, and N. John Castellan, Jr., Nonparametric
Statistics for the Behavioral Sciences (second edition),
McGRAW-HILL Inc., ISBN 0-07-057357-3, 1988.
[8] W. Schafer, R. Prieto-Diaz, M. Matsumoto, Software
Reusability, Ellis Horwood Limited, 1994, pp.117.
[9] K. Shima, Y. Takemura, and K. Matsumoto, "An approach
to experimental evaluation of software understandability," Proc.
of International Symposium on Empirical Software
Engineering (ISESE2002), IEEE Computer Society Press,
2002, pp.48-55.
[10] E. Soloway and K. Ehrlich, "Empirical Studies of
Programming Knowledge", IEEE Transactions on Software
Engineering, Vol. SE-10, No. 5, 1984, pp. 595-609.

