230

Feature Interactions in Telecommunications and Software Systems VIII
§. Reiff-Marganiec and M.D. Ryan (Eds.)

[OS Press, 2005

© 2005 The authors. All rights reserved.

Feature Interactions in Integrated Services
of Networked Home Appliances

— An Object-Oriented Approach —

Masahide Nakamura ®!, Hiroshi Igaki * and Ken-ichi Matsumoto
* Nara Institute of Science and Technology, Japan

Abstract. This paper proposes a service-centric framework for the feature interac-
tion problem in integrated services of the home network system (HNS). To formal-
1ze the HNS, we extensively use an object-oriented approach where each networked
appliance (or the HNS environment) is modeled as an object consisting of proper-
ties and methods. Based on the model, we define two types of feature interactions:
appliance interactions and environment interactions. An appliance interaction oc-
curs on an appliance object when different services try to invoke methods that per-
form incompatible updates or references for common properties of the appliance.
An environment interaction occurs when methods of different appliances indirectly
conflict via the environment object. We conduct a case study of offline interaction
detection among several practical service scenarios. It is shown that the proposed
framework is quite generic enough to capture the potential interactions in the HNS.
We also discuss the feasibility to online detection and several resolution schemes.

Keywords. home network, networked appliances, service centric modeling,
interaction detection,

1. Introduction

Recent advancement in processors, sensors and networks enables emerging technolo-
gies to network various home electric appliances, including TVs, air-conditioners, lights,
DVD players, and refrigerators [2][3][14]. A system consisting of such networked home
appliances is generally called a Home Network System (HNS). The HNS provides many
applications and services for home users such as group control of appliances [7], health
monitoring [17], and home security [11]. Several HNS products have already come onto
the market.

A major HNS application is the integrated service of networked home appliances
(we simply call HNS integrated service in the following). The HNS integrated service
orchestrates different home appliances to provide more comfortable and convenient liv-
ing for users, which is considered one of the next-generation value-added services in the
ubiquitous computing environment. Typical HNS integrated services include:

DVD Theater Service: When a user switches on a DVD player, a TV is turned on in
DVD mode, a blind is closed, the brightness of the lights is minimized, 5.1ch

'Correspondence to: Masahide Nakamura, Nara Institute of Science and Technology, 8916-5, lkoma,
Takayama, Nara, 630-0101, Japan. Tel.: +81 743 72 5312; Fax: +81 743 72 5319; E-mail: masa-n@is.naist.jp

M. Nakamura et al. / Integrated Services of Networked Home Appliances 237

speakers are selected, and the sound volume of the speaker is automatically ad-
justed.

Coming Home Light Service: When a door sensor notices that the user comes home,
lights are automatically turned on. Then, the brightness of the lights are adjusted
to an optimal value based on the current degree obtained from an illuminometer.

Feature interactions may occur in HNS integrated services as well, since multiple
services may be activated simultaneously. For example, the above two integrated services
interact with each other.

Interactions between DVD Theater & Coming Home Light: Suppose that a user A
activates the DVD Theater service, and simultaneously that a user B comes home.
Then, the following two interactions occur:

FI-(a): Although the DVD Theater service minimizes a brightness of the lights, the
Coming Home Light service sets the brightness comfortable for B. This may ruin
A’s desire to watch the DVD in a comfortable atmosphere.

FI-(b): If the blind is closed (by the DVD Theater) immediately after the lights read the
degree from the illuminometer (by the Coming Home Light), the lights may fail to
set the optimal illumination because the blind makes the room darker.

The feature interaction problem in the HNS integrated services was first addressed
by Kolberg et al. [9]. These authors regard each HNS component (an appliance or an
environmental variable) as a resource. In their model, each integrated service accesses
some resources in a shared or not-shared mode. An interaction is detected when different
services try to access a common resource with an incompatible access mode. Thus, each
appliance is simply modeled by the two-valued access attributes, and each integrated
service is characterized only by how the service sets values of the attributes. This sim-
ple modeling enables a light weight and realistic implementation framework for feature
interaction avoidance (see Section 6.3 for more discussion).

However, the future HNS appliances will have more features, and the HNS inte-
grated services will become more sophisticated and complex. The services may be even
customized and personalized by the home users. In such a situation, two slightly different
services may yield the same access pattern to the resources, which cannot be differenti-
ated by the conventional method. Hence, we consider it necessary to have a finer-grained
approach which can reflect features of appliances as well as concrete scenarios of the
HNS integrated services.

The goal of this paper is to propose a more service-centric framework for feature
interactions in the HNS integrated services. In contrast to the previous resource access
model, we use an object-oriented approach extensively for higher modeling fidelity on
the HNS components. Specifically, we model each appliance as an object consisting of
properties and methods. The properties characterize the internal states of the appliance,
whereas the methods abstract features provided by the appliance. Executing a method
may refer or update some properties of the appliance. These dynamics are modeled by
a pre-condition and a post-condition, encapsulating the internal appliances specific im-
plementation of the features. We similarly construct an object for the home environment.
Then, a HNS is defined by a set of the appliance objects and an environment object. Each
HNS integrated service (scenario) is defined as a sequence of the appliance methods.

N1 Q

D

8 M. Nakamura et al. / Integrated Services of Networked Home Appliances

Within the model, feature interactions are formalized by conflicts among appli-
ance methods that are concurrently invoked by different HNS integrated services. We
define two types of feature interactions: appliance interaction and environment inter-
action. The appliance interaction is a direct conflict between methods m and m’' of
the same appliance device d. It is formulated within d as an incompatible goal be-
tween the post-conditions of m and m’, or, as a race condition between the pre-
condition of m and the post-condition of m’. The above example FI-(a) corresponds
to an appliance interaction, where two methods, say, Light . setBrightness (5) and
Light.setBrightness(100) conflict on Light object.

On the other hand, the environment interaction is an indirect conflict between meth-
ods m and m’ of the different appliances d and ', respectively. The conflict occurs
via the HNS environment object e, when both m and m’ write (or m reads and m’
writes) a common property of e, simultaneously. The above example FI-(b) corresponds
to an environment interaction, where two methods, say, Blind.setGate (close) and
Illuminometer.getIllumination () conflict on the Brightness property of the
environment object.

Based on the formulation, we conduct a practical case study of offline interaction
detection. We show that the proposed framework is generic enough to formalize feature
interactions in the HNS integrated services. We also discuss the feasibility for online
detection and several resolution schemes within the proposed framework.

2. Preliminaries

2.1. Networked Home Appliances

A HNS consists of one or more networked appliances connected to a local area network.
In general, each networked appliance has device control interfaces by which users or
external software agents can control the appliance via a network. For example, every
air-conditioner should have interfaces for controlling power and temperature settings. A
speaker will have volume and channel (2ch or 5.1ch), etc.

In this paper, we assume that the device control interfaces are provided in the form
of APIs. Thus, the appliance is supposed to own a processor, a storage (to store device
applications or middleware), and a network interface to handle the API calls. This as-
sumption is not unrealistic. Several standards already exist that prescribe a detailed ob-
ject template for each category of appliances (e.g., [2][3]). Also, the price and size of pro-
cessors/memories are becoming reasonable enough to embed in home appliances. Some
recent products (e.g., [15]) involve a Web application with which the user can configure
and control the appliance from external PCs.

The communication among the networked appliances is performed by an underlying
protocol. Various protocols for home appliances are proposed, such as X-10 [18], HAVi
(6], Jini [8], and UPnP [16]. In this paper, we assume that a certain mechanism (e.g.,
middleware or gateway) to deal with the underlying protocol is available in the given
HNS. Hence, we do not care which underlying protocol should be used to drive the APIs
of appliances.

2.2. HNS Integrated Services

Controlling only a single networked appliance does not offer much added value com-
pared to traditional appliances [9]. The main advantage of the HNS lies in integrating the

M. Nakamura et al. / Integrated Services of Networked Home Appliances 239

control of multiple appliances together, which yield value-added and more powerful ser-
vices. We call such services achieved by the integration of multiple networked appliances
HNS integrated services.

For a more comprehensive discussion, we introduce an example. In the example, we
suppose a HNS consisting of the following ten kinds of appliances (a DVD player,a TV, a
speaker, a light, an illuminometer, a door (with a sensor), a telephone, an air-conditioner,
a thermometer and a blind). We also assume that one appliance exists for each kind, and
that a total of ten appliances are installed in the same room.!

We prepare the following seven service scenarios of the HNS integrated services
(denoted by SS; (1 < i < 7)). These scenarios are determined based on the actual HNS
products [7][11].

S557: Auto-TV Service - When the user turns on the TV, the speaker’s channel is set to
2ch, and the volume of the speaker is automatically adjusted for the TV mode.

S55;: DVD Theater Service - When a user switches on the DVD player, the TV is
turned on in DVD mode, the blind is closed, the brightness of the lights is mini-
mized, the 5.1ch speakers are selected, and the volume of the speaker is automati-
cally adjusted.

553: Coming Home Light Service - When the door (sensor) notices that the user
comes home, the light is automatically turned on. Then, the illumination of the
lights are adjusted to the optimal value based on the current degree obtained from
the illuminometer.

554: Coming Home Air Conditioning Service - When the door sensor register that
the user has come home, the air-conditioner is turned on, and its temperature set-
ting is adjusted to the optimal based on the current degree of temperature provided
by the thermometer.

555: Ringing and Mute Service - When the telephone rings, the volume of the speaker
is muted.

55s: Blind Service - When sunlight is available, the blind is opened.

557: Sleep Service - When the user goes to bed or goes outside, all appliances are
turned off.

Each service scenario can be achieved by executing the APIs of the networked ap-
pliances in a certain order. For instance, the above 5S> would be implemented by the
following sequence of the API calls. For simplicity, we denote A .m to represent the exe-
cution of an API m provided by an appliance A.

55,: DVD Theater Service:

l. DVD.setPower (ON); /* DVD is turned on. */

2. TV.setPower (ON) ; /* TV is turned on. */

3. TV.setInput (DVD) ; /* Input mode is set to DVD mode. */
4., Blind.setPower (ON) ; /* Blind is turned on. */

5. Blind.setGate (close); /* Blind is closed. */

6. Light.setPower (ON) ; /* Light is turned on. */

7. Light.setBrightness(S); /* Brightness is minimized. */

'For multiple appliances in the same kind, we regard them as independent appliances. For example, if there
are four lights in the room, we consider four instances; Lightl, Light2, Light3 and Light4.

240 M. Nakamura et al. / Integrated Services of Networked Home Appliances

§§I:AUIO-TV §S,:DVD Theater 55,:Coming Home Light SS,;:Blind Service
1.1. TV.setPower(ON) 2.1. DVD.setPower(ON) 3.1.Door.getDoorStatus() 6.1.Blind.setPower(ON)
1.2, TV.setlnpu(TV) 2.2, TV .setPower(ON) 3.2 NMuminometer.setPower{ ON) 6.2.Blind.setGate(Open)
1.3. Speaker.setPower(ON) 2.3. TV.setlnpu(DVD) 3.3 llluminometer.getBrightness()
1.4. Speaker.setinput(TV) 2.4. Blind.setPower(ON) 3.4.Light.setPower(ON) S5,:Sleep Service
1.5. Speaker.setChannel(2) 2.5. Blind.setGate(Close) 3.5.Light.setBrightness(600) 7.1.DVD.setPower(OFF)
1.6. Speaker.setVoluime(60) 2.6. Light.setPower(ON) 7.2.TV setPower(OFF)
2.7. Light setBrightness($) 7.3.Speaker.setVolume(0)
= 2.8. Speaker.setPower(ON) ; . 7.4 Speaker. setPower(OFF)
S5:Ringing and Mute 2.9. Speaker.setlnpuDVD) || 55,:Coming Home Air-Con 7.5.llluminometer.setPower(OFF)
2.10.Speaker.setCh: : i i
5.1 Phone.ringing() 3 1? §p"§:k§§ ::v;ﬁ?ﬁ((gu;] 4.1.Door. getDoorStatus() 7.6 Light setBriphiness(0)
5.2.Phone.connectedy) o : 4.2.Thennometer.setPower(ON) || 77 Light setPower(OFF)
5.3.Speuker.setVolume(30) 4.3 Thennometer.get Temperature(§ | 7-8-AC setPawer(OFF)
4.4 AC.setPower(ON) 7.9. Thermometer. setPower(OFF)
4.5 AC setTemperure(26) 7.10.Blind setGate(Close)
7.11.Blind. setPower(OFF)

Figure 1. API Sequences for 55, to 557

8. Speaker.setPower (ON) ; /* Speaker is turned on. */

9. Speaker.setInput (DVD); /* Input mode is set to DVD #/
10. sSpeaker.setChannel(5.1); /* Channel is set to 5.1ch. #/
l11. Speaker.setVolume (80) ; /* Volume is set to 80db. */

We do not pose any assumptions on who designs the HNS integrated services.
Thus, the sequence of the API calls could be constructed by appliance vendors, service
providers or even home users. Figure 1 shows an example of API sequences for all ser-
vice scenarios 557 to SS5.

2.3. Architectures for Appliance Orchestration

As seen in the previous subsection, a HNS integrated service can be implemented as a
sequence of APIs provided by multiple appliances. To do this, it is necessary for a HNS
to have a certain mechanism to orchestrate the appliances.

A straightforward way to orchestrate the appliances is to deploy a powerful home
server in the HNS [7][10][11]. The home server takes centralized control of all appli-
ances in the HNS, which we call Server Centralized Architecture (SCA). Figure 2(a) de-
picts the SCA-based HNS, implementing the integrated services SS; to S.S-. In the fig-
ure, an arrow represents a trigger of a service or an API call indexed by the number in
Figure 1. Upon a request from the user, the home server executes the APIs of the appli-
ances in a pre-determined order, which achieves the integrated service requested. The un-
derlying protocols of the appliances may be different from each other (e.g., ECHONET
[3] for lights, blinds, and sensors, and a UPnP for Audio/Visual appliances [16]). There-
fore, the home server requires a sophisticated gateway [14] to achieve the interoperability
among the appliances.

Delegating the appliance control to the appliances themselves is another way to have
appliance orchestration. In [13], we proposed an autonomous-decentralized architecture
based on the Service Oriented Architecture (SOA) [10], which is shown in Figure 2(b).
Attaching an application adaptor (called a service layer, depicted by an oval) to each ap-
pliance, an appliance can autonomously trigger other appliances, with a generic protocol
(such as XML/SOAP), for a given service scenario. This architecture requires no central-
ized home server, which improves the reliability, flexibility, and scalability of the HNS.
Note that whatever architecture is taken for the appliance orchestration, the HNS inte-

M. Nakamura et al. / [ntegrated Services of Neiworked Home Appliances 241

i DY
ip—— 2171 Y ™aer
{ 581 }
el 10222, gy
L 2A7s L
g 131445 N
25521 |[182829, Sneaker
210211 g
Ss S |[7.3.7.4 PR
@ 583 ; 262734 SRt
LIGEE S oL oo 35"76\77"‘%}’»
s 9,7.6,7. h lllumino
’5’5';' = Allumino 33 & b
B e . 323375 meter zenudnacoaips ﬁme er
S84, | i ss4 5 ~§" 5 '
§s5||lg 3 m 41 L=
\‘ E L ERTTERL "m:__),.;.‘].‘ﬂ.'_l‘l."‘DOOr -““""L"'"".Door
s SS5 i L
g. e Eo 5 ..1..-.5..?.....§Phﬂﬂa 2:3.., Phone
ss ss6” '
5561 llasasze, ac e e
ss7 424379 Wmemo \{Fhermometa):3 43, Fmemmo
........................ > :meter : : ;meler
A 182 " 1017 i i
3°16.7.17 " Blind : =ipel Bl
Home Server Service Layer | Device Layer
(a) server-centralized (b) autonomous-decentralized (with SOA)

Figure 2. HNS Architectures for Appliance Orchestration

grated service can be implemented basically as a sequence of API calls of the appliances.
This research proposes a generic framework independent of the HNS architecture.

3. Formal Definition of HNS

3.1. Model of Appliance

Each appliance can be regarded as an object consisting of properties (also called at-
tributes) and methods. The properties characterize the current status of the appliance.
On the other hand, the methods represent public application interfaces through which
some properties are referred or updated from outside [3] 2. In this paper, the methods
correspond to the APIs discussed in Section 2.1. For instance, every appliance has a
property Power whose value is basically either ON or OFF. An air-conditioner gener-
ally has a property TemperatureSetting by which the air-conditioner produces air
with an appropriate temperature. The air-conditioner may have a method (thus, an API),
setTemperature (), by which the user or an external software agent can update the
current value of TemperatureSetting. Each property has a type to define an allowable
range of the property value. For a property Prop, we denote t Prop to represent the type
of Prop. We assume that for each appliance, properties with corresponding types and
methods are given by the vendor of the appliance (e.g., with a manual).

Table 1 summarizes an example of properties and types for the ten appliances in-
troduced in Section 2.2. Due to limited space, properties irrelevant to the SS; to SS7
are omitted from the table. For example, the air-conditioner has properties Power and

*Several standardizations of the appliance object model are currently under way. For example, ECHONET
prescribes detailed properties required for each appliance class.

242 M. Nakamura et al. / Integrated Services of Networked Home Appliances

Table 1. Appliance Properties

Appliance Prope PropertyType
) - Pawer {ON,OFF}
AlrConditioner [TemperatureSetting unsigned int_(°C)
Power {ON,OFF}
=Rt CurrentTemperature |unsigned int (°C
Power ON,OFF}
Input (TV,.DVD}
Ll Channel 25.1}
VolumeSetting unsigned int (dB)
Light Power {ON,OFF}
BrightnessSatting unsigned int (Ix)
\ Power {ON,OFF}
lluminometer CurrentBrightness unsigned int (Ix)
Bt DoorStatus {Open Close}
Power {ON,OFF}
{Received,
Calling,
Ph
one IPhoneStatus Chresetd,
Waiting}
DVD player Power {ON,OFF}
v Power {ON,OFF}
Input {TV,DVD}
Blind Power {ON,OFF}
BlindStatus {Open,Close)

TemperatureSetting, where tPower = {ON, OFF} and tTemperatureSetting
=unsigned int. Also, the air-conditioner may implement methods such as set Power
(tPower onoff) and setTemperature (tTemperatureSetting temp). The air-
conditioner is controlled from the network by executing the methods with parameters
such as: setPower (ON) and setTemperature (25).

The details of each method are usually encapsulated in an appliance-specific fea-
ture implementation. Therefore, several abstraction levels can be considered to model
the method. In this paper, for the generality of the model, we simply characterize each
method as a pair of pre-conditions and post-conditions. The pre-condition is a condition
required before the execution of the method, while the post-condition is a condition that
holds afrer the method is executed.

We specity each pre(or post)-condition by a property formula constructed with some
properties of the appliance. For example, consider the method set Temperature (tTemp
eratureSetting temp). Suppose that the implementation of this method is as fol-
lows: “When the power is on, if the method is executed, the temperature is set to the
value specified by temp”. Then the method can be specified with a pre-condition: Power
== ‘ON’ and a post-condition: TemperatureSetting == temp. More generally, we
specify each pre(or post)-condition as a conjunction of Boolean formulas with properties.

Definition 3.1 (Property Formula) Let P = {p1,p2,...,pn} be a given set of proper-
ties. Aformulac = fp A fp, A A fp,, where fp; is any Boolean formula with respect
to p;, is called a property formula over P. Condp denotes a set of all property formulas
over P.Forc = fp, A fpa Ao A fp s [1,.(c) = f,. is called a projection of ¢ with
respect to property p;.

Let us consider the example of the air-conditioner. In this case then, a formula
¢ = [Power=="ON’ A TemperatureSetting > 20| is a property formula, which is
supposed to become true when the power is on and the value of the temperature setting
is greater than 20 degree. Note that c is a conjunction of Boolean formulas each of which
depends on only a single property. Also, []p,,0.(c) = [Power=='0N"], which is a
projection of c onto Power. Next, we define each networked appliance as follows.

M. Nakamura et al. / Integrated Services of Networked Home Appliances 243

Table 2. Appliance Models

|_Appliance Method Pre-Condition Post-Condition
: - setPower(tPower onoff) Power=onoff
pirsanditionel setTemperature(tTemperature temp) |Power="ON' TemperatureSetting=temp|
setPower{tPower onoff) Power=onoff
e getTemperature() Power="ON' A CurrentTemperature="
setPower(tPower onoff) Power=onoff
Speaker setinput(tinput spinput) Power="ON' Input=splnput
setChannel(tChannel spChannel) Power="ON' Channel=spChannel
setVolume(tVolume spVolume) Power="ON' VolumeSetting=spVolume
TV setPower(tPower onoff) Power=onoff
setinput(tinput tvinput) Power="ON' Input=tvinput
DVD setPower(tPower onoff) Power=onoff
Light setPower(tPower onoff) Power=onoff
setBrightness(tBrightness Ix) Power='ON' BrightnessSetting=Ix
; setPower(tPower onoff) Power=onoff
Ninsminmeler |getBrightness() Power='ON' A CurrentBrightness=*
Door getDoorStatus() Power='ON' »_DoorStatus="
S ringing() PhoneStatus='Recieved’ PhaneStatus='Calling'
connected() PhoneStatus='Calling' PhoneStatus='Connected’
Blind setPower(tPower onoff) Pawer=onoff
setGate(tGate gateStatus) Power="ON' BlindStatus=gateStatus

Definition 3.2 (Networked Home Appliance) A networked home appliance d is de-
fined as a quad tuple d = (Py, My, Preg, Posty), where

e P, is asetof all properties of d.

e M, is asetof all methods of d.

e Pregis apre-condition function My — Condp,, which maps each method m €
M into a property formula. m can be executed only when Pre;(m) is true.

e [Posty is a post-condition function My — Condp,, which maps each method
m € My into a property formula. Post,(m) becomes true immediately after m
is executed.

To avoid confusion, a method m € M, of an appliance d is denoted by d.m.

Table 2 shows a simplified model of all the appliances in our example. In the table,
** denotes a don’t care value. For example, the condition CurrentTemperature ==
* in Prey of Thermometer.getTemperature () becomes true, as long as a certain
value of the property is available.

3.2. Environment

Each appliance deployed in a HNS shares a home space with other appliances. Therefore,
the appliances are tightly coupled with the environment of the home. For instance, the
air-conditioner tries to keep a comfortable room temperature, which implicitly updates
the temperature of the environment. Also, the thermometer refers to the current temper-
ature of the environment. Thus, the air-conditioner and the thermometer are indirectly
connected via the environment, which can impact the comfortableness of the HNS users.
Thus, the environment of the home is an important factor in feature interaction anal-
ysis (cf. [9][12]). In this paper, we formalize the environment as a global object which
can be referred to or updated by all appliances in the HNS. Specifically, an environment
object has a set of global properties such as temperature, brightness and sound volume.
When a method m of an appliance is executed, these environment properties are in-
directly referred to or updated by m. For the environment, we adopt a loose modeling
such that we only care whether the method m reads or writes some environment proper-
ties or not. This model is because the impact of a method to the environment properties

244 M. Nakamura et al. / Integrated Services of Networked Home Appliances

Table 3. Environment Model

Appliance Method Re We
: = isetPower()
ARCondiioner setTemperature() Temperature
setPower()
] getTemperature()| Temperature
setPower()
setinput()
i selChannel()
setVolume() Volume
[setPower()
i setinput()
DVvD setPower()
Light selPower()
9 Fiﬂrigbtness() Brightness
. setPower()
ksl getBrightness() |Brightness
Door elDoorStatus()
ringing() Volume
Phone cannected() Volume
8lind setPower()
setGate() Brightness, Temperature

are not as direct and explicit as the impact to the appliance properties *. Therefore, we
cannot specify strict pre/post conditions with the environment properties before/after the
execution of m.

Definition 3.3 (Environment) Let D = {d),ds,...,dx} be a set of all appliances de-
ployed in the HNS. Also, let M = Uz, cpM,, be a set of all methods of all appliances.
Then, an environment e is defined as a tuple e = (F,, R., W.), where

e P. is aset of all environment properties.

e R. is an environment read function M — 2P which maps each method m € M
into a set of environment properties that are read by m.

o W, is the environment write function M — 2P+ which maps each method m €
M into a set of environment properties that are written by m.

In our example HNS, we assume the following environment properties:

Temperature: the current degree of temperature of the room.
Brightness: the current intensity of brightness in the room.
Volume : the current sound volume in the room.

Table 3 shows an environment model for our example HNS. The columns £, and
We, respectively, show which environment properties are read or written by each ap-
pliance method. For example, environment property Temperature is designated in
W.(nAirConditioner.set Temperature(...)). This property implies that setting
the temperature of air-conditioner can write (update) the current temperature degree of
the home.

3.3. HNS and Integrated Services

We are now ready to formalize the HNS. The HNS consists of a set of appliances de-
ployed and an environment.

Definition 3.4 (Home Network System) A home network system is definedas HN S =
(D, e), where

3For instance, the temperature setting of an air-conditioner is not always equal to the temperature of a room.

M. Nakamura et al. / Integrated Services of Networked Home Appliances 245

o D ={dy,da,..,dy,} is a set of appliances.
e ¢ = (P., R.,W,) is an environment where the HNS is deployed.

Therefore, our example HNS consists of the ten appliances defined in Tables 1 and
2 and an environment defined in Table 3. Next, as mentioned in Section 2.2, we assume
that a HNS integrated service is given by a scenario without branches. Specifically, we
define the service as a sequence of appliance methods.

Definition 3.5 (HNS Integrated Service Scenario) Let HNS = (D, e) be a given
HNS. Then, a sequence of any appliance methods ss; = d;1.m;1, dig. Mo, ..., dix .Mk
(dij € D,m,; € My,) is called an HNS integrated service scenario.

Thus, the API sequences shown in Figure 1 are finally formalized as the HNS inte-
grated service scenarios.

4. Feature Interactions in the HNS Integrated Services

If multiple integrated service scenarios are executed in a HNS, unexpected conflicts be-
tween the scenarios may occur. In this paper, we propose two kinds of feature interac-
tions for the HNS integrated services, specifically appliance interactions and environ-
ment interactions.

4.1. Appliance Interactions

When multiple service scenarios simultaneously invoke incompatible methods of a com-
mon appliance, one method conflicts with another, which results in a feature interaction
on the appliance. We formalize the conflict among methods on the same appliance as
appliance interactions.

Let us consider S5, and SS; in Figure 1 as an example. S5 invokes Speaker.set
Channel (2), while 5§55 invokes Speaker.setChannel (5.1). Hence, if SS; and
5SS, are simultaneously executed, a race condition occurs in which channel 2 or 5.1
should be set to the speaker. According to Table 2, the simultaneous execution of S5
and 553 updates the value of the property Channel of the Speaker into two different
values 2 and 5.1. This situation is characterized by two unsatisfiable post-conditions
on the common appliance property Channel; [Channel==2] A [Channel==5.1] = L
(unsatisfiable). Similarly, SS; and SS; cause an appliance interaction on the property
Input of the TV.

Let us introduce another example with SS5; and SS7. TV.setInput (TV) of 5,
requires in the pre-condition that the TV is switched on ([power==0N]). However,
TV.Power (OFF) of SS7 updates the value of the property power into OFF as defined
in its post-condition, which disables TV.setInput (TV) of SS;. This situation can be
explained by the fact that a pre-condition and a post-condition are unsatisfiable simulta-
neously.

From the above observations, we define the appliance interactions as conflicts among
methods on a common property of an appliance.

Definition 4.1 (Appliance Interactions) Let HNS = (D), e) be a given HNS, and ss;
and ss; be a pair of integrated service scenarios defined on HNS. Suppose that for an

246 M. Nakamura et al. / Integrated Services of Networked Home Appliances

appliance d € D, ss; contains a method d.m; and ss; contains a method d.m;. We say
that ss; and ss; cause an appliance interaction on d iff at least one of the following
conditions is satisfied:

Condition D1: There exists an appliance property p € Py such that [[, Post(m;) A
[1, Post(m;) = L (unsatisfiable), or

Condition D2: There exists an appliance property p € P, such that]_[p Post(m;) A
[1, Pre(m;) = L (unsatisfiable).

4.2. Environment Interactions

The environment interaction refers an indirect conflict among appliances via the HNS
environment. This interaction arises when different appliance methods try to access com-
mon environment properties at the same time. Note that the methods causing the interac-
tion are not always executed in the same appliance.

Definition 4.2 (Environment Interactions) Let /NS = (D, e) be a given HNS, and
ss; and ss; be a pair of integrated service scenarios defined on HN'S. Suppose that for
a pair of appliances d,d" € D (d # d'), ss; contains a method d.m; and ss; contains a
method d’.m;. We say that ss; and ss; cause an environment interaction iff at least one
of the following conditions is satisfied:

Condition E1: W.(m;) N W.(m,) # ¢, or
Condition E2: R.(m;) N W.(m,) # ¢.

Condition El reflects a race condition between two “writes’ on the common envi-
ronment properties. Condition E2 specifies non-interchangeable 'read’ and "write’ on the
common environment properties.

For example, suppose that SS3 and SSg in Figure 1 are executed simultaneously.
In SS3, the light must be optimally adjusted based on the illuminometer. On the
other hand, SS¢ opens the blind, which ruins the optimal light adjustment. This situ-
ation can be explained as follows. As shown in Table 2, Light .setBrightness ()
of SS3 and Blind.setGate () of SSg try to write the common environment prop-
erty Brightness. Moreover, Illuminometer.get Brightness() of SSs reads

Brightness as well. Thatis, W, (Light .setBrightness ()) N W,.(Blind.setGate ())

N R.(Illuminometer.getBrightness())= {Brightness} # ¢. Thus, these three
methods cause an environment interaction on brightness in the home.

5. Case Study: Offline Interaction Detection

We have conducted a case study of an offline interaction detection. For this experiment,
we have implemented a tool. The tool takes a specification of a HNS based on the pro-
posed framework, and detects all possible interactions in the specification. The case study
here is formulated as follows:

Offline feature interaction detection

Input: A home network system HN S = (), e) specified in Tables I, 2 and 3. A set of
HNS integrated service scenarios 55,5595, ..., 557 shown in Figure 1.

M. Nakamura et al. / Integrated Services of Networked Home Appliances 247

Environment

oor.getDoorStatus()
lluminometer.setPower(ON
.3 llluminometer.getBrightness()
3.4 Light.setPower(ON)

3.5 Light.setBrightness(600)

Object N1y
sffee 55 7 Environment [[il-9 tBrfghrne
. . BT Irjteraction
Blind Object , , Light Object "7 33,5 IIlummomete
125 e ¢ % Object
SS2:DVD Theater i
2.1 DVD.setPower(ON ! JQ' ess 9;
2.2 TV.setPower(ON) 5 <608
2.3 TVSEtInpUt(DVD} ' _“l"
2.4 Blind.setPower(ON Appliance 4 :
2.5 Blind.setGate(Close /] Interaction

2.7 3.5

2.6 Light.setPower(ON)

2.7 Light.setBrightness(5)
2.8 Speaker.setPower(ON)
2.9 Speaker.setinput(DVD)
2.10 Speaker.setChannel(5.1)
2.11 Speaker.setVolume(80)

74 g

Figure 3. Interactions between 553 and S S3

Output: All possible pairs of appliance methods that cause appliance or environment
interactions.

Procedure: For any pair of methods m and m’ contained in SS; and S'S;, respectively,
evaluate Conditions D1 and D2 for appliance interactions, and Conditions E1 and
E2 for environment interactions.

Table 4(a) shows a total 43 appliance interactions, whereas Table 4(b) enumerates
24 environment interactions. Each entry represents a set of pairs of conflicting methods.

For example, let us look at feature interactions between S.S; (DVD Theater) and S'S3
(Coming Home Light). Figure 3 depicts the detailed scenario of the interactions showing
how each method in a service updates or refers a property of an appliance (shown as a
solid arrow), or indirectly accesses the environment object (shown as a dotted arrow) 4.
SS5 and SS5 cause an appliance interaction on the Light. Specifically, methods 2.7 and
3.5 conflict on the property BrightnessSetting, since both methods try to modity
the property in different ways. This interaction is detected by Condition D1 (see Defi-
nition 4.1), which is exactly the same way that FI-(a) was introduced in Section 1. The
services also cause an environment interaction, where the methods 2.5 and 3.3 make a
race-condition between read and write of the environment property Brightness. The
interaction is detected by Condition E2 (see Definition 4.1), by which we can reasonably
explain FI-(b) as explained in Section 1. Two other environment interactions occur as
well between 2.5 and 3.5 and between 2.7 and 3.3.

6. Discussion

In this section, we discuss several important issues for the feature interaction problem
in the HNS integrated services. Due to limited space, we present only a sketch for each
issue. The detailed methodologies and implementations are left to our future publication.

*Objects and properties that are not related to the interaction scenario are omitted from the figure.

248 M. Nakamura et al. / Integrated Services of Networked Home Appliances

Table 4. Results of the Offline Interaction Detection

(a) Appliance Interactions

SS1 SS2 SS3 [SS84| SS5 SS6 S57
ss1l [|(1:223)(1.42.9) (16,5.3) (1.1,7.2)(1.2,7.2)(1.3,7.4)
1(1.5,2.10)(1.6,2.11) (1.4,7.4)(1.5,7.4)(1.6,7.3)(1.6,7.4)
(2.1,7.1)(2.2,7.2)(2.3,7.2)(2.4,7.9)
(2.5,7.8)(2.5,7.9)(2.6,7.7)(2.7,7.6)
ke {(2.7,3.5) (2.11,5.3}1(2.5,6.2) (2.7,7.7)(2.8,7.4)(2.9,7.4)(2.10,7.4)
(2.11,7.3)(2.11,7.4)
ss3 (3.2,7.5)(3.3,7.5)(3.4,7.7)(3.5,7.6)
(3.5.7.7)
sS4 (4.2,7.9)(4.3,7.9)(4.4,7.8)(4.5,7.8)
SS5 (5.3,7.3)(5.3,7.4)
SS6 6.1,7.11)(6.2,7.10)(6.2,7.11)
SS7) E
(b) Environment Interactions
SS51{ 882 SS3 SS54 555 SS6 S87
SS1fi (1.6,5.1)(1.6,5.2)
$82 (2.5,3.3)(2.5,3.5)(2.7,.3.3 |(2.54.3)(2.5,4.5 |(2.11,5.1)(2.11,5.2)[(2.7,6.2) (2.5,7.6)(2.7,7.10)
553 i (3.3,6.2)(3.5,6.2 {(3.3,7.6)(3.3,7.10)(3.5,7.10)
554 (4.3,6.2)(4.5,6.2 [(4.3,7.10)(4.5,7.10)

SS5}1

{5.1,7.3)(5.2,7.3)
6276

SS6j-

SS7R

6.1. Feasibility to Runtime Interaction Detection

As seen in Section 5, the offline interaction detection shows all potential interactions
among HNS integrated service scenarios. When a pair of service scenarios ss; and 38;
are shown to cause a feature interaction (by the offline detection), the safest solution is
to uninstall either ss; or ss; from the HNS. However, this solution would significantly
limit flexible creation and deployment of the service scenarios. Preferably, the interaction
should be managed during runtime only when it occurs. We here evaluate the feasibility
of the proposed framework to the runtime (online) interaction detection. The feasibility
is discussed by architecture-wise examination with the server-centralized architecture
(SCA, see Figure 2(a)) or the autonomous-decentralized architecture with SOA (SOA,
see Figure 2(b)).

In the SCA, detecting both appliance and environment interactions can be under-
taken by the home server. The home server takes the global control of all appliances.
Therefore it can monitor the current values of all properties of every appliance, as well
as an environment object. That is, the home server can track a global state of the HNS.
Thus, every time the home server invokes a method in a service, the server evaluates
Conditions D1, D2, El and E2 to detect appliance and environment interactions.

On the other hand, the SOA requires a sophisticated mechanism for the runtime de-
tection, because of its fully-distributed appliance control. Detecting the appliance inter-
actions during runtime is not very hard, since evaluation of Conditions D1 and D2 can be
done locally within a single appliance. The appliance interactions can be detected by in-
stalling an application, say FI detector, for each appliance. The FI detector continuously
monitors all properties of the appliance. Then, it warns an interaction (by Conditions D1
and D2) when multiple services try to invoke conflicting methods. A smart implementa-
tion of the FI detector could be to utilize an aspect-oriented approach [1], which captures

M. Nakamura et al. / Integrated Services of Networked Home Appliances 249

any accesses from multiple arbitrary methods to a common property as a cross-cutting
concern.

In the SOA, detecting the environment interactions is possible but is a bit harder
without having a global server simulating the environment object. To achieve this, each
appliance first communicates with every appliance causing potential environment inter-
actions, using the result of offline detection. If any method conflicting on the environment
is being executed, then the appliance reports an environment interaction.

0.2. Resolution of Feature Interaction

Once a feature interaction is detected in a pair of HNS integrated services, it should be
resolved. For this, several approaches can be considered.

(a) Rebuild Scenario: Based on the result of the offline detection, rebuild the ser-
vice scenarios so that any interaction is avoided. This approach is available only in the
environment where the services can be flexibly rebuilt.

(b) Prompt User: When an interaction is detected during runtime, ask the home
user(s) to determine manually how the interaction should be dealt with. A user probably
would be more comfortable if the prompt message is delivered with appropriate choices
of resolution, e.g., (Choice 1:) Give up the whole service execution, (Choice 2:) Com-
promise some functionalities (i.e, methods) of the service, or (Choice 3:) Automatically
retry later.

(c¢) Prioritize Services: Assign static priorities to services [9]. If a pair of service
scenarios cause an interaction, then all conflicting methods in the service with lower
priority are aborted. Note in this approach that the execution of the service with a higher
priority is always guaranteed.

(d) Prioritize Methods: Assign static priorities to methods. When a pair of methods
conflict with each other, methods with a lower priority are aborted. Although function-
alities of the services are partially limited, both conflicting services may be run through
without being aborted.

(e) Prioritize Users: Assign static priorities to users. A user with a higher priority
can take precedence in executing services over the one with a lower priority.

(f) Compromise Services: Find a compromise between the conflicting services dur-
ing runtime. In the service scenario, set a weight of importance to each method. For
example, methods related to the DVD player, the TV, and the speaker are important for
DVD Theater service, but the ones for the light and the blind may be auxiliary. When
an interaction occurs, the service is compromised so that at least important methods are
executed while auxiliary methods are aborted.

(g) Compromise Methods: Find a compromise between the conflicting meth-
ods during runtime. For example, a conflict between Speaker.setVolume (50) and
Speaker.setVolume (10) would be compromised to Speaker.setVolume (30). If
there is no good compromise, then assign dynamic priorities to the methods to abort one
of them. The priority could be derived based on, for example, the frequency of the service
execution, elapsed time of the service. For more complex cases, sophisticated schemes
should be prepared in advance based on the result of the offline detection.

(h) Negotiate Among Users: Find a solution acceptable for users by conducting a
negotiation. This approach is quite realistic as it is usually done manually in our daily
life. A smarter approach will involve user agents which perform an automatic negotiation
and resolution based on the user’s policy and/or preference.

250 M. Nakamura et al. / Integrated Services of Networked Home Appliances

As shown above, many granularity can be considered for interaction resolution. Us-
ing multiple resolution schemes together achieves fine interaction management for each
of system, service, method and user levels. Especially, the resolution schemes at the
method level ((d) and (g)) take full advantage of the proposed service-centric framework.
Indeed, more approaches for the interaction resolution within the HNS integrated service
domain may exist. Further discussion on the interaction resolution schemes is left to our
future research.

6.3. Related Work

Compared to the existing method [9], the proposed method enables finer-grained inter-
action analysis and resolution on the concrete service scenarios. However, the proposed
method contains some similar parts, which can be regarded as a specialization of conven-
tional methods. For example, Condition D1 and E1 can characterize Kolberg’s MAI and
STI interactions respectively, in a more detailed level of abstraction. Also, Conditions D2
and E2 cover SAI and MTL Thus, the proposed method can be used to implement their
runtime interaction avoidance [9], by converting each appliance method into a nameless
action or trigger and gathering appropriately the appliance properties into the two-valued
access attributes.

As far as is reported, explicit consideration of the environmental factor in the control
application was first introduced by Metzger [12]. Within the domain of embedded con-
trol systems, their approach captures the static structures of requirements and systems
by dependency graphs, and conducts offline interaction detection for systems under de-
velopment. Our method difters in targeting the HNS where the appliances and services
can be dynamically added and modified. Hence, the proposed framework took into care-
ful consideration the modularity. Specifically, all features provided by a device (appli-
ance) should be encapsulated a self-contained object, which is loosely coupled with other
objects.

We are also investigating the conventional techniques in the telephony domain. We
found some techniques quite promising for implementation using the proposed method.
For example, the approaches with logic programming (e.g., [4]) and/or structural analysis
of rule-based methods (e.g., [19]) would enable efficient pre/post-conditions checking of
the appliance methods. A negotiating agent approach [5] would also help to implement
an automatic interaction resolution for the scheme (h) in Section 6.2.

7. Conclusion

In this paper, we have presented a service-centric framework for feature interactions in
the HNS integrated services. First, we proposed a formal model of the HNS in an object-
oriented fashion. Within the model, two types of feature interactions were defined. A
feature interaction occurs on an appliance object or an environment object when multiple
methods in different services try to refer/update common properties of the object. The
interactions were formalized as unsatisfiable pre/post conditions. We conducted a case
study of offline interaction detection among concrete service scenarios. Also, topics on
the online detection and several resolution schemes were discussed.

Several research directions present themselves. We are currently implementing con-
crete methodologies for online detection and resolution with the proposed framework.

M. Nakamura et al. / Integrated Services of Networked Home Appliances 251

Especially important is evaluating the feasibility of the suggested resolution schemes
from several viewpoints; system-view, service-view, and user-view and so forth. Adap-
tation of the conventional techniques in telephony to the HNS integrated services is also
interesting topic for further study.

Acknowledgment

This research was partially supported by: the Ministry of Education, Science, Sports and Culture,
Grant-in-Aid for Young Scientists (B) (No.15700058), and Grant-in-Aid for 21st century COE
Research (NAIST-IS — Ubiquitous Networked Media Computing).

References

[1] L. Blair and J. Pang, “Aspect-oriented solutions to feature interaction concerns using As-
pectd”, Proc. of Seventh Int’l. Workshop on Feature Interactions in Telecommunication Net-
works and Distributed Systems (FIW'03), pp.87-104, Sep. 2003.

[2] Digital Living Network Alliance - http: //www.dlna.org

[3] ECHONET Consortium - http: //www.echonet .gr.jp/

[4] N.Gorse, “The feature interaction problem: Automatic filtering of incoherences & generation
of validation test suites at the design stage”, Master’s Thesis, University of Ottawa, Ottawa,
Ontario, Canada, 2001.

[5] N. D. Griffeth and H. Velthuijsen, “The Negotiating Agents Approach to Runtime Feature
Interaction Resolution”, Proc. Second Int'l Workshop Feature Interactions in Telecommuni-
cations Systems, pp. 217-235, 1994.

[6] HAVi-http://www.havi.org/

[7] Hitachi Home & Life Solutions inc., “horaso network” - http://ns.horaso.com/

[8] Jini- http://www.jini.org/

[9] M. Kolberg, E. H. Magill, and M. Wilson, “Compatibility issues between services supporting
networked appliances”, IEEE Communications Magazine, vol. 41, no. 11, Nov 2003 pp. 136-
147

[10] S. W. Loke, “Service-oriented device ecology workflows”, Proc. of Ist Int’l Conf. on Service-
Oriented Computing (ICSOC2003), LNCS2910, pp.559-574, Dec. 2003.

|11] Matsushita Electric Industrial g, Ltd., Kurashi net
http://national.jp/appliance/product/kur ashi-net/

[12] A. Metzger, C. Webel, “Feature interaction detection in building control systems by means of
a formal product model”, Proc. of Feature Interaction in Telecommunications and Software
Systems VII, pp.105-121, 2003.

[13] M. Nakamura, H. Igaki, H. Tamada and K. Matsumoto, “Implementing integrated services of
networked home appliances using service oriented architecture”, Proc. of 2nd International
Conference on Service Oriented Computing (ICSOC2004), pp.269-278, Nov. 2004.

[14] OSGi Alliance - http: //www.osgi .org/

[15] Toshiba Corporation, “net de navi” - http: //www. rd-style.com/

[16] UPnP Forum - http://www.upnp.org/

[17] T. Tamura, T. Togawa, M. Ogawa, and M. Yoda, “Fully automated health monitoring system
in the home,” Med. Eng. Phys., Vol. 20, No. 8, pp. 573-579, 1998.

(18] X-10-http://www.x10pro.com/

[19] T. Yoneda and T. Ohta, “A formal approach for definition and detection of feature inter-
actions”, Proc. of Fifth Workshop on Feature Interactions and Software Systems (FIW'98),
pp.165-171, 10S Press 1998.

